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ABSTRACT

Generative models have been successfully applied to image style transfer and
domain translation. However, there is still a wide gap in the quality of results
when learning such tasks on musical audio. Furthermore, most translation models
only enable one-to-one or one-to-many transfer by relying on separate encoders
or decoders and complex, computationally-heavy models. In this paper, we intro-
duce the Modulated Variational auto-Encoders (MoVE) to perform musical timbre
transfer. We define timbre transfer as applying parts of the auditory properties of
a musical instrument onto another. First, we show that we can achieve this task
by conditioning existing domain translation techniques with Feature-wise Linear
Modulation (FiLM). Then, by replacing the usual adversarial translation criterion
by a Maximum Mean Discrepancy (MMD) objective, we alleviate the need for an
adversarial objective. This allows a faster and more stable training along with a
controllable latent space encoder. By further conditioning our system on several
different instruments, we can generalize to many-to-many transfer within a single
variational architecture able to perform multi-domain transfers. Our models map
inputs to 3-dimensional representations, successfully translating timbre from one
instrument to another and supporting sound synthesis from a reduced set of control
parameters. We evaluate our method in reconstruction and generation tasks while
analyzing the auditory descriptor distributions across transferred domains. We
show that this architecture allows for generative controls in multi-domain transfer,
yet remaining light, fast to train and effective on small dataset

1 INTRODUCTION

Music information can be analyzed in many forms, each of which conveys different specificities
over musical qualities. Among these, timbre is the set of properties that distinguishes one instrument
from another playing at the same pitch and loudness. Timbre has become a core concept in music
composition since the 19" century (McAdams|(2013)). It has been studied using human dissimilarity
ratings to construct timbre spaces, which exhibit the perceptual relationships between instruments
(Grey| (1977)). However, these spaces are not invertible to the signal domain and do not generalize
to new examples (McAdams et al.| (2006)). The heavy reliance on hand-crafted audio descriptors
to analyze timbre perception altogether leads to a lack of established models to understand and
generate timbres (McAdams|(2013))). Moreover, the specific nature of music tasks requires tailored
evaluation principles that are yet to be ascertained (Jaffe| (1995)).

Recent advances in generative models open alternative avenues to analyze highly dimensional data
and tackle complex subsequent tasks. Amongst these, the idea of style transfer (Gatys et al.| (2015)))
has recently gained a flourishing interest. This approach allows to modify the stylistic features of an
image while preserving its overall content and led to the more generic question of domain transla-
tion. In the recent UNsupervised Image-to-image Translation (UNIT) model, Liu et al.| (2017) pro-
posed to learn a shared latent space with a Variational Auto-Encoder (VAE) and translate between
different data domains with an adversarial criterion. However, specific properties of the generation
cannot be controlled and that discriminative objective might lead to an unstable and longer training.
Here, we first extend this approach to musical transfer while improving it by introducing Modu-
lated Variational auto-Encoders (MoVE) that offer control over the generation through conditioning.

! Audio examples, source code and animations available at https://github.com/anonymous124/iclr2019MoVE
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Furthermore, by replacing the discriminative networks by a Maximum Mean Discrepancy (MMD)
objective, we alleviate the need for an additional adversarial training specific to each domain.

Although UNIT provides a powerful framework, it only applies to one-fo-one transfer. This implies
that a different model has to be trained for each pair of domains. To mitigate this issue, |Choi
et al.[(2017) proposed StarGAN which performs many-to-many transfer between several domains.
However, it relies solely on Generative Adversarial Networks (GANs) and do not learns an implicit
task representation to interact with. In the music realm, Mor et al.|(2018) proposed Universal Music
Translation (UMT), which does not use GANs. Although it enables translation across multiple
complex audio domains, this method requires to learn a separate decoder for each domain, which
leads to a prohibitive training time. In contrast to these methods, we show that MoVE can be further
conditioned on domain information and generalizes to many-to-many transfer with a single encoder
and decoder architecture able to perform multi-domain transfer. The resulting models are rather
lightweight and fast to train while effective on a moderate amount of examples.

Here, we define timbre transfer as applying a variable part of the auditory properties of a musical
instrument onto another. We circumvent the lack of definition for timbre by considering each instru-
ment as a separate domain that maps onto a common latent representation. We further address the
crucial need for interactivity and control in creative applications such as audio synthesis. Accord-
ingly, our method yields 3-dimensional latent spaces that can be explored and controlled through
high-level explicit variables such as pitch and octave values. This supports sound generation with
smoothly evolving timbre qualities and complex domain transfers from a reduced set of parameters.
Finally, we analyze traditional audio descriptor distributions when transferring between multiple do-
mains or decoding across latent dimensions to demonstrate the generative capacities of our model.

