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Detecting cognitive impairments by agreeing on interpretations of
linguistic features

Anonymous

Abstract

Linguistic features have shown promising
applications for detecting various cogni-
tive impairments. To improve detection
accuracies, increasing the amount of data
or linguistic features have been two appli-
cable approaches. However, acquiring ad-
ditional clinical data could be expensive,
and hand-carving features are hard. In this
paper, we take a third approach, putting
forward the scheme “diagnosis after reach-
ing consensus”, where non-overlapping
subsets (modalities) of linguistic features
are compressed into low-dimension in-
terpretation vectors by neural networks
(“ePhysicians”). By encouraging interpre-
tation vectors from multiple modalities to
be indistinguishable, the “ePhysicians” ex-
tract important information for classifica-
tion. We show that with the same sub-
sets of features, our models outperform
baseline neural network classifiers on clin-
ical data. Using all of the 413 linguistic
features, our best models have accuracies
in detecting cognitive impairments com-
parable to the state-of-the-art models on
several balanced datasets (.82 on Demen-
tiaBank in detecting Alzheimer’s Disease
(AD) and .66 in detecting Mild Cognitive
Impairment (MCI)).

1 Introduction

Alzheimer’s Disease (AD) and its usual precur-
sor, mild cognitive impairment (MCI), are neu-
rodegerative conditions that inhibit cognitive abil-
ity, including language ability. For example, cog-
nitively impaired subjects use more pronouns in-
stead of nouns, and pause more often between sen-
tences in narrative speeches (Roark et al., 2011).

Pronoun-noun-ratios, pauses, and other linguis-
tic features have been used to build classifiers to
detect cognitive diseases in many tasks. For exam-
ple, Fraser et al. (2015) had up to 82% accuracy on
DementiaBank1, and Weissenbacher et al. (2016)
achieved up to 86% accuracy on a corpus of 500
subjects. Yancheva et al. (2015) predicted Mini-
Mental State Estimation score (MMSE), a score
to characterize the extent of cognitive impairment.

To improve the accuracy of automated assess-
ment using engineered linguistic features, there
are usually two approaches: incorporating more
data or calculating more features. Taking the first
approach, Noorian et al. (2017) incorporated nor-
mative data from Talk2Me2 and Wisconsin Lon-
gitudinal Study (Herd et al., 2014), which in-
creased AD:control accuracy up to 93%, and mod-
erateAD:mildAD:control three-way classification
accuracy to 70% on DementiaBank. Taking the
second approach, Yancheva and Rudzicz (2016)
reached a .80 F-score using 12 features derived
from vector space models. Santos et al. (2017)
calculated features depicting characteristics of co-
occurrence graphs of narrative transcripts (e.g: de-
gree of each vertex in the graph). Their classifiers
reached 65% accuracy on DementiaBank (MCI
versus a subset of Control).

There are limitations in either of the two ap-
proaches. On one hand, additional clinical data
from the same origin could be expensive to ac-
quire (Berndt and Cockburn, 2013). Training data
from different sources (e.g. those in Noorian et al.
(2017)) should be similar enough to the existing
training data, so as to enhance classifier accura-
cies. Acquiring additional data from either of the
two origins is hard. On the other hand, carving
new features require creativity and collaboration

1https://talkbank.org/DementiaBank
2https://www.cs.toronto.edu/talk2me/

https://talkbank.org/DementiaBank
https://www.cs.toronto.edu/talk2me/
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Figure 1: Overview of model structure when
features (blue rectangles) are divided into three
modalities (non-overlapping subsets). Each subset
of features are passed into an ”ePhysician” neu-
ral network whose outputs (green rectangles) are
the interpretation vectors. The interpretation vec-
tors are passed (one by one) into a ”Discriminator”
neural network and (after combined) into a ”Clas-
sifier” network, respectively.

with subject matter experts. Besides, implementa-
tion and testing are time consuming.

These limitations motivate us to take a third ap-
proach. Instead of using new data or computing
new features, we want to utilize precomputed fea-
tures on existing dataset. Narrative description
datasets contain multiple modalities, (audio and
transcripts, to start with). Common information
shared between multiple modalities have been ap-
plied to build good classifiers. Becker and Hin-
ton (1992) predicted depths from multiple subsets
of random-dot stereograms. de Sa (1994) divided
linguistic features into two modalities, which are
passed to two neural networks separately. The two
neural networks supervised each other (i.e., out-
put labels that are used to train the other) during
alternative optimization steps to reach a consen-
sus. Their self-supervised system reached 79±2%
accuracy in Peterson-Barney vowel recognition
dataset (Peterson and Barney, 1952). These exam-
ples illustrate the effectiveness of common infor-
mation among different observations, but none of
existing works apply adversarial networks to find
these common information.

