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Abstract

In this paper, we propose a novel Bayesian group regularization method based on
the spike and slab Lasso priors for jointly estimating multiple graphical models. The
proposed method can be used to estimate common sparsity structure underlying
the graphical models while capturing potential heterogeneity of the precision
matrices corresponding to those models. Our theoretical results show that the
proposed method enjoys the optimal rate of convergence in `8 norm for estimation
consistency and has a strong structure recovery guarantee even when the signal
strengths over different graphs are heterogeneous. Through simulation studies
and an application to the capital bike-sharing network data, we demonstrate the
competitive performance of our method compared to existing alternatives.

1 Introduction

Gaussian graphical models (GGMs) are widely studied from both the frequentist [30, 9, 3, 18, 28]
and the Bayesian perspectives [4, 7, 26, 1, 19, 10, 14]. A GGM model assumes that a collection of
variables jointly follows a multivariate Gaussian distribution with an unknown precision matrix. It is
well known that there is a one-to-one correspondence between the sparsity pattern of the precision
matrix of a Gaussian distribution and the graph that describes the conditional dependence structure
among the variables: Non-zero entries in the precision matrix correspond to edges in the graph [6].
Due to this connection, given data from a GGM, we are interested in estimating not only the precision
matrix but also its support.

In many applications, observations are naturally grouped into different classes. For example, in
biological experiments, subjects are classified into categories based on their experimental conditions;
in social network data, users are grouped by users’ characteristics; and in gene expression analysis,
expression data are classified into different tissues or disease states. In such situations, it is restrictive
to assume that all observations follow the same graphical model, i.e., have the same precision matrix,
and it would be more suitable to assume that different classes have different precision matrices.
Meaningful insights can be more effectively extracted, if we utilize the cross-class similarities of the
precision matrices and estimate graphs for the multiple classes jointly.

Several approaches have been proposed for jointly estimating multiple GGMs. From the penalized
likelihood perspective, [12, 5, 13, 17] extended approaches for estimating a single graph to the
multiple-graph setting by introducing group-level penalty terms and studied the theoretical properties
of these approaches. From the Bayesian perspective, Peterson et al. [21] proposed a Markov random
field prior on multiple graphs to encourage the selection of common edges in related graphs. Tan
et al. [25] proposed to use a Chung-Lu random graph model as the prior for hierarchical modeling of
multiple GGMs. However, theoretical guarantees of the Bayesian methods are not available.
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In this paper, we develop a Bayesian approach for jointly estimating multiple GGMs under the
assumption that the multiple precision matrices share a common sparsity structure but they can
have heterogeneous signal magnitudes. We provide theoretical results showing that the maximum
a posteriori (MAP) estimators have the optimal rate of convergence in `8 norm, even under model
mis-specification when precision matrices for different classes do not share a common sparsity
structure. When the multiple GGMs do share a common sparsity structure, the proposed approach is
proved to be consistent in recovering such a structure, even when some of the within group signals
are weaker than the p

a

plog pq{nq rate, the minimal signal strength usually required for consistency
results on structure recovery .

The remaining part of the paper is organized as follows. The Bayesian formulation and parameter
estimation procedure for our model are provided in Section 2. Theoretical guarantees of our approach
are presented in Section 3 and empirical studies are provided in Section 4.

2 Method

Let Y1, . . . , YK denote the data from K classes, where the k-th dataset Yk consists of nk observations
pYk,1, . . . , Yk,nk

q, each of which is a p-dimensional vector. Throughout we assume the p variables are
common across the K classes and data from each class follow a p-dimensional Gaussian distribution:

Yk,1, . . . , Yk,nk
„ Npp0,Θ

´1
k q.

Our target is to estimate the K precision matrices Θk “ pθk,ijq, k P t1, . . . ,Ku, and recover their
common sparsity structure.