2 RELATED WORKS

Style transfer and image translation. In computer vision, style transfer (Gatys et al.| (2015))
has been proposed to generate images that preserve the content from a source image but feature
stylistic qualities belonging to another target image. Although this technique provides compelling
results, it operates on local textural information and fails to capture higher-level semantic properties
of the style. Further research has been carried to address this question of domain translation, first
proposed by [[sola et al.|(2017)). In the fully supervised setting, this translation would require paired
samples. However, such datasets are scarce and the concept of existing samples exactly matching
the translation task is restrictive from a generative perspective. In the UNIT approach (Liu et al.
(2017)), the underlying assumption is that two hypothetically matching samples should map onto
the same point in a shared latent space. Hence, translation is achieved by partially weight-shared
VAE:s in order to map the two separate domains to a common latent representation. Learning is
performed with an auxiliary pair of adversarial discriminators which push translated samples to
match the distributions of their respective domains. An additional cycle-consistency objective (Zhu
et al.[(2017)) reinforces the shared learning by ensuring that translated samples can be retrieved back
to their original domains. However, this architecture can only operate on single domain pairs.

In order to provide many-to-many translations, |(Choi et al.|(2017) proposed to replace weight-sharing
by conditioning a single GAN. This allows to train on multiple domains simultaneously, while en-
abling control over the generative process. However, the authors evaluate only on highly similar
domains (eg. face attributes). Furthermore, this approach relies solely on GANs, which are noto-
riously difficult to train, prone to lack full support over the data (Grover et al|(2017)) and do not
provide a latent space encoder.

Recently, Feature-wise Linear Modulation (FiLM) has been proposed to improve conditioning by
learning conditional bias and scaling throughout a network (Perez et al.| (2017)). This method was
successfully used in image stylization (Ghiasi et al.[|(2017)) where adaptive modulation conditioned
on a style image is applied after each intermediate instance normalization. Here, we show that by
relying on FiLM layers for domain conditioning, we can perform many-to-many domain translation
with a single VAE architecture, as depicted in Fig.[T[c). Moreover, by using a MMD criterion, we al-
leviate the need for GANS or specific adversarial discriminators. Hence, we obtain an unsupervised,
lightweight and easy to train model with a general and controllable latent space.
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Figure 1: Different approaches to domain translation. (a) One-fo-one transfer models such as UNIT
are restricted to domain pairs. (b) One-tfo-many transfer models such as UMT require to train a
different decoder for each domain. (c) Our proposed many-to-many transfer model (MoVE) allows
to perform multi-domain transfer with a single encoder and decoder, while providing control over
the generation with external high-level conditioning variables.

Audio translations. Recent applications of generative models to audio have shown promising
results, notably supported by solutions to efficiently generate waveforms such as Wavenet (Van
Den Oord et al.| (2016)) or SampleRNN (Mehri et al.| (2017)). Most of these proposals target voice
signals and there is still a large gap when addressing musical data. Some approaches have tackled
musical style transfer (Verma & Smith| (2018))). However, as pointed by |Dai et al.| (2018)), musical
style is a multimodal and multi-scale notion, which implies a variety of underlying factors. Specifi-
cally for domain translation, Mor et al.| (2018) proposed a Universal Music Translation (UMT) net-
work that globally translates musical recordings between different genres and instrument domains.
Using a single Wavenet encoder and separate decoders for each domain, this approach is able to
transform a given melody so that it is played by different instruments. By design, this method re-
quires to train a specific Wavenet decoder for each of the target domain. It does not provide control
over audio synthesis and the learned representation does not allow direct visualization nor transfer of
only specific parts of timbre attributes. Hence, it does not enable informed generative processes, mu-
sical interaction and creativity. Our proposal targets 3-dimensional latent spaces supporting timbre
transfer and continuous synthesis paths with explicit control over musical attributes.

3 MusICAL TIMBRE TRANSFER

Musical timbre can be defined as the set of auditory qualities that distinguishes two instruments
playing the same note at the same loudness. Seminal studies relying on human dissimilarity rat-
ings provided an interesting step towards understanding music perception (McAdams et al.|(1995)).
However, the ordination techniques used yield non-invertible and fixed timbre spaces. Hence, they
do not support audio synthesis nor do they provide a way to manipulate timbre structures. Signal
processing techniques have also been developed to process and alter timbre. However, these rely
on complex analysis schemes that decompose sounds into large sets of parameters (Serra (1997)),
precluding intuitive control over the audio synthesis process.

