Evaluating biological plausibility of learning algorithms the lazy way
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Abstract

To which extent can successful machine learning inform our understanding of biological learning? One popular avenue
of inquiry in recent years has been to directly map such algorithms into a realistic circuit implementation. Here we
focus on learning in recurrent networks and investigate a range of learning algorithms. Our approach decomposes them
into their computational building blocks and discusses their abstract potential as biological operations. This alternative
strategy provides a “lazy” but principled way of evaluating ML ideas in terms of their biological plausibility.

The phenomenal success of neurally inspired machine learning (ML) algorithms has captured the imagination of many neuroscientists
hoping to understand the principles of learning in the brain. This led to renewed efforts to find biologically realistic approximations to the
backpropagation algorithm, the key to efficient credit assignment in feedforward networks [1} 2|3} 4} |5]. Relatively little work covers
the—arguably more realistic—scenario of learning in recurrent networks and temporal credit assignment [6]. The canonical machine
learning solution, backpropagation through time (BPTT, [7]]), poses more severe challenges when attempting to map it to biology. In
particular, BPTT is temporally nonlocal; that is, each weight update depends on network activity across multiple time points. This problem
could be addressed by using online alternatives to BPTT such as Real-Time Recurrent Learning (RTRL, [8]). Unfortunately, RTRL
has an O(n?) memory requirement (for n neurons) and it is hard to imagine any biological structure for storing this many real-valued
variables. The cubic complexity is a problem not only for biology, but also for machine learning and has precluded the use of RTRL in
applications. Nonetheless, the practical need for efficient online learning has revived the RTRL idea, leading to several new algorithms
[9, 110} 115112} [13]], which all reduce memory complexity to O(n2), but differ in the nature of their approximations [14]. Our goal here is
to investigate to what extent these ideas could be implemented in a biological circuit.

One could take each algorithm individually and try to model in detail a biophysical implementation, a la [1} 2} 3, 4} 5]. However, it’s
unlikely that any single ML solution maps one-to-one onto neural circuitry. Instead, a more useful exercise would be to identify core
computational building blocks that are strictly necessary for solving temporal credit assignment, which are more likely to have a direct
biological analogue. To this end, we put forward a principled framework for evaluating biological plausibility in terms of the mathematical
operations required-hence our “lazy” analysis. We examine several online algorithms within this framework, identifying potential issues
common across algorithms, for example the need to physically represent the Jacobian of the network dynamics. We propose some novel
solutions to this and other issues and in the process articulate biological mechanisms that could facilitate these solutions. Finally, we
empirically validate that these biologically realistic approximations still solve temporal credit assignment, in two simple synthetic tasks.

Plausibility criteria for recurrent learning. Consider a recurrent network of n units, with voltages v = Wt=1) where #®) is
the concatenation of recurrent and external inputs, with an additional constant input for the bias term, =1 = [r(tfl); x(t); 1] eR™
(m = n 4+ ni, + 1) and trainable weights organized as W = [W' ‘W™ b"¢] ¢ R"*™_ For a closer match to neural circuits, the firing
rates update in continuous time, via r® = (1 — a)r*=1) + a¢(v(®)), using a point-wise neural activation function ¢ : R" — R" (e.g.
tanh) and the network’s inverse time constant o € (0, 1]. The network output y(*) = softmax(W°Ur(!) 4 bout) € R™ is computed by
output weights/bias WU € R7ouxn hout ¢ R7ou and compared with the training label y*(*) to produce an instantaneous loss L(*).

BPTT and RTRL each provide a method for calculating the gradient of each instantaneous loss 9 L(*) /OW,;, to be used for gradient
descent. BPTT unrolls the network over time and performs backpropagation as if on a feedforward network:
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Name Tensor(s) Update equations Notes
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Table 1: A summary of several new online algorithms’ tensor structure and update equations.

where ¢ = 9L®) /or®) € R™ is the immediate credit assignment vector and J(*) = 9r(*) /9r(=1) is the network Jacobian, with
elements J;; (&) — =(1—-a)d;; + ag’ (h(s))I/V“"C While Eq. (T) explicitly references activity at all time points, RTRL instead recursively

updates the * 1nﬂuence tensor" M ,gl G = 87“,(;) /OW;; by M ,52 Yo, ,52), M kfwl) +adi ¢ (vgt) )fj(vtfl), preserving the first-order long-term

dependencies in the network as it runs forward. The actual gradient is then calculated as
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Unlike BPTT, every computation in RTRL involves only current time ¢ or £ — 1. In general, an online algorithm has some tensor structure
for summarizing the inter-temporal dependencies in the network, to avoid having to explicitly unroll the network. These tensor(s) must
update at each time step as new data come in. RTRL uses an order-3 tensor, resulting in an O(n?) memory requirement that is neither
efficient nor biologically plausible. However, all of the new online algorithms we discuss are only O(n?) in memory. In Tablel|l] I we show
the tensor structure and update equations for each of these algorithms in order to discuss the mathematical operations needed for each and
whether a neural circuit could implement them. How these updates lead to sensible learning is outside our scope, and we refer the reader
to either the original papers [9, 10,12} 11}, [13]] or the review [14].