2.1 Bayesian Formulation

For regularized estimation and sparsity recovery, we shall place prior distributions on the Θk’s by first
introducing binary latent variables γij which indicate whether nodes i and j have an edge (γij “ 1)
or not (γij “ 0). A Bernoulli prior on γij and a spike and slab prior on the off-diagonal elements of
Θk are placed as follows:

ppθk,ij |γijq “

"

LPpθk,ij ; v1q when γij “ 1,

LPpθk,ij ; v0q when γij “ 0,
γij „ Bernpp1q, (2.1)

where v1 ą v0 ą 0 and LPp¨; vq is the Laplace distribution with parameter v. For γij “ 1, θk,ij’s
represent signals modeled by a slab distribution with high variance, and for γij “ 0, θk,ij’s represent
noise modeled by a spike distribution with mass tightly centered around zero. Integrating over γij , we
have the following multivariate spike and slab prior on the group ofK entries θij “ pθ1,ij , . . . , θK,ijq:

ppθijq “ p1

K
ź

k“1

LPpθk,ij ; v1q ` p1´ p1q

K
ź

k“1

LPpθk,ij ; v0q. (2.2)

When K “ 1, the distribution above is the one-dimensional spike and slab Lasso prior utilized for
linear regression by [23, 24] and for analyzing a single GGM by [10].

We impose the aforementioned spike and slab Lasso prior (2.2) on the upper triangular of the precision
matrices, i.e., on θij for i ă j, and enforce θji “ θij to keep Θk symmetric. In addition, we place
independent exponential priors on the positive diagonal entries to introduce a small shrinkage. In
summary, the Bayesian prior formulation of our model is as follows:

θk,ii „ Exppτq,

θij „ p1

K
ź

k“1

LPpθk,ij ; v1q ` p1´ p1q

K
ź

k“1

LPpθk,ij ; v0q,
(2.3)

where i ă j and k “ 1, . . . ,K.

2.2 Parameter Estimation

We first focus on the point estimation of Θ “ pΘ1, . . . ,ΘKq and then discuss the posterior inference
of the sparsity structure conditional on the point estimator (discussed in Section 2.3). Motivated

2



by [16, 10], we estimate Θ by solving the following optimization problem under the constraint of
Ω “ tΘ : Θk ą 0, }Θk}2 ď B, k “ 1, . . . ,Ku where Θk ą 0 indicates that Θk is positive definite
and }Θk}2 denotes the spectral norm of Θk. Our constrained MAP estimator is given by

Θ̂ “ arg min
ΘPΩ

p´ log ppY | Θq ` αPenpΘqq , α ě 1, (2.4)

where log ppY | Θq is the log likelihood and PenpΘq is the negative log of the prior on Θ:
$

’

’

’

’

’

&

’

’

’

’

’

%

log ppY | Θq “
K
ÿ

k“1

nk
2
plog detpΘkq ´ trpSkΘkqq , Sk “

1

nk

nk
ÿ

i“1

Yk,iY
T
k,i,

PenpΘq “
p
ÿ

i“1

K
ÿ

k“1

τθk,ii `
ÿ

iăj

´ log

ˆ

p1

p2v1q
K
e´

}θij}1
v1 `

1´ p1

p2v0q
K
e´

}θij}1
v0

˙

,

with Sk being the sample covariance matrix of the k-th class and }θij}1 being the `1 norm of the
vector θij . From the Bayesian viewpoint, our estimator (2.4) is equivalent to the MAP estimator of
the posterior ppΘ | Y q 9 ppY | ΘqppΘqα, where the prior is raised to the power of α so that its
influence on inference can be appropriately magnified. From the penalized likelihood viewpoint, we
are essentially multiplying the penalty function PenpΘq by a multiplier of α, which is equivalent
to scaling the log likelihood by 1{α. Such an adjustment is commonly adopted to develop optimal
theoretical results, for example, by [8, 31, 16].

For scalability, we propose to compute the MAP estimator instead of sampling from the full posterior.
Full posterior sampling for high-dimensional GGMs is computationally expensive, for example, in
[21, 25], the dimension p in all empirical studies is at most 22 due to the computational limitations.
Although we only propose a point estimator (2.4) for the precision matrices, our model is still
formulated from a Bayesian perspective with a continuous spike and slab prior distribution. While
this prior does not directly place mass on sparse solutions as in [27, 29], the latent binary indicators
γij introduced can distinguish between “signal” and “noise”. This is a common technique used in
the Bayesian literature [11, 20, 23, 10] to avoid the computational bottleneck of degenerate priors.
Furthermore, with the Bayesian machinery, we are able to extract the posterior inclusion probabilities
for structure recovery in Section 2.3 and provide strong guarantees for graph selection in Section 3.3.