Here, we propose to use generative models in order to perform musical timbre transfer. In order
to circumvent the complexity of defining timbre, our underlying hypothesis is that each instrument
defines a timbral domain, which contains all style qualities that shape its identity. Musical timbre
transfer can be achieved by transforming a certain amount of the auditory features of a musical in-
strument according to another (eg. like playing a saxophone with a bow). Transferring all timbre
properties of an instrument leads to domain translation, while partial modification of these amounts
to style transfer. Furthermore, our goal is to obtain a controllable model that can be used for cre-
ative purposes. Hence, we aim to obtain 3-dimensional latent spaces along with high-level musical
parameters that enable human interaction and control over the generation.

This type of transfer can be performed in several ways, as depicted in Fig. [T} First, one-to-one trans-
fer models such as UNIT map samples from a given pair of domains to a shared latent space. By
learning separate layers and weight-shared layers in both the decoder and encoder, domain transla-
tion can be assessed through adversarial discriminators. We first adapt this model to timbre transfer
and show that we can alleviate the need for GAN training by using an alternative MMD objective.
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It leads to a faster and more stable learning that we further enhance by modulating shared layers
with FiLM layers (Perez et al.| (2017)) on pitch and octave. This provides an explicit control over
generation, altering or not the pitch regardless of timbre. The one-to-many transfer models (UMT)
allow to work with multiple domains but require to learn a different decoder for each. This leads to a
more complex and longer training and reduces the generalization ability of the model gained through
multi-task learning. Here, we show that our proposed Modulated Variational auto-Encoder (MoVE)
allows to perform many-to-many transfers with a single VAE simultaneously processing all domains.
The success of our solution relies on an efficient domain conditioning, together with external con-
trol variables, performed through FiLM layers acting on the whole network. This solution offers a
greater generalization power by jointly learning all transfer tasks within a single architecture. The
resulting latent space successfully models joint and conditional distributions over several instrument
domains. This also enables control with semantic labels, while providing interactive 3-dimensional
spaces to synthesize novel tones from a reduced set of control parameters.

3.1 ONE-TO-ONE TRANSFER

Our one-to-one transfer model is based on an architecture similar to UNIT (Liu et al.| (2017)) where
the core idea is to learn a latent space that is shared between two domains &} and X>. Based on
samples x1 € X and zo € X», we aim to model the joint distribution px, x, (X1, x2) over the two
domains. By learning domain-specific encoders E; and E5, matching samples drawn from each
marginal distribution py, (x1) and px,(x2) should map onto the same latent code z = F1(x;1) =
E5(x2). Equally, any latent code can be decoded back to any of the two domains d € {1,2} by
learning appropriate decoders x); = Dgy(z). A paired VAE implements this assumption through
separate domain-specific layers {e; ; dq} alternated with weight-shared ones {eys ; dws}. The full
encoders and decoders are defined by the composition of both parts F; = eysoeq and Dy = dgodys.

Each VAE is trained with a reconstruction loss on its own domain, by approximating the intractable
latent conditional p(z|x) with a parametric encoding network ¢, (z|x) with ¢ € ®. In comparison to
UNIT, we both use a Gaussian encoder g4 and decoder pg so that z ~ ¢4 (z|x) = N (ue(x), 04(x))
and x ~ pg(x|z) = N(ue(z),00(z)). Training the model amounts to optimize {6 ; ¢} on the
Evidence Lower Bound Objective (ELBO), defined as a Negative Log-Likelihood (NLL) term on
the output prediction error and a S-weighted Kullback-Leibler Divergence (KLD) term that assesses
the error from the approximate latent density against the intractable true posterior distribution.

0.6 = Eqy(»[log po(x|2)] — B * Dkr[gs(2[%)[|po(2)] (1)
This inference objective allows to learn structured low-dimensional and invertible representations of
the data, while disentangling generative factors in the encoded variables (Higgins et al.| (2016)).