Goodfellow et al. (2014) proposed generative
adversarial networks (GANs). In GANs, a “dis-
criminator” network is trained to tell whether a
vector is drawn from the real world or produced

synthetically by a “generator” neural network,
while the generator is trained to fool the discrim-
inator. This setting have been used in multi-task
classification from text (Liu et al., 2017), multi-
lingual dialogue evaluation (Tong et al., 2018), au-
dio voice conversion (Fang et al., 2018) and do-
main transfer (Taigman et al., 2017). However,
to the knowledge of the authors, none of existing
works apply GANs to discover knowledge shared
among different aspects in data.

We propose a framework using adversarial
training to utilize common information among
modalities for classification. In this framework,
several neural networks (“ePhysicians”) are juxta-
posed, each converting a partition of available lin-
guistic features into a fixed-size vector (“interpre-
tation”) for each input document sample. Being
trained towards producing indistinguishable inter-
pretations, they should be increasingly able to cap-
ture common information contained across dis-
parate subsets of linguistic features.

We show by experiments that neural network
classifiers built and trained with the framework
“reaching consensus among modalities” could
outperform those without. Particularly, taking
all 413 linguistic features we extract, our models
have performances that align with the state-of-the-
art results on balanced datasets (i.e., AD:Control,
MCI:Control).

The novel contributions of this paper include:

• The “diagnosis by reaching consensus”
scheme for neural network classifiers, where
information shared between different modal-
ities could be utilized.

• We improve on the methods to train the
neural networks in iterative steps. Specifi-
cally, we train the ePhysicians to optimize
both classification and discrimination loss,
resulting in better performances of classifiers
trained by the intuitive GAN approach (i.e.
optimize only one type of network at a step).

• We show by experiment that an additional
interpretation vector drawn from a Gaussian
distribution (a.k.a, a noise modality) per data
sample is beneficial to the classifier accuracy.

• We also visualize the interpretation vectors
throughout several trials, and show the the in-
terpretations have a trend towards symmetry
in an aggregate manner.
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2 Methods

2.1 Dataset

We use the DementiaBank dataset, which includes
verbal descriptions (and associated transcripts) of
the Cookie Theft picture description task from the
Boston Diagnostic Aphasia Examination (Becker
et al., 1994). The version we have access to con-
tains 240 speech samples labeled Control (from 98
people), 234 with AD (from 148 people), and 43
with MCI (from 19 people). All participants have
age greater than 44 years.

Note that the version of DementiaBank dataset
we acquired contains different number of samples
from what some previous works used. In Con-
trol:AD, Fraser et al. (2015) used 233 Control and
240 AD samples; Yancheva and Rudzicz (2016)
had 241 Control and 255 AD samples; Hernández-
Domı́nguez et al. (2018) had 242 Control and 257
AD samples (with 10% control samples excluded
from the evaluation). In Control:MCI, Santos et al.
(2017) used all 43 transcriptions from MCI and 43
sampled from Control group. With no clear men-
tions how the samples went, the constituents of
Control group might differ from how we sample
from the Control group. In this paper, we compare
our model running on the same tasks (e.g: Con-
trol:AD) and compare to the best results reported
in literature. The aforementioned slight difference
in dataset should be noted.

2.2 Linguistic features

We pre-compute 413 linguistic features for each
speech sample, and manually categorize them into
four feature families as per below. These lin-
guistic features are proposed by and identified as
the most indicative of detecting cognitive impair-
ments by various previous works including Roark
et al. (2007); Chae and Nenkova (2009); Roark
et al. (2011); Fraser et al. (2015); Hernández-
Domı́nguez et al. (2018). After calculating these
features, we use KNN imputation to replace the
undefined values (resulting from divide-by-zero,
for example), followed by a z-score normalization
per feature.

Acoustic (185 features)

• Features related to speech fluency, including
phonation rate, pause durations, and number
and length of filled pauses (e.g., ‘umm’).

• Mean, variance, kurtosis, and skewness of the

first 13 Mel-scaled cepstral coefficients, and
their first- and second-order derivatives.