The term PenpΘq, which is induced from our prior specification, acts as a non-convex penalty function.
The non-convexity of the penalty brings desired shrinkage effects, as shown in our theoretical results
in Section 3 and prior results in the literature [31, 16, 15]. However, it may cause the whole objective
function to be non-convex, and consequently, we need to deal with multiple local solutions to the
minimization problem (2.4). In the following theorem, we show that when being constrained to the
parameter space Ω, the minimization problem (2.4) is in fact strictly convex. Thus, the solution Θ̂ of
the objective function (2.4) will be unique. Proof of this result is in Supplementary Material.

Theorem 1 If B ă
b

2nv20
αK , then the constrained minimization problem (2.4) is strictly convex.

Remark. The upper bound on B can increase with sample size n. When we establish the selection
consistency of Θ̂ in Theorem 2, we will require the order of v2

0 to be O
`

α2{pn log pq
˘

. Therefore,

the upper bound on B is O
´

a

α{pK log pq
¯

, which can go to`8 as long as the order of α is greater
than K log p.

2.3 Common Structure Recovery

Utilizing the hierarchical structure (2.1) of the spike and slab prior, we make inference on the common
sparsity structure based on the following posterior inclusion probability (PIP)

Ppγij “ 1 | θ̂ijq “
1

1` 1´p1
p1
p v1v0
qK exp

!

´p 1
v0
´ 1

v1
q}θ̂ij}1

) fi ppθ̂ijq. (2.5)

We can estimate the common sparsity structure by thresholding the PIP, e.g., with t “ 1{2:

Ŝ “
!

pi, jq : ppθ̂ijq ą t, for t P p0, 1q
)

. (2.6)
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Note that the PIP is a function of }θ̂ij}1, so that the signal strength in the whole group is utilized
together to estimate the common sparsity pattern. Even when some individual entries are of small
signal strength, the information shared within its group could help us to identify the shared structure.
Our theoretical results provided in Section 3 confirm that this strategy will be indeed beneficial for
recovering such signals.

3 Theoretical Guarantees

In this section, we develop the theoretical properties of the proposed estimator Θ̂ including estimation
accuracy and structure recovery consistency. For simplicity, we assume the sample sizes of the K
classes are the same with n1 “ ¨ ¨ ¨ “ nK “ n in the theoretical analysis.

Notations: For a square matrix Apˆp “ paijq, we denote its element-wise `8 norm by }A}8 “
max1ďi,jďp |aij |; its Frobenius norm by }A}F ; and its spectral norm by }A}2. We denote the largest
eigenvalue and smallest eigenvalue of A by λmaxpAq and λminpAq, respectively. When A is a square
symmetric matrix, we note }A}2 “ λmaxpAq. For a collection of K square matrices of the same
dimensionA “ pA1, . . . , AKq, write }A}8 “ sup1ďkďK }Ak}8. Let Θ0 “ pΘ0

1, . . . ,Θ
0
Kq denote

the collection of true precision matrices and S0
k “ tpi, jq : θ0

k,ij ‰ 0u denote the index set of nonzero
entries in the true precision matrix Θ0

k. Define column sparsity of Θ0
k as dk “ maxi cardptj :

θ0
k,ij ‰ 0uq where cardp¨q denotes the cardinality of a set and let d “ maxk dk.

3.1 Conditions

In our theoretical analysis, we do not restrict the observed data to follow a Gaussian distribution.
Thus, our Bayesian hierarchical model (2.3) could be treated as a working model. The observed data
are allowed to be from any distribution with exponential tails (e.g., sub-Gaussian distributions) or
polynomial tails (e.g., t distributions), which is the same setup considered in [3, 10] when the class
size K “ 1. Specifically, for all the p-dimensional random vectors Yk,i “ pY

p1q
k,i , . . . , Y

ppq
k,i q, i “

1, . . . , nk and k “ 1, . . . ,K, we have the following assumptions:

(A.1) Exponential tail condition: there exist some constants 0 ă η ă 1{4 and U ą 0 such that
plog pq{n ă η and

EpetY
pjq
k,i q ď U for any |t| ď η and j “ 1, . . . , p; (3.1)

(A.2) Polynomial tail condition: there exist some constants κ1, κ2, κ3, U ą 0 such that p ď κ1n
κ2

and
E|Y pjqk,i |

4`4κ2`κ3 ď U for j “ 1, . . . , p. (3.2)

We shall establish estimation and selection consistency of our method when the true data distribution
satisfies (A.1) or (A.2) and is not necessarily a multivariate Gaussian distribution. Note that when the
data indeed follows a multivariate Gaussian distribution, (A.1) is satisfied.