Translation is performed by switching domains between the encoding and decoding stages eg.
X1-2 = Dy o Eq(x1). However, there is usually no matching sample x5 that could allow to perform
the optimization of the reconstruction error £é;§l = err(X1-2||x3). To circumvent this challenge,
UNIT relies on GANSs to discriminate the generated translations against the target data distributions
they model. However, this GAN criterion leads to a more complex and possibly unstable training
process. Here, we show that we can efficiently replace the adversarial criterion by a differentiable
distance measure on the probability distribution spaces. We minimize the Maximum Mean Discrep-
ancy (MMD), a non-parametric kernel method (Gretton et al.|(2012)), between the set of transferred
samples x1_,2 ~ pg, (X|z, ¢1) and a randomly sampled set from the target domain Xo ~ pu,

Ly,73 = MMD[x1_,0[|Xo] = By [k(x,X)] — 2 % Ex x[k(x, X)] + Exx [k(X, X')]

2
V{X,X/} € X192 and V{)Z, i/} € Xo @

n
where k is a Radial Basis Functions (RBF) kernel k(x,x’) = Z exp_ai”"_"l”Q.
i=1

Reconstruction and translation objectives are jointly optimized with an extra circle-consistency (CC)
criterion. It consists in encoding a translated sample back to the latent space and decoding it to its
source domain so that x..; = Dj o E5(x1_2). Hence, this double translation should retrieve the
initial sample and the reconstruction error can be optimized with a NLL loss.

gfiﬁz = EQ¢2(Z‘X1~>2)[1ng91 (X|Z)] 3)
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Finally, the complete optimization objective is defined as
LHG™ = Lolta, + L5550, + Mamn (L6, 75, + £5775,) + Moo (L6, + Li,) “)

where A\yvvip and Acc allow to weigh the relative influence of different objectives. For the purpose
of controllable musical timbre transfer, we further apply conditioning at the input of the weight-
shared networks by concatenating one-hot encoded pitch classes and octaves. This pushes the shared
encoder to structure note-agnostic features, while providing control over the generation.

3.2 MANY-TO-MANY TRANSFER

In order to alleviate the one-fo-one limitation that requires a different training for each domain pair,
we propose the single MoVE architecture as depicted in Figure 2] All layers are shared over the
multiple domains processed, by learning a single modulated encoder E; and decoder Dg. Trans-
fer is performed by switching the categorical condition between different instruments. Hence, the
practical success of this method highly depends on the conditioning strategy, which must also re-
tain the pitch and octave control. To do so, we use an input embedding that jointly maps these
categorical conditions to dense vectors fed into FILM generators. We replace each intermediate
batch normalization with instance normalization and activation is followed by a FiLM modulation
layer (conditional instance normalization). Biasing and scaling are either applied feature-wise for
1-dimensional activations or channel-wise after 2-dimensional feature maps. A different generator
output is used for modulating each instance normalization layer depending on its shape. The MoVE
model trains in reconstruction with the ELBO and in transfer with the MMD, which is separately
computed for each instrument against each of the others.
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Figure 2: The Modulated Variational auto-Encoder (MoVE) provides a single architecture able to
perform many-to-many transfer while controlling the generation with external parameters. Both the
domain and control information are processed to modulate different layers of the architecture.

4 EXPERIMENTS

Dataset. In order to learn our timbre transfer models, we rely on the Studio-On-Line (SOL)
database of orchestral instrument note recordings (Ballet et al.| (1999)). We selected 12 instruments
across the 4 families of wind (Alto-Saxophone, Bassoon, Clarinet, Flute, Oboe), brass (English-
Horn, French-Horn, Tenor-Trombone, Trumpet), string (Cello, Violin) and keyboard (Piano). We
consider each instrumental subset as a timbral domain X;, which contains the full tessitura of each
instrument at different velocities (amounting to around 100 to 200 samples per domain). We split
these subsets into 90% training notes and 10% test set. The audio waveforms are down-sampled
to 22050Hz before computing the Non-Stationary Gabor Transform (NSGT) (Balazs et al.|(2011)).
This spectral transform allows to map to a perceptual pitch scale, while remaining iteratively in-
vertible to the signal domain (Perraudin et al.|(2013))). NSGTs are computed on a scale of 500 Mel
bins ranging from 10Hz to 11000Hz. The resulting matrix data is sliced into chunks of 16 temporal
frames, amounting for a context of about 120ms. This yields a final input size of 16x500 dimensions.
We keep only the magnitude information and lowest values are floored to 6~ before applying a
logarithmic transform. Finally, we normalize the entire dataset by computing a zero-mean unit-range
normalization on all training samples.
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Implementation details. The one-to-one transfer network is implemented as follows. The first
encoding stacks ey are domain-specific, each composed of two 2-dimensional strided convolutions,
an intermediate flattening step and a fully-connected (FC) layer. The intermediate representation is
either concatenated (denoted as CAT-po models) with the conditioning vector of size 21 (12 pitch
and 9 octave classes) or modulated by FiLM (denoted as FiLM-po models). Follows a weight-shared
set ey of two FC layers and two Gaussian encoder output layers mapping the input to a shared 3-
dimensional latent space. All intermediate layers are followed by batch normalization and a Leaky-
ReLU non-linearity. This structure is mirrored in the decoders, where the latent code is conditioned
and fed into a weight-shared block dys of 3 FC layers. Follow separate decoding stacks d4 each with
a FC layer, two transpose convolutions that up-sample the representation and two Gaussian decoder
outputs. The final output activation is a Tanh applied to the decoded means, according to the initial
data scaling. Full details of the architectures are given in appendix A.