Syntactic and semantic (117 features)

• Average proportion of context-free grammar
(CFG) phrase types3, the rates of these phrase
types4, and the average phrase type length5

(Chae and Nenkova, 2009)

• Average heights of the context-free grammar
(CFG) parse trees, across all utterances in
each transcript. Each tree comes from an
utterance parsed by a context free grammar
parser (LexParser implemented in Stan-
ford CoreNLP (Manning et al., 2014))

• Number of occurrences of a set of 104
context-free production rules (e.g.,S->VP) in
the CFG parse trees.

• Yngve scores statistics of CFG parse trees
(Yngve, 1960; Roark et al., 2007). Yngve
score is the degree of left-branching of each
node in a parsed tree.

PoS-derived (80 features)

• The number of occurrences of part-of-speech
(PoS) tags from Penn-treebank6.

• The ratio of occurrences of several PoS tags,
including noun-pronoun ratio.

• Number of occurrences of words in each of
the five categories: subordinate (e.g: ”be-
cause”, ”since”, etc.), demonstratives (e.g:
”this”, ”that”), function (e.g: words with PoS
tag ”CC”, ”DT”, and ”IN”), light verbs (e.g:
”be”, ”have”), and inflected verbs (words
with PoS tag ”VBD”, ”VBG”, ”VBN”,
and ”VBZ”), borrowing the categorization
method in Kortmann and Szmrecsanyi (2004)

Lexical related (31 features)

• Lexical norms, including age of acquisi-
tion, familiarity, imageability, and frequency
(Taler et al., 2009). They are averaged over
the entire transcript and specific PoS cate-
gories, respectively.

3number of words in these types of phrases, divided by
the total number of words in the transcript

4number of occurrences in a transcript, divided by the to-
tal number of words in the transcript

5number of words belonging to this phrase type in a tran-
script, divided by the occurrences of this phrase type in a tran-
script

6Using https://spacy.io

https://spacy.io
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• Lexical richness, including moving-average
type-token ratio over different window sizes
(Covington and McFall, 2010), Brunet’s
index, and Honorés statistics (Guinn and
Habash, 2012).
• Cosine similarity statistics (minimum, maxi-

mum, average, etc.) between pairs of utter-
ances (represented as sparse vectors based on
lemmatized words)
• Average word length, counts of total words,

not-in-dictionary words, and fillers. The dic-
tionary we use contains around 98,000 en-
tries, including common words, plural forms
of countable nouns, possessive forms of sub-
jective nouns, different tenses of verbs, etc.

2.3 Model
Figure 1 is an example of our model structure
(with M=3 modalities), and following is a for-
mal formulation. First, each sample is converted
into a vector x consisting of all available linguis-
tic features. This vector is then divided into M
partitions (‘modalities’) of approximately equal
sizes [x1, x2, ..., xM], according to the fami-
lies mentioned above. Unless specified otherwise,
the modality assignments in our experiments are:
(1) acoustic (185 features), (2) syntactic-semantic
(117), and (3) pos-derived and lexical-related (111
here). In the rest of this paper, we will refer
to them as Acoustic modality, SynSem modality,
and LexPos modality7. These input vectors are
then passed into respective ePhysician networks,
each outputting an interpretation vector im con-
sisting of distilled representation of a subject look-
ing from a perspective (e.g: semantic-syntactic
perspective). In other words, the mth ePhysician
can be written as a function, fm:

im = fm(xm)

To challenge how well the interpretations align,
a discriminator network takes in the M interpre-
tation vectors, and decides the likelihood from
which ePhysician the interpretation vector comes:

m̂ = softmax(fD(im))

For each participant session, we add a ”noise in-
terpretation vector” i0 drawn from a normal dis-
tribution with the mean and variance identical to

7Note: this is different from the conventional definition of
modality (acoustic, text, facial expressions, body movements,
etc.). But our method could potentially apply to modalities
defined otherwise.

those of the interpretation vectors. To some extent,
this noise works like a regularization mechanism
to refrain the discriminator from making decisions
based on superficial statistics. We will show in 3.1
that this addition empirically improves classifier
performance.

i0 ∼ N (µi1..M , σ
2
i1..M

)

To produce classification, a classifier network
fC takes in the M interpretations, combines them,
and outputs a prediction:

px = softmax(fC([i1, i2, ..., iM]))

where the subscript x is a reminder that the clas-
sification probability is that of the data sample
x. As a note of implementation, all ePhysicians,
classifiers, and discriminator networks are fully
connected networks with Leaky ReLU activations
(Nair and Hinton, 2010) and batch normalization
(Ioffe and Szegedy, 2015). The hidden layer sizes
are all 10 for the ePhysician network, and there are
no hidden layers for the discriminator and clas-
sifier networks. Although modalities might con-
tain different number of input dimensions, we do
not scale the ePhysician sizes. Such choice comes
from the intuition that the ePhysicians should ex-
tract into the interpretation as similar amount of
information as possible.