In addition, we assume that the eigenvalues of the true precision matrices are bounded:

(A.3) Eigenvalue condition: 1{ξ0 ď λminpΘ
0
kq ď λmaxpΘ

0
kq ď 1{ξ1 for k “ 1, . . . ,K.

3.2 Estimation Accuracy

The following theorem establishes the rate of convergence of the proposed estimator under `8 norm.
For this result, we do not require the different precision matrices to have the same sparsity structure.

Theorem 2 Suppose one of the tail conditions, (A.1) or (A.2), holds and the true precision matrices
satisfy (A.3). Let C1 “ η´1p2` κ0 ` η

´1U2q when the exponential tail condition (A.1) holds and
C1 “

a

p}Θ0}8 ` 1qp4` κ0q when the polynomial tail condition (A.2) holds for some κ0 ą 0. In
addition, assume that

(i) the hyperparameters pv1, v0, p1, τq satisfy:
$

&

%

maxp 3
v1
, 2τq ă C3

b

n log p
α2 , 1

v0
ą C4

b

n log p
α2 ,

ε2 ă
vK1 p1´p1q

vK0 p1
ď

vK`2
1 p1´p1q

vK`2
0 p1

ď 2pε0{α;
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(ii) the sample size n satisfies:
?
n ěM0 maxpd,

?
Kq
?

log p;

(iii) the bounds on the spectral norms of the estimated precision matrices satisfy:

1{ξ1 ` dC5

c

log p

n
ă B ă

ˆ

2nv2
0

αK

˙1{2

;

(iv) the parameter α satisfies: αpε0{α ą KC2
3 log p{p2ξ2

1q.

Then, the minimizer Θ̂ is unique and satisfies

}Θ̂´Θ0}8 ă C5

c

log p

n
,

with probability greater than 1 ´ Kδ, where δ “ 2p´κ0 when condition (A.1) holds, and δ “
Opn´κ3{8 ` p´κ0{2q when condition (A.2) holds. Moreover,

´

Θ̂k

¯

ij
“ 0 for pi, jq P

`

S0
k

˘c
. Here,

C3, ε2 are sufficiently small positive constants , M0, C4, C5, ε0 are positive constants only depend on
the ground truth Θ0.

Our proof is motivated by the constructive proof technique used in [22] and [10]. Details of the
definitions of M0, C4, C5, ε0 and the proof of Theorem 2 are provided in Supplementary Material.

Condition (i), which is related to the rates of the hyperparameters, controls the level of shrinkage
of the penalty function PenpΘq. With a proper choice of the hyperparameters, our penalty function
induces an appropriate adaptive shrinkage effect: the shrinkage is strong enough when the magnitude
of θ is small to kill the noise and produce exact zero, and is insignificant when the magnitude of θ is
large so that the bias is controlled. Condition (ii) is on the relationship between the sample size n and
the number of variables p, and p could grow nearly exponentially with n. Condition (iii) deals with
the parameter space of the constrained optimization problem, which ensures both the feasibility and
convexity of the problem. Under these conditions, our Theorem 2 states that, as long as the parameter
α satisfies the condition (iv), the error rate of every entry of the estimated precision matrices is at
most Opp

a

plog pq{nq.

3.3 Sparsity Structure Recovery Consistency

Besides the estimation accuracy, another important task is to identify the sparsity structure of the
precision matrices as it tells the conditional dependence relationships between the p variables of
interest. If the minimal signal strength satisfies mink mini‰j,pi,jqPS0

k
p|θ0

k,ij |q ą L0

a

plog pq{n for

some sufficiently large constant L0, Theorem 2 directly gives rise to the result that our estimator Θ̂k

has the same sparsity structure as the truth S0
k with probability converging to 1, even when different

classes do not have the same sparsity structure. If all precision matrices share a common sparsity
structure, i.e., S0

1 “ ¨ ¨ ¨ “ S0
K “ S0, then our proposed method achieves selection consistency with

a weaker condition on the minimal signal strength as stated in the following theorem.