The many-to-many transfer model relies on the same architecture, but without domain-specific en-
coders and decoders. Hence, all layers are similar but a single network jointly processes all domains
thanks to FiLM layers (denoted as FiLM-poi models). For these, an embedding layer maps our cat-
egorical vocabulary of pitch, octave and instrument classes to dense vectors which are processed by
two FiLM generators, one for the encoder and one for the decoder. Each has 3 FC layers followed
by scaling and biasing output pairs that each map to the size of the modulated layer. We replace
all batch normalization by instance normalization and apply FiLM generator outputs as linear trans-
form modulating normalized hidden activations. Conditional instance normalization is performed
feature-wise for 1-dimensional vectors and channel-wise for 2-dimensional feature maps.

Regarding optimization, all training objectives are simultaneously back-propagated throughout all
networks. We use a Xavier weight initialization and the ADAM optimizer with an initial learning
rate of 1le~*. Following the 3-warmup procedure (Sgnderby et al|(2016)), only the NLL recon-
struction objective is optimized in the first epochs and the KLD strength is gradually increased from
0 to 1 during half the total number of training epochs. Similarly, we introduce the translation ob-
jective after 40 epochs and the optional circle-consistency objective after 60 epochs. We train on
mini-batches of size 128 and the MMD is evaluated against batches of size 2048 sampled from the
target distributions and computed with three Gaussian kernel parameter values {0.05,0.1,1}. We
found the magnitude of MMD gradients to be much smaller than that of the ELBO. Hence, we set
Avmp to 1e®. Given that our models are light, the training over instrument pairs or triplets can be
done in less than 24 hours on a single mid-range GPU (eg. NVIDIA TITAN Xp 12Gb).

4.1 ONE-TO-ONE TRANSFER

First, we compare our MoVE proposal to UNIT on the one-to-one transfer task. To do so, we learn a
different model for each pair of instruments. We perform incremental comparisons by ablating cer-
tain aspects of our proposal to assess their importance. First, we add concatenative conditioning of
pitch and octave to UNIT (noted UNIT(GAN;C-po)). Then we add our proposed alternative MMD
criterion replacing the GAN objective (UNIT(MMD;C-po)). Then, we introduce the FiLM layers
leading to our MoVE proposal. The first version still features separate domain-specific encoders
and decoders, so it is noted MoVE* (MMD; F-po). By further introducing domain conditioning and
relying on a single VAE (as in Figure[Z)), we obtain our proposal MoVE (MMD; F-pod).

Evaluation scores. To evaluate reconstruction performances, we compute several criteria between
input samples x and reconstructions X. The Root-Mean-Square Error rMSE=,/3(x—%)2 and Log-
Spectral Distortion LSD=,/ Z(lO*logw(;—g))Q provide different assessments of how various models
are able to reconstruct samples from the test set. Therefore, they only assess reconstruction abilities
without domain transfer. To evaluate the quality of domain transfers, we compute the Maximum
Mean Discrepancy (MMD) and the non-differentiable k-Nearest Neighbour (k-NN) test (Friedman
& Rafsky| (1983)). Both are dissimilarity measures computed between the target data distribution
and transferred samples. Hence, we evaluate test set transfers between different target domains.

Reconstruction and domain transfer. The averaged reconstruction and transfer results are pre-
sented in Table [3] while separate evaluations for different pairs are in Annex B. As we can see,
the UNIT-MMD model obtains the highest within-domain reconstruction score, while the MoVE
model achieves better domain translation. Hence, it appears that the MMD increases reconstruction
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performance, and that the FiLM conditioning ameliorates the transfer. It also seems that relying
on a single encoder and decoder for domain transfer might provide better generalization, as can be
verified by looking at the relative MMD and kNN scores on the transfer task. Indeed, it seems that
the modulated but separate layers approach perform worse, while the single architecture performs
better on most evaluations.