2.4 Optimization
The ePhysician, discriminator, and the classifier
networks have different objectives and are opti-
mized in alternative steps. We now explain the
steps.

P and D steps ePhysicians and Discriminators
are optimized in an adversarial manner:

max
P1..M

min
D
LD

where the discriminator loss LD is the cross en-
tropy loss of the modality discrimination output.
In the case where we divide features into M
modalities, there are M + 1 samples for j to it-
erate through, for each data point.

Similar to GAN (Goodfellow et al., 2014), we
set up P step as max

P1..M

LD and D step as min
D
LD.

C step optimizes the Classifier network to mini-
mize the cross entropy loss of classification error:
min
C
LC , where

LC = Ex {−log px}
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CP step is a variant of the C step in which
we also allow the gradients to back propagate
to optimize the parameters of the ePhysicians:
min

C,P1..M

LC . If CP is applied, the ePhysicians

should both work towards producing indistin-
guishable interpretations, and producing interpre-
tations suitable for classification. We will show
empirically in 3.2 that CP step produces better re-
sults than the C step.

Implementation The objective functions LD
and LC are not convex. We use three Adam opti-
mizers (Kingma and Ba, 2014), each correspond-
ing to P, D, C(or CP) steps, and optimize itera-
tively for no more than 100 steps. The optimiza-
tion stops prior to step 100 if the classification loss
LC converges (i.e., does not differ from the previ-
ous iteration by more than 1× 10−4).

3 Experiments

To evaluate whether our intuitions result in use-
ful models, we analyze the importances of vari-
ous components in the model. First, the effec-
tiveness of the noise modality is tested. Second,
models optimized with C and CP steps are com-
pared. Then, we compare our model with neural
network classifiers using the same subsets of data,
to show the importance of reaching a consensus.
After that, we evaluate our model against several
supervised learning benchmarks and on represen-
tative cognitive impairment detection tasks. To un-
derstand the model further, we also visualize the
principal components of the interpretation vectors
throughout several runs.

3.1 Noise modality improves performance

We compare the classifier with one without the ad-
ditional noise modality (while other details includ-
ing hidden dimensions and initial learning rates
are kept unchanged).

Table 1 shows that in the AD:MCI classification
task, the model with additional noise modality is
better than the one without (p = 0.04 on 2-tailed T
test with 18 DoF). Here is a possible explanation.
Without the noise modality, a very simple strategy
for the discriminator is to tell apart the interpre-
tations by superficial aspects, namely their means
and variances, instead of their distributions. The
discriminator taking this strategy fails to capture
the detailed aspects that makes the modalities dif-
ferent. Adding in the noise modality penalizes this

strategy, and trains better discriminators by forc-
ing them to study the details.

In following experiments, all models contain
the additional noise modality.

Model F1 micro F1 macro
Gaussian noise .7995 ± .0450 .7998 ± .0449
Without noise .7572 ± .0461 .7577 ± .0456

Table 1: Comparison of models with and with-
out interpretations in noise modality. The models
containing a Gaussian noise modality outperform
those without.

3.2 CP step is better than C step

We compare the classifier trained with CP step
( min
C,P1..M

LC) to the one with C step (min
C
LC). As

shown in Table 2, the optimization using CP step
produces higher-score classifiers than that using C
step (p < 0.001 on 2-tailed T test with 18 DoF).
Using CP step, the ePhysicians are optimized to-
wards producing interpretations that are both in-
distinguishable (by the discriminator) and benefi-
cial (for the classifier). Although the interpreta-
tions might agree less to each other, they could
contain more complementary information, leading
to better overall classifier performances.

In other experiments, all of our models use CP
steps.

Optimization F1 micro F1 macro
P-D-C .6696 ± .0511 .6743 ± .0493

P-D-CP .7995 ± .0450 .7998 ± .0449

Table 2: Comparison of models using C and CP
steps. The models optimized with sequences con-
taining CP steps outperforms those with only C
steps.