Theorem 3 Suppose conditions in Theorem 2 all hold. In addition, assume that:

(v) the minimal signal strength satisfies

min
pi,jqPS0

pmax
k
|θ0
k,ij |q ě L0

a

plog pq{n,

where L0 ą C5 is a sufficiently large constant;

(vi) rates of the hyperparameters v1, v0, and p1 satisfy

1´ p1

p1

ˆ

v1

v0

˙K

ě
1´ t

t
ą

1´p1
p1
p v1v0
qK

ppC4´C3qpL0´C5q{α
,

where t is an arbitrary thresholding value between 0 and 1. Then we have

PpŜ “ S0q Ñ 1.
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Condition (v) is the condition on the minimal signal strength. Compared to similar conditions required
by approaches that estimate each GGM individually, this condition is weaker since it only places
requirements on the largest signal within each group. Therefore, the whole group would benefit from
one large signal. Under the weaker minimal signal strength condition and with appropriate choice of
the hyperparameters satisfying condition (vi), we can differentiate between the “signal” and “noise”
groups with probability going to 1. A proof of Theorem 3 is provided in the Supplementary Material.

3.4 Comparisons with Existing Works

In this section, we compare our theoretical results in estimation accuracy and selection consistency
with other alternatives [12, 13]. In the following discussion, we use Θ̃ as a generic notation to denote
estimators proposed by others.

Guo et al. [12] established the estimation accuracy of their estimator Θ̃ in Frobenius norm for a fixed

K value:
řK
k“1 }Θ̃k ´Θ0

k}F “ Op

ˆ

b

pp`q1q log p
n

˙

, where q1 “ cardpYktS0
kuq´ p. We note that

our Theorem 2 gives rise to the same rate as theirs under Frobenius norm. For recovering the graph
structure, Guo et al. [12] obtained sparsistency, i.e., the zero entries in the true precision matrices
are estimated as zeroes with probability tending to one. However, there is no guarantee that the
nonzero entries could be detected. This is weaker than our Theorem 3 as we recover the entire graph
structure. Moreover, to achieve sparsistency, Guo et al. [12] require the minimum signal strength
mink mini‰j,pi,jqPS0

k
p|θ0

k,ij |q to be lower bounded by some constant while we allow it to go to zero.

Lee and Liu [13] established the estimation accuracy of their estimator Θ̃ in the averaged version

of the `8-`1 norm: maxi,j

´

1
K

řK
k“1

ˇ

ˇ

ˇ
θ̃k,ij ´ θ

0
k,ij

ˇ

ˇ

ˇ

¯

“ Op

ˆ

b

log p
n

˙

. Our estimation error rate

from Theorem 2 is on the maximum over all entries of all precision matrices without averaging,
and therefore is stronger. In particular, their result is a direct consequence of ours. For selection
consistency, the major difference between theirs and ours is the condition on the signal strength.
Lee and Liu [13] implicitly require mink mini‰j,pi,jqPS0

k
p|θ0

k,ij |q to be lower bounded at the rate of
Kplog p{nq1{2, whereK is the class size, while we only require a smaller signal strength plog p{nq1{2.
In addition, our requirement is on the lower bound of mink maxi‰j,pi,jqPS0

k
p|θ0

k,ij |q, which is weaker
than requirement on the lower bound of mink mini‰j,pi,jqPS0

k
p|θ0

k,ij |q.

4 Numerical Studies

4.1 Computation: an EM Algorithm

For computation, we propose an EM algorithm by treating Γ “ pγijq as latent variables and estimating
Θ by applying the following two steps iteratively:

• E-step: Calculate the posterior distribution Ppγij “ 1 | Θptqq :“ pijpθ
ptq
ij q, which follows the

formula in (2.5), and compute the so-called Q function, the expectation of the full log-likelihood
with respect to Ppγij “ 1 | Θptqq:

QpΘq “
K
ÿ

k“1

#

nk
2α
plog detpΘkq´trpSkΘkqq´

p
ÿ

i“1

τθk,ii´
ÿ

iăj

«

pijpθ
ptq
ij q

v1
`

1´ pijpθ
ptq
ij q

v0

ff

|θk,ij |

+

.