Table 1: Evaluations of various models on the test sets

reconstructions transfers
MMD NN MMD NN
RMSE | LSD |\, —0.05) | (k=10) | (@ = 0.05) | (k = 10)
UNIT (GAN) | 03412 | 71847 | 2.117e2 | 57269 | 2.038c2 | 43180
UNIT (GAN; C-po) | 03011 | 693.22 | 1.989¢-2 | 57806 | 9.112¢2 | 43414
UNIT (MMD; C-po) | 0.3036 | 69241 | 2.125¢62 | 57102 | 2304¢2 | 43878

MoVE* (MMD; F-po) | 0.3134 | 762.51 | 9.632e-3 57273 3.153 e-2 43443
MoVE (MMD; F-pod) | 0.3339 | 781.11 | 2.587 e-3 57509 1.747 e-2 43173

Audio descriptors topology. Audio descriptors are features used to compare the qualities of dif-
ferent sounds (Peeters et al.|(2011)). Hence, we rely on these to assess the effect of transfer, while
providing a deeper understanding of its behavior. We compute the spectral flatness, centroid, roll-off
and loudness on test samples reconstructed on their own domain or transferred to the other domain.
Distribution and sample-specific plots for the spectral centroid are presented in Figure
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Figure 3: Understanding the effect of musical timbre transfer through audio descriptor distributions.

As we can see, the transfer produces an almost exact match of the descriptor distribution to the target
domain. This shows the success in transferring multimodal distributions of auditory properties, as
all the modes of the descriptors’ distributions are preserved. The scatter plot also suggests that the
centroid transfer is highly influenced by the loudness of the sample. This correlates to perception
studies, as playing an instrument louder usually leads to a higher centroid McAdams et al.|(1995)).

In order to further understand how the latent space is organized with respect to audio descriptors,
we provide their spatial topology in Figure @ To compute this, we define a sampling grid over
the latent space and decode the audio at each point to compute their descriptors. As we can see,
the audio descriptors are locally very smooth. Furthermore, one key observation is that the latent
space of both conditioned target domains follow the same overall topology. Animations showing the
complete latent descriptor topology are available on the supporting webpage.

Latent space synthesis and performance. As the latent space provides continuous audio synthe-
sis and that our method introduce high-level conditioned controls, we can use our proposal as a full
musical synthesizer. Furthermore, as we map to 3-dimensional spaces, the user can directly interact
with the space while performing timbre transfer. Furthermore, although these models are trained to



Under review as a conference paper at ICLR 2019

Q_u g

= o

=

>

=

o.

o o
N

X -1 1

Q |

- ‘ [

—

>

!11 Iy

w

o wv
N

Figure 4: Topology of the latent space with respect to audio descriptors.

transfer single instrumental notes, they still can be used to transfer a full melody recording between
timbre domains. To do so, the recording is split and iteratively reconstructed by transfering each
signal window to the target domain. Audio examples of applying this strategy to transfer a complete
instrumental solo are also available in the supporting webpage.

4.2 MANY-TO-MANY TRANSFER

Here, we evaluate the application of MoVE to perform many-to-many transfer. Given our new
architecture, this simply consists in training on multiple domains at once by modulating with the
appropriate domain information. This architecture allows us to train a single model for different
domains and thus to perform multi-domain translation. The conditioning vector is then composed
of the pitch, the octave and here the instrument of the corresponding example. This conditioning
vector is then processed by an embedding to ease the FILM conditioning. Results are presented in
Table[2): we can see that the MoVE architecture is able to reconstruct and transfer multiple domains
at the same time at the cost of a slight decrease in performance, even in the case of diverse domains
(here Alto-Sax, Flute, Violin and French-Horn).

Table 2: Many-to-Many MoVE reconstruction & transfer scores

averaged reconstructions averaged transfers
MMD k-NN MMD k-NN

RMSE | LSD | (, —0.05) | (k=10) | (@ =0.05) | = 10)
Alto-Saxophone | 0.5327 | 835.67 2117 e-2 42299 2.386 e-2 59157
Flute | 0.4593 | 761.46 | 2.119e-2 49719 1.975 e-2 57277
Violin | 0.3271 | 773.65 5.659 e-3 58013 1.452 e-2 55379
French-Horn | 0.6239 | 869.69 | 3.404 e-3 70946 2.086 e-2 51317

5 CONCLUSION

We introduced the Modulated Variational auto-Encoders (MoVE), which perform many-to-many
domain transfer within a single architecture and without adversarial training while providing high-
level control over the generation. We effectively adapted this technique to musical timbre transfer
and showed the successes of our method for audio synthesis. As our technique is generic, it could
be applied to other types of data such as image or video. The architecture itself opens up a range
of potential sonic applications such as playing style conditioning, transfers between acoustical and
electronic instruments, and even with non-musical sound domains. Another avenue of research to
be investigated is controlling the amount of transfer performed by the model.
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APPENDIX A - ARCHITECTURE DETAILS

Detailed layer definitions are given according to the following nomenclature, by default all learnable
output biases are trained.

