
Succinct Source Coding of Deep Neural Networks

Sourya Basu and Lav R. Varshney
Department of Electrical and Computer Engineering, Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
{sourya, varshney}@illinois.edu

Abstract

Deep neural networks have shown incredible performance for inference tasks in
a variety of domains. Unfortunately, most current deep networks are enormous
cloud-based structures that require significant storage space, which limits scaling
of deep learning as a service (DLaaS) and use for on-device augmented intelli-
gence. This paper finds algorithms that directly use lossless compressed represen-
tations of deep feedforward networks (with synaptic weights drawn from discrete
sets), to perform inference without full decompression. The basic insight that
allows less rate than naïve approaches is the recognition that the bipartite graph
layers of feedforward networks have a kind of permutation invariance to the la-
beling of nodes, in terms of inferential operation and that the inference operation
depends locally on the edges directly connected to it. We also provide experimen-
tal results of our approach on the MNIST dataset.

1 Introduction
Deep learning has achieved incredible performance for inference tasks such as speech recognition,
image recognition, and natural language processing. Most current deep neural networks, however,
are enormous cloud-based structures that are too large and too complex to perform fast, energy-
efficient inference on device or for scaling deep learning as a service (DLaaS). Compression, with
the capability of providing inference without full decompression, is important. Universal source cod-
ing for feedforward deep networks having synaptic weights drawn from finite sets that essentially
achieve the entropy lower bound were introduced in (1). Here, we provide—for the first time—an
algorithm that directly uses these compressed representations for inference tasks without complete
decompression. Structures that can represent information near the entropy bound while also allow-
ing efficient operations on them are called succinct structures (2; 3; 4). Thus, we provide a succinct
structure for feedforward neural networks, which may fit on-device and enable scaling of DLaaS.

Related Work: There has been recent interest in compact representations of neural networks
(5; 6; 7; 8; 9; 10; 11; 12; 13; 14). While most of these algorithms are lossy, we provide an efficient
lossless algorithm, which can be used on top of any lossy algorithm that quantizes or prunes net-
work weights; prior work on lossless compression of neural networks either used Huffman coding in
a way that did not exploit invariances or was not succinct and required full decompression for infer-
ence. The proposed algorithm builds on the sublinear entropy-achieving representation in (1) but is
the first time succinctness—the further ability to perform inference with negligible space needed for
partial decompression—has been attempted or achieved. Our inference algorithm is similar to arith-
metic decoding and so computational performance is also governed by efficient implementations of
arithmetic coding. Efficient high-throughput implementations of arithmetic coding/decoding have
been developed for video, e.g. as part of the H.264/AVC and HEVC standards (15; 16).

2 Feedforward neural network structure
Let us describe the neural network model considered in (1) which will be used here to develop
succinct structures of deep neural networks. In a feedforward neural network, each node j com-

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



x1

x2

a

a

U V

1

2
2

Figure 1: Partially-labeled bipartite graph with edge colors {0, 1, 2}, where an edge of color 0
between a vertex from U and a vertex from V indicates they are not connected.

putes an activation function g(·) applied to the weighted sum of its inputs, which we can note is
a permutation-invariant function: aj = g (

∑
i wijai) = g

(∑
i wπ(i)jaπ(i)

)
, for any permutation

π. Consider a feedforward neural network with K − 1 hidden layers where each node contains N
nodes (for notational convenience) such that the nodes in all the K − 1 hidden layers are indistin-
guishable from each other (when edges are ignored) but the nodes in the input and output layers
are labeled and can be distinguished. There is an edge of color i, i = 0, . . . ,m, between any two
nodes from two different layers independently with probability pi, where p0 is the probability of no
edge. Consider a substructure: partially-labeled bipartite graphs, see Fig. 1, which consists of two
sets of vertices containing N vertices each with one of the sets containing labeled vertices and the
other set containing unlabeled vertices. An edge of color i exists between any two nodes taken one
from each set with probability pi, i = 0, . . . ,m where p0 is the probability of no edge. Refer to
(1) for detailed discussion on the structure. To construct the K-layer neural network, think of it as
made of a partially-labeled bipartite graph for the first two layers but then each time the nodes of an
unlabeled layer are connected, we treat it as a labeled layer, based on its connection to the previous
labeled layer (i.e. we can label the unlabeled nodes based on the nodes of the previous layer it is
connected to), and iteratively complete the K-layer neural network.

3 Succinct representation of a partially-labeled bipartite graph
First, we consider the succinct representation of a partially labeled bipartite graph, followed by that
of a K-layered neural network. Alg. 1 is an inference algorithm for a partially-labeled bipartite
graph with input to the graph X and output Y . Later we use this algorithm to make inferences in
a K-layered neural network where outputs of unlabeled layers correspond to outputs of a hidden
layer. The optimally compressed representation of a partially-labeled bipartite graph produced by
(1, Alg.1) is taken as an input by Alg. 1, in addition to the input X to the graph, and the output Y
of the graph is given out. If the graph has N nodes in each layer, then only an additional O(N) bits
of dynamic space is required by Alg. 1 for the inference task while it takes O(N2) bits to store the
representation and hence the structure in succinct as discussed below.

Lemma 1. Output Y obtained from Alg. 1 is a permutation of Ỹ , the output from the uncompressed
neural network representation.

Proof. Say, we have an m× 1 vector X to be multiplied with an m×n weight matrix W , to get the
output Ỹ , an n× 1 vector. Then, Ỹ = WTX , and so the jth element of Ỹ , Ỹj =

∑m
i=1W

T
j,ixi. In

Alg. 1, while traversing a particular depth i, we multiply all Yjs with XiWi,j and hence when we
reach depth N , we get the Y vector as required. The change in permutation of Ỹ with respect to Y
is because while compressing W , we do not encode the permutation of the columns, retaining the
row permutation.

Theorem 2. The additional dynamic space requirement of Alg. 1 is O(N), and hence the com-
pressed representation formed in (1, Alg. 1) is succinct.

Proof. The major dynamic space requirement is for decoding of individual nodes, and the queue, Q.
Clearly, the space required for Q, is much more than the space required for decoding a single node.
We show the expected space complexity corresponding to Q is less than or equal to 2(m+1)N(1+
2 log2 (

m+2
m+1 )) using Elias-Gamma integer codes for each entry in Q. Note that Q has nodes from

at most two consecutive depths, and since only the child nodes of non-zero nodes are encoded, and
the number of non-zero nodes at any depth is less than N , we can have a maximum of 2(m + 1)N
nodes encoded in Q. Let α0, ..., αk be the non-zero tree nodes at some depth d of the tree, where
k = (m+1)N . Let S be the total space required to storeQ. Using integer codes, we can encode any
positive number x in 2 log2 (x) + 1 bits, and to allow 0, we need 2 log2 (x+ 1) + 1 bits. Thus, the

2



Algorithm 1 Inference algorithm for compressed network.
1: Input: X = [x1, x2, . . . , xN ], the input to the neural network, and L, the compressed represen-

tation of the partially-labeled bipartite graph obtained from (1, Alg. 1).
2: Output: Y = [y1, y2, . . . , yN ], the output vector of the neural network, and L, the compressed

representation as obtained from input.
3: Initialize: Y = [0, 0, . . . , 0], d = 1, the number of neurons covered at the current depth, j = 1,

an empty queue Q, and an empty string L1 which would return the compressed representation
L once the algorithm has executed. Enqueue Q with N .

4: while Q is not empty and d ≤ N do
5: Set i = 0. Set f = the first element obtained after dequeuing Q.
6: while i ≤ m and f > 0 do
7: decode the child node of f corresponding to color i and store it as c.
8: Encode c back in L1. Enqueue c in Q.
9: Add xl × wi to each of yj to y(j+c). Add c to j.

10: if j = 1, at least one non-zero node has been processed at the current depth then
11: d = d + 1
12: end if
13: end while
14: end while
15: Update the Y vector using the required activation function.

Table 1: Experimental results for (1, Alg. 1) and Alg. 1

Dimension of weight
matrix (M ×N )

MNH(p) −
N log2N

Observed
length (bits)

Avg. queue
length (bits)

Max. queue
length (bits)

M = 784, N = 50 188335 188374 151 409
M = 50, N = 50 11747 11702 177 476
M = 50, N = 50 11747 11945 170 434
M = 50, N = 50 11747 11940 164 401

arithmetic-geometric inequality implies S ≤ 2(
∑

2 log2 (αi + 1) + 1) ≤ 2N(m + 1) + 4N(m +
1) log2 (

m+2
m+1 ). From Prop. 1 and (1, Theorem 1), the additional dynamic space for Alg. 1 is O(N),

while the entropy of a partially-labeled bipartite graph isO(N2). Thus, the structure is succinct.

Now consider the structure of the K-layered neural network as in Sec. 2 and provide its succinct
representation. The extra dynamic space for K-layers remains the same as for 2-layers as described
in Alg. 1 as inference is done one layer at a time.

Theorem 3. The compressed structure obtained by the iterative use of (1, Alg. 1) is succinct.

4 Experiments
We trained a feedforward neural network of dimension 784 × 50 × 50 × 50 × 50 × 10 on the
MNIST dataset using gradient descent algorithm to get 98.4% accuracy on the test data. Network
weights were quantized using a uniform quantizer into 33 steps to get a network with an accuracy
of 97.5% on the training data and an accuracy of 93.48% on the test data. The weight matrices
from the second to the last layer were rearranged based on the weight matrices corresponding to
the previous layers as needed for Alg. 1 to work. These matrices, except the last matrix connected
to the output, were compressed using (1, Alg. 1) to get the compressed network, and arithmetic
coding was implemented by modification of an existing implementation. The compressed network
performs exactly as the quantized network as it should, since we compress losslessly. We observe
that the extra memory required for inference is negligible compared to the size of the compressed
network. Detailed results from the experiment and dynamic space requirements are described in
Table 1, where H(p) is the empirical entropy calculated from the weight matrices.1

1Implementations can be found at https://github.com/basusourya/DNN.

3



References
[1] S. Basu and L. R. Varshney, “Universal source coding of deep neural networks,” in Proc. IEEE

Data Compression Conf. (DCC 2017), Apr. 2017, pp. 310–319.

[2] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictionaries with applications to en-
coding k-ary trees and multisets,” in Proc. 13th Annu. ACM-SIAM Symp. Discrete Algorithms
(SODA’02), Jan. 2002, pp. 233–242.

[3] G. J. Jacobson, “Succinct static data structures,” Ph.D. dissertation, Carnegie Mellon Univer-
sity, Pittsburgh, PA, Jan. 1989.

[4] M. Patrascu, “Succincter,” in Proc. 27th Annu. Symp. Found. Comput. Sci., Oct. 2008, pp.
305–313.

[5] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional networks using
vector quantization,” arXiv:1412.6115 [cs.CV]., Dec. 2014.

[6] M. Courbariaux, Y. Bengio, and J.-P. David, “Low precision arithmetic for deep learning,” in
Proc. 4th Int. Conf. Learn. Represent. (ICLR), May 2015.

[7] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited
numerical precision,” in Proc. 32nd Int. Conf. Mach. Learn. (ICML 2015), Jul. 2015, pp. 1737–
1746.

[8] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing neural networks
with the hashing trick,” in Proc. 32nd Int. Conf. Mach. Learn. (ICML 2015), Jul. 2015, pp.
2285–2294.

[9] Z. Lu, V. Sindhwani, and T. N. Sainath, “Learning compact recurrent neural networks,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2016), Mar. 2016, pp. 5960–5964.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding,” in Proc. 5th Int. Conf. Learn. Represent.
(ICLR), May 2016.

[11] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep convolutional
neural networks for fast and low power mobile applications,” in Proc. 5th Int. Conf. Learn.
Represent. (ICLR), May 2016.

[12] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization of deep convolu-
tional networks,” in Proc. 5th Int. Conf. Learn. Represent. (ICLR), May 2016.

[13] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar,
“DeepX: A software accelerator for low-power deep learning inference on mobile devices,” in
Proc. 15th ACM/IEEE Int. Conf. Inf. Processing Sensor Netw. (IPSN), Apr. 2016.

[14] A. Chatterjee and L. R. Varshney, “Towards optimal quantization of neural networks,” in Proc.
2017 IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 1162–1166.

[15] V. Sze and M. Budagavi, “High throughput CABAC entropy coding in HEVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1778–1791, Dec. 2012.

[16] V. Sze and D. Marpe, “Entropy coding in HEVC,” in High Efficiency Video Coding (HEVC),
V. Sze, M. Budagavi, and G. J. Sullivan, Eds. Springer, 2014, pp. 209–274.

4


	Introduction
	Feedforward neural network structure
	Succinct representation of a partially-labeled bipartite graph
	Experiments