• M-step: The Q function is a summation of K terms with each to be a weighted graphical Lasso
[9] problem. Therefore, in the M-step, we maximize the Q function within in the parameter space
Ω, utilizing algorithms for graphical Lasso. As a result, the computational complexity of our EM
algorithm is Opp3q, which is as efficient as the state-of-the-art algorithms for graphical Lasso
problems [9, 10].

Derivations and implementation details of the algorithm are provided in the Supplementary Material.
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4.2 Simulation Results

Following the simulation setups in [12, 5, 21, 13], we assess the performance of our proposed method
under six different settings: three nearest-neighbor networks and three scale-free networks. The
details of the settings are described as follows.

1. Nearest-neighbor network: we randomly generate p points on a unit square and find the o nearest
neighbors of each point in terms of the Euclidean distance. The baseline nearest-neighbor network
is constructed by linking any two points which are the o-nearest neighbors of each other. Larger o
induces a denser network and here, we use o “ 3. After that, we generate K individual networks
by adding ρM individual edges to the baseline graph withM to be number of edges in the baseline
graph and ρ “ 0, 0.25, 0.5.
Given a network structure, we generate the corresponding precision matrix Θk by assigning
ones on diagonal entries, zeros on entries not corresponding to network edges, and values
from a uniform distribution with support on r´1,´0.5s Y r0.5, 1s on entries corresponding
to edges. To ensure positive definiteness, we then divide each off-diagonal element θk,ij by

1.01
b

ř

i:i‰j |θk,ij |
b

ř

j:j‰i |θk,ij |.

2. Scale-free network: many real-world large networks, such as the world wide web, social networks,
and collaboration networks, are thought to be scale-free. We construct the baseline scale-free
network using the Barabási-Albert model [2]. Next, individual networks and corresponding
precision matrices are generated in the same way as in the first design.

In each setting, we set K “ 3 and p “ nk “ 100, and, for each k P t1, . . . ,Ku, we generate nk
independently and identically distributed observations from a multivariate Gaussian distribution
with mean 0 and precision matrix Θk. We compare our method with α “ 1 and α “ n with three
different methods: fitting each class individually by BAGUS (denoted as BAGUS) [10]; ignoring
the class information and fitting a single model by BAGUS (denoted as Pooled); the group graphical
Lasso (denoted as GGL) [5]. Bayesian approaches based on full posterior sampling [21, 25] are
not considered for comparison as their Markov chain Monte Carlo (MCMC) samplers are not
scalable with large p. For all methods, we use a grid search to select the set of hyperparamters that
minimizes BIC. For BAGUS and Pooled methods, we follow the same tuning procedure in [10] and
tune the spike and slab prior parameters pv0, v1q with v0 “ p0.25, 0.5, 0.75, 1q ˆ

a

1{pn log pq and
v1 “ p2.5, 5, 7.5, 10q ˆ

a

1{pn log pq. For GGL, we tune the two penalty parameters pλ1, λ2q as in
[5] with λ1 “ p0.1, 0.2, . . . , 1q and λ2 “ p0.1, 0.3, 0.5q.

To compare the performance of the methods, we calculate specificity (Spec), sensitivity (Senc),
Matthews correlation coefficient (MCC), area under the ROC curve (AUC), Frobenius norm (F-norm),
and element-wise `8 norm (`8 norm) for each class. In Table 1-2, we report the maximum of `8
norm and the average of the other measures over the K classes and the results are aggregated based
on 100 replications. From the results, we observe that our method performs the best in all the designs
in terms of both selection accuracy (MCC and AUC) and estimation accuracy (F-norm and `8 norm).
Even when ρ ‰ 0, that is, the sparsity patterns over classes are different, which deviates from our
assumption, our method still has the best performance.

The average computational times of all the methods using a MacBook Pro with 2.9 GHz Intel Core
i5 processor and 8.00 GB memory are reported in Table 3. The computational time of our method
is comparable to the competitors except the Pooled method, which restrictively assumes the same
precision matrix for all classes and has much worse performance compared to our method. Therefore,
our method is competitive even after considering the runtimes.

4.3 Application to Capital Bikeshare Data

We use Capital Bikeshare trip data1 to evaluate the performance of the proposed