2-dimensional strided convolutions =

conv [out channels, (2D kernel), (2D stride), (2D padding)]

2-dimensional strided transpose convolutions =

convT [out channels, (2D kernel), (2D stride), (2D padding), (2D output padding)]
fully-connected layer = FC [out features]

batch normalization = BN-1D or BN-2D for 1 or 2-dimensional

instance normalization = IN-1D or IN-2D for 1 or 2-dimensional

hidden activation = act for Leaky-ReLLU

embedding = embed [output size]

FiLLM conditioning = FiLM-1D or FiLM-2D for feature-wise or channel wise
linear transform layers from the FiILM generator outputs, size according to the [hidden shape]
concatenative conditioning = CAT [condition size]

(2d) indicates two domain-specific instances of the same layer
(2g) indicates two Gaussian output instances of the same layer

encoders UNIT (GAN; C-po) \ MoVE* (MMD; F-po) MoVE (MMD; F-pod)
Enc.0 2d) conv [32,(9,21),(3.3),,10)] conv [32,09,21),(3.3),(4,10)]
Norm.E0 BN-2D + act ‘ IN-2D + act IN-2D + act + FILM-2D[EQ]
Enc.1 (2d) conv [64,(6,15),(1,3),(0,7)] conv [64,(6,15),(1,3),(0,7)]
Norm.E1 BN-2D + act \ IN-2D + act IN-2D + act + FILM-2D[E1]
intermediate flattening
Enc.2 (2d) FC [4096] I FC [4096]
Norm.E2 BN-1D + act + CAT [21] ‘ IN-1D + act
Enc3 FC[2048]
Norm.E3 BN-1D + act ‘ IN-1D + act + FILM-1D[E3]
Encd FC [1024]
Norm.E4 BN-1D + act ‘ IN-1D + act + FILM-1D[E4]
1230z (2g) FC [3]
sampling z ~ N (p1-, 0.)
decoders
Dec.0 CAT 211+ FC [1024] | FC [1024]
Norm.DO BN-1D + act ‘ IN-1D + act + FILM-1D[DO0]
Dec.1 FC [2048]
Norm.D1 BN-1D + act ‘ IN-1D + act + FILM-1D[DI]
Dec.2 FC [4096]
Norm.D2 BN-1D + act I IN-1D + act
Dec.3 (2d) FC [64%56] FC [64%56]
Norm.D3 BN-1D + act I IN-1D + act
intermediate unflattening to 64 channels
Dec.4 (2d) convT [64,(6,15),(1,3),(0,7),(0,D] convT [64,(6,15),(1,3),(0,7),(0,D)]
Norm.D4 BN-2D + act ‘ IN-2D + act IN-2D + act + FILM-2D[D4]
Dec.5 (2d) convT [32,(9,15),(3,3),(4,7),(0,1)] convT [32,(9,15),(3,3),(4,7),(0,1)]
Norm.D5 BN-2D + act ‘ IN-2D + act IN-2D + act + FILM-2D[D5]
Ha; O (2d*2g) convT [1,(5,15),(1,1),(2,7),(0,0)] (2g) convT [1,(5,15),(1,1),(2,7),(0,0)]
training: x ~ A(TanH(p), o)
generation: X ~ TanH(y,)
embed [21]
) FC [128] + IN-1D + act
FiLM generators FC [512] + IN-1D + act
FC [2048] + IN-1D + act
FiLM encoder outputs FC [FiLM-1D[E3]+FiLM-1D[E4]] | FC [FiLM-1D[EO]+FiLM-1D[E1]+FiLM-1D[E3]+FiLM-1D[E4]]
FiLM decoder outputs FC [FiLM-1D[DOJ+FiLM-1D[D1]] | FC [FiLM-1D[DO}+FiLM-1D[D1]+FiLM-1D[D4]+FiLM-1D[D5]]
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APPENDIX B - DETAILED TRANSFER EVALUATIONS

Following scores of the table 3 are averaged on the pairs Alto-Saxophone+Violin ; Flute+French-
Horn ; Oboe+Cello and Clarinet+Piano.