In a purely artificial setting, these tensor updates from Table|l|are straightforward to implement, but biologically, one has to consider how
these tensors are physically represented and the mechanism for performing the updates. We present a list of mathematical operations and
comment on how a biological neural network might or might not be able to perform it in parallel with the forward pass:

i A vector can be encoded as a firing rate, voltage, or any other intracellular variable.
ii A matrix must be encoded as the strengths of a set of synapses; if individual entries change, they must do so time-continuously and
via a (local) synaptic plasticity rule.
iii Matrix-vector multiplication can be implemented by neural transmission, but input vectors must represent firing rates, as opposed to
voltages or other intracellular variables.
iv Matrix-matrix multiplication is at face value not possible, as it requires O(n?) multiplications, and there is no biological structure to
support this.
v Independent additive noise is feasible; biological neural networks are naturally noisy in ways that can be leveraged for computation.

vi At face value, it is not possible to maintain a “noisy" copy of the network to estimate perturbation effects, e.g. KeRNL (Table[I)) or
[[15]]. However, there may be workarounds.

How do different algorithms do? RFLO is sufficiently simple to pass all of these tests, but it arguably doesn’t actually solve temporal
credit assignment and merely regresses natural memory traces to task labels (see Section 5.5 of [14]]), which limits its performance
ceiling. Every other algorithm fails at least one of our criteria, at least at first glance. KF-RTRL and R-KF are out because of the

B

matrix-matrix products in their updates. Although the eligibility-trace-like update in KeRNL for ij is straightforward, learning the

A,(:i) matrix requires a perturbed network—on the surface unlikely biologically (vi). While UORO uses only matrix-vector products, the
time-continuity requirement (ii) is awkward, because if we choose the constants pg, p; to make one update equation smooth in time (e.g.
po =1 —¢€,p1 = ¢ for 0 < e < 1), the other update becomes unstable due to the appearance of p, L pl_l. DNI avoids matrix-matrix
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products and is naturally time-continuous, but it involves a matrix-matrix-vector product, requiring physical storage of the intermediate
vector. To top it off, every algorithm (except RFLO) requires the Jacobian of the network, but superﬁcially this is not possible (ii), because

a set of synapses cannot instantaneously readjust to their ideal values Ji(J) (1—a)d;j + g’ ( ) ](t 2

Can we fix any of these issues? While each algorithm poses its own challenges, the Jacobian is a recurring problem for anything that
meaningfully solves credit assignment. Therefore we propose a general solution, to instead use an approximate Jacobian, whose entries
we refer to as J;;, which updates at each step according to a perceptron-like learning rule:

Ajij (t) ij (t 1) ](t—l)' 3)

Biologically, this would correspond to having an additional set of synapses (possibly spatially segregated from W) with their own
plasticity rules [16]]. Computationally, this approximation brings no traditional speed benefits, but it offers a plausible mechanism by
which a neural circuit can access its own Jacobian for learning purposes.

As for other challenges, the matrix-matrix-vector product appearing in DNI can be implemented by the circuit itself in a phase of
computation separate from the forward pass. For the intermediate result to pass through the second matrix, it must be represented as

a firing rate (iii), which already requires altering the original equations to ) ¢ (Z y fl(,t H)Al,m) Jmi, since on its own ugnﬂ) =

v Nl(,t Al/m is a voltage. This would naively interfere with the forward pass, since vt = Wilt=1) already uses the network firing

rates and somatic voltages. However, we could imagine the A synapses feeding into an electrically isolated neural compartment (say the

apical dendrites) to define a separate voltage u( 1) , which is allowed to drive neural firing to gb(ug,tﬁl)) in specific “update” phases. We
already know that branch-specific gating (by mterneurons) can filter which information makes it to the soma to drive spiking [17].

Do these fixes work empirically? Given our criteria and novel workarounds, RFLO and DNI(b), our altered version of DNI (with the
approximate Jacobian), remain as viable candidates for neural learning. To ensure our additional approximations do not ruin performance,
we empirically evaluate DNI(b), along with the original DNI and RFLO. As upper and lower bounds on performance, respectively, we
also include exact credit assignment methods (BPTT and RTRL) and a “fixed-W” algorithm that only trains the output weights. We
use two synthetic tasks, each of which requires solving temporal credit assignment and has clear markers for success. One task (“Add”)
requires mapping a stream of i.i.d. Bernoulli inputs z(*) to an output y**) = 0.5 + 0.52(¢~%) — 0.252(:=*2) [18], with time rescaled to
match «.. The label depends on the inputs via lags ¢1, 2 that can be adjusted to modulate task difficulty. The other task (“Mimic”) requires
reproducing the response of a separate RNN with the same architecture and fixed weights to a shared Bernoulli input stream. We find that
training loss for RFLO and DNI is worse than the optimal solutions (BPTT and RTRL), but both beat the fixed-W performance lower
bound. DNI(b) performs worse than original DNI, unsurprising because it involves further approximations, but still much better than the
fixed-W baseline. This demonstrates that solving temporal credit assignment is possible within biological constraints.