3.3 Agreement among modalities is desirable

The reason for our model working might be at-
tributed to the expressiveness of the extracted fea-
tures themselves. To evaluate the effectiveness of
the setting “letting multiple modalities agree”, we
compare our model with neural network classifiers
taking only partial input features. The networks
are all just multiple layer perceptrons containing
the same total number of neurons as the ‘classi-
fier pipeline’ of our models (a.k.a ePhysicians and
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the classifier)8 with batch normalization between
hidden layers. A few observations could be made
from Table 3:

1. Some features from particular modalities are
better than others. For example, acoustic fea-
tures could be used for building better classi-
fiers than those in the lexical-pos (p = .005
for 2-tailed T test with 18 DoF) or syntactic-
semantic modality (p < .001 for 2-tailed T
test with 18 DoF)

2. Combining features from different modali-
ties usually result in better MLP classifiers.
Syntactic-semantic features plus lexical and
pos features is an exception. This might be
because the large number of less expressive
features in syntactic-semantic modality con-
fuses the classifier.

3. Given the same number of features, training
the networks to agree in interpretations be-
tween modalities improve the accuracy.

Models (Modality) Accuracy
MLP (Acoustic) .7519 ± .0245
MLP (SynSem) .5222 ± .0180
MLP (LexPoS) .6987 ± .0278
MLP (SynSem + LexPos) .5819 ± .0216
Ours (SynSem + LexPos) .7257 ± .0344
MLP (Acoustic + LexPos) .7002 ± .1128
Ours (Acoustic + LexPos) .7542 ± .0433
MLP (Acoustic + SynSem) .6776 ± .0952
Ours (Acoustic + SynSem) .7574 ± .0361
MLP (All 3 modalities) .7528 ± .0520
Ours (All 3 modalities) .7995 ± .0450

Table 3: Performance comparison between our
model and neural network classifiers having par-
tial modality information. Here SynSem is short-
hand notation for Syntactic and Semantic related
features, and LexPos for lexical related features.

3.4 Evaluation against benchmark
algorithms

State-of-the-art papers use traditional classifiers
with their features. To compare with theirs, we run
traditional classifiers on our features and compare

8For example, for models taking in two modalities, if our
model contain ePhysicians with one layer of 20 hidden neu-
rons, the interpretation vector dimension 10, and classifier
5 neurons, then the benchmarking neural network contains
three hidden layers with [20×2, 10×2, 5] neurons.

the performances. Several traditional supervised
learning benchmark algorithms are tested in this
paper: support vector machine (SVM), quadratic
discriminant analysis (QDA), random forest (RF),
and Gaussian process (GP). For completeness,
multiple layer perceptrons (MLP) containing all
features as inputs are also mentioned in Table 5.
On the binary classification task, our model does
better than them all.

3.5 Comparison to accuracies in literature

To illustrate the utility of our method against tasks
other than AD:CTL, we train and run the “diag-
nosis after reaching consensus” model on major
tasks in diagnosing cognitive diseases on Demen-
tiaBank. The best results (5-fold cross validation)
are shown in Table 4. On binary AD:CTL and
MCI:CTL (sampled a subset to make the dataset
balanced, as in Santos et al. (2017), our best re-
sults are comparable to the best results reported in
the literature on balanced datasets. However, on
the ternary AD:MCI:CTL classification task, our
model has limited performance. This is a lim-
itation of the “diagnosis by reaching consensus”
framework.

3.6 Visualizing the interpretations

To further understand what happens inside the
models during training, we visualize the interpre-
tation vectors with PCA. Figures 2, 3, 4 and 5 are
drawn from four arbitrary runs of the model. Each
interpretation is represented with a data point on
the figure, with its color representing the modality
it comes from (including the noise modality).

Several common themes could be observed:

1. Symmetric clustering. Initially the configu-
rations of interpretations are largely depen-
dent on the initialization of network. Grad-
ually the interpretations of the same modal-
ity tend to form clusters. Optimizing the
ePhysicians towards both targets make they
compress modalities into interpretation vec-
tors which are symmetrical in an aggregate
manner.

2. The noise modality lies at the center of the
three petals. Its shape do not resemble any
of the other three modalities. This indicates
the distribution of interpretation vectors do
not obey simple Gaussian distribution, which
illustrates the importance of CP step (encour-
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Task Statistics Our model Best in literature
AD vs Control Accuracy, 10 folds CV .82 .82 (Fraser et al., 2015)

MCI vs. subset of Control Accuracy, 5 folds CV .66 .65 (Santos et al., 2017)
AD vs. MCI vs. Control F micro / macro, .70/.73 .78 / .82

10 folds CV (Hernández-Domı́nguez et al., 2018)

Table 4: Evaluation of top performance of our model on multiple tasks. The higher evaluations are
marked bold. Fraser et al. (2015) used linear regressor on 50 carefully selected features. Santos et al.
(2017) used SVM and ensembled traditional classifiers. Hernández-Domı́nguez et al. (2018) used SVM
and Random Forest traditional classifiers when getting these results. In Table 5 we will compare our
model to traditional classifiers on the dataset available to us.

(a) Step 5
LD = 1.30
Val accr .52%
Variance 66.3%

(b) Step 10
LD = 1.23
Val accr .59%
Variance 70.2%

(c) Step 20
LD = 1.01
Val accr .72%
Variance 76.0%

(d) Step 30
LD = 0.66
Val accr .77%
Variance 76.7%

(e) Step 40
LD = 0.31
Val accr .78%
Variance 87.7%

Figure 2: PCA visualizations in steps 5, 10, 20, 30 and 40 of a trial. The three clusters representing three
modalities spread out like petals, while the noise modality remain in the center. “Variance” refers to the
variance explained by the first three principal components.

(a) Step 5
LD = 1.32
Val accr .74%
Variance 67.4%

(b) Step 10
LD = 1.28
Val accr .81%
Variance 68.0%

(c) Step 20
LD = 1.19
Val accr .77%
Variance 70.5%

(d) Step 30
LD = 1.04
Val accr .79%
Variance 76.9%

(e) Step 40
LD = 0.72
Val accr .79%
Variance 76.9%

Figure 3: In this trial, the petals are wider than those of Figure 2.

(a) Step 5
LD = 1.34
Val accr .74%
Variance 71.2%

(b) Step 10
LD = 1.32
Val accr .76%
Variance 72.9%

(c) Step 20
LD = 1.17
Val accr .77%
Variance 77.1%

(d) Step 30
LD = 0.89
Val accr .79%
Variance 77.0%

(e) Step 40
LD = 0.64
Val accr .79%
Variance 80.8%

Figure 4: In this trial, both the blue and the orange cluster form wide petals. Interestingly, they gradually
become tighter towards the noise modality, but still maintain clear gaps in between.
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(a) Step 5
LD = 1.33
Val accr .65%
Variance 63.4%

(b) Step 10
LD = 1.29
Val accr .71%
Variance 69.2%

(c) Step 20
LD = 1.19
Val accr .72%
Variance 79.7%

(d) Step 30
LD = 0.98
Val accr .74%
Variance 81.6%

(e) Step 40
LD = 0.71
Val accr .78%
Variance 86.6%

Figure 5: Each petal here has the shape of a long hook from step 10 to 30, but gradually degenerates
towards small points.

Classifier Micro F1 Macro F1
SVM .4810 ± .0383 .6488 ± .0329
QDA .5243 ± .0886 .5147 ± .0904
RF .6184 ± .0400 .6202 ± .0422
GP .6775 ± .0892 .6873 ± .0819

MLP .7528 ± .0520 .7561 ± .0444
Ours .7995 ± .0450 .7998 ± .0449

Table 5: Comparison with different traditional
classifiers in AD:Control classification task. Our
model has higher accuracy than the best traditional
classifier, MLP (p = 0.046 on 20DoF one-tailed t
tests).

aging the discriminator to study the distribu-
tions of interpretations).

3. The variances explained by the first a few
principal components usually increase as the
optimizations proceed. This might indicate
that by encouraging the interpretations to
reach an agreement, the consensus tend to be
simple.

4. Accuracy in validation set generally increases
as the training proceeds, and as the inter-
pretations demonstrate a clearer separation
from each other visually. In other words,
the interpretations do not need to be perfectly
aligned (which should correspond to overlap-
ping, indistinguishable dots from PCA visu-
alizations). As long as they are working to-
wards forming an indistinguishable interpre-
tation, the classifier accuracy can be boosted.

4 Conclusion and future works

We have put forward the “diagnosis after reaching
consensus” scheme, in which neural networks are
encouraged to compress various modalities into

indistinguishable fixed-size interpretation vectors.
We show this “agreement between modalities”
mechanism, with the additional noise modality,
improves performances of neural network classi-
fiers to be higher than MLP baselines given the
same features. With all 413 linguistic features,
we show our best performing models have com-
parable results as state-of-the-art ones on balanced
classification tasks.

In the future, the “agreement among modal-
ities” idea could be applied to design objective
functions for training classifiers in various tasks.
It would also be meaningful to test models on
other datasets than DementiaBank. In addition,
the mechanisms making the clusters of interpre-
tation vectors symmetric could be analyzed.
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