Table 3: Averaged scores for reconstruction and transfer over the test set samples

averaged reconstructions averaged transfers
MMD k-NN MMD k-NN

RMSE | 'LSD |\ — 0.05) | (k=10) | (@ =0.05) | (k= 10)
UNIT (GAN; C-po) | 0.4083 | 701.06 | 1.7223 e-2 59499 1.955e-2 60269
MoVE* (MMD; F-po) | 0.4405 | 788.09 | 1.244 e-2 59300 1.650 e-2 59975
MoVE (MMD:; F-pod) | 0.4300 | 779.25 | 1.007 e-2 59282 1.487 e-2 60455

Table 4: Pair-wise evaluations on Flute and French-Horn test sets

reconstructions Flute transfers to French-Horn
MMD. k-NN. MMD. k-NN.
RMSE. | LSD. |\ _ 005 | (k=10) | (@ =0.05) | (k= 10)

UNIT (GAN; C-po) | 0.2773 | 680.49 | 3.425e-3 50344 2.991 e-4 71596
MoVE* (MMD; F-po) | 0.3724 | 792.67 | 1.967 e-2 49840 6.375¢e-3 71582
MoVE (MMD; F-pod) | 0.2697 | 698.68 | 2.226 -2 49945 2364 -2 71848
reconstructions French-Horn transfers to Flute

UNIT (GAN; C-po) | 0.5442 | 736.96 | 1.942 e-4 71672 8.888 e-3 52304
MoVE* (MMD; F-po) | 0.5749 | 800.64 | 3.458 e-3 72029 4.156 e-2 51250
MoVE (MMD; F-pod) | 0.6026 | 820.71 | 2.584¢-3 71650 2.049 e-2 52348

Table 5: Pair-wise evaluations on Oboe and Cello test sets

reconstructions Oboe transfers to Cello
MMD. k-NN. MMD. k-NN.
RMSE. | LSD. |, Z0.05) | (k= 10) | (@ = 0.05) | (k = 10)
UNIT (GAN; C-po) | 0.4928 | 686.52 | 8.196 e-3 45660 2.238 e-2 61267
MoVE* (MMD; F-po) | 0.5641 | 808.06 | 2.093 e-3 45705 3.290 e-3 62272
MoVE (MMD; F-pod) | 0.5509 | 776.80 | 3.440e-3 45378 7.486 -3 62036
reconstructions Cello transfers to Oboe
UNIT (GAN; C-po) | 0.2784 | 711.37 | 9.579 e-3 61775 6.394 e-3 47548
MoVE* (MMD; F-po) | 0.3226 | 777.27 | 2.093 e-3 61736 2.428 e-3 47250

MoVE (MMD; F-pod) | 0.3487 | 818.90 | 1.769 e-3 61952 8.352e-3 47787
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Table 6: Pair-wise evaluations on Clarinet and Piano test sets

reconstructions Clarinet

transfers to Piano

MMD. k-NN. MMD. k-NN.
RMSE. | LSD. |\, —0.05) | k=10) | (@ =0.05) | (k= 10)
UNIT (GAN; C-po) 0.6915 778.33 | 3.918¢e-2 76035 2.827 e-2 74273
MoVE#* (MMD; F-po) 0.7351 916.88 | 1.144 e-2 75440 1.287 e-2 73753
MoVE (MMD; F-pod) 0.6878 884.63 | 1.614e-2 75604 1.462¢e-2 74349
reconstructions Piano transfers to Clarinet
UNIT (GAN; C-po) | 6.682¢-2 | 543.09 | 2.610e-2 70925 4.071e-2 74268
MoVE#* (MMD; F-po) | 6.522e-2 | 582.98 | 1.276 e-2 70055 6.790 e-3 72761
MoVE (MMD; F-pod) | 5.727 e-2 | 578.66 | 1.547 e-2 70044 1.884 e-2 74801

Table 7: many-to-many MoVE evaluation on Clarinet
Cello, Tenor-Trombone (T-Trombone) and Piano test sets (350 epochs only)

input reconstructions targets transfers

MMD. k-NN. MMD. k-NN.
RMSE. | LSD. |, —0.05) | (k = 10) (@ =0.05) | (k=10)

Cello 1.205 e-2 64117
Clarinet 0.6832 873.17 | 9.776 e-3 76093 | T-Trombone | 7.450 e-3 29896
Piano 0.1233 75278
Clarinet 1.345e-3 74569
Cello 0.3043 755.58 | 2.115e-3 61756 | T-Trombone | 1.326e-3 28632
Piano 0.1595 74420
Clarinet 2.089 e-2 73320
T-Trombone | 0.7362 1047.1 | 1.281e-2 25629 Cello 1.652 e-2 61006
Piano 0.1649 71939
Clarinet 0.1482 75589
Piano 4965e-2 | 542.72 | 9.773 e-3 69573 Cello 0.1155 63947
T-Trombone 0.2038 28675
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