Discussion

It is still unclear how neural circuits achieve sophisticated learning, in particular solving temporal credit assignment. Here we approached
the problem by looking for biologically sensible approximations to RTRL and BPTT. Although we have empirical results to prove that
our solutions can solve temporal credit assignment for simple tasks, the substance of our contribution is conceptual, in articulating what
computations are abstractly feasible and which are not. In particular, we have shown that accessing the Jacobian for learning is possible
by using a set of synapses trained to linearly approximate the network’s own dynamics.

Along the way, we have identified some key lessons. The main one is that neural circuits need additional infrastructure specifically to
support learning. This could be extra neurons, extra compartments within neurons, separate coordinated phases of computation, input



gating by inhibition, etc. While we all know that biology is a lot more complicated than traditional models of circuit learning would
suggest, it has proved difficult to identify the functional role of these details in a bottom-up way. On the other hand, drawing a link
between ML algorithms and biology can hint at precise computational roles for not well understood circuit features.

Another lesson is that implementing even fairly simple learning equations in parallel to the forward pass is nontrivial, since it already uses
up so much neural hardware. Even a simple matrix-vector product requires an entirely separate phase of network dynamics in order to not
interfere with the forward pass of computation. While it may be tempting to outsource some of these update equations to separate neurons,
the results would not be locally available to drive synaptic plasticity.

Of course, we acknowledge that any particular solution, whether RFLO or DNI, is a highly contrived, specific, and likely incorrect guess
at how neural circuits learn, but we believe the exercise has big-picture implications for how to think about biological learning. Beyond
the particular topic of online learning in recurrent networks, our work provides a general blueprint for abstractly evaluating computational
models as mechanistic explanations for biological neural networks. Knowing what computational building blocks are at our disposal and
what biological details are needed to implement them is an important foundation for studying ML algorithms in a biological context.
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Appendix A: Algorithm Details
The “Stochastic Family"

The first three algorithms in Table m—Unbiased Online Recurrent Optimization (UORO, [9]]), Kronecker-Factored Real-Time Recurrent Learning
(KF-RTRL, [10])), and Reverse-KF-RTRL (R-KF, [14])—all make use of explicit randomness to efficiently approximate the influence tensor M, 22 via an
unbiased estimate built from lower-rank tensors. For example, UORO approximates M, ,gf; as A,i” Bl-(jt-), KF-RTRL as A;”B,(fi). Of course, the whole
point is to avoid the full multiplication that would approximate M ,52 and instead update each component tensor individually. Attempting to do so in a
way that implements the update M, ,22 =>4 1&2’ M ,Si_jl) + ozémd)’(fuft))f;t_l) will necessarily produce unwanted terms. The key “trick” common to
all 3 algorithms (originally proposed in [19]) is that, by using a vector of random i.i.d. v € {1} in the updates of A and B, we can recover the RTRL
update while unwanted cross-terms vanish in expectation. We show explicitly how the update for UORO produces an unbiased estimate of M, 122 (other

.. .. " . . ——(t) t)\ a(t—1 .
cases are similar). Writing the “immediate influence” M,; = Oc(sm‘éb/(vg ))r; ) for convenience, we have
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by inductively assuming that the estimate is unbiased, i.e. E [A;:,_l)Bi(;_l)] =MD,

The “E-trace” Family

Both KeRNL and RFLO leverage eligibility-trace-like terms Bg? that temporally filter the immediate influences aqzﬁ'(vgt))f;.FU at each synapse with
learned forgetting factors 1 — a;. KeRNL additionally trains (via perturbation methods) a matrix Ag; to represent the long-term sensitivity:
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By fixing ¢ = ¢’ and using the chain rule, two special cases of this equation emerge: Ag; ~ dy; and Ag; ~ (1 — a;) ™! Do J,E?,Akfi. Then the update
for Bi(;) effectively drives the RTRL update:
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where we used both approximations for A, and inductively assumed AMBS_I) ~M ,52;1)

DNI

DNI [13] is fundamentally unlike the others, in that it does not approximate the “past-facing” gradient oL® /OW calculated by RTRL, but rather a
“future-facing” gradient 9L/ AW where W® indicates the specific application of the recurrent parameters at time ¢, and L® the loss at time ¢ (see
[14]). The credit assignment vector c® =oc / Ar™ | rather than calculated exactly using backpropagation, is estimated by a linear function (called
the “synthetic gradient™) of #* = concat(r®;y*®: 1), ie. ¢¥ ~ #® A. The matrix A is ideally learned by gradient descent on the loss function
Lg% = %Hf‘(t)A —c® ||2—that is, trained to match the true credit assignment vector—but since the whole point is to avoid calculating ¢*) exactly, the
label is replaced by a bootstrapped estimate €® + FFD AT x €® 4 CHDJEHD = (O where the last equality is by the chain rule (see either
[L3] or [[14] for further detail). This bootstrapped estimate uses the same A matrix on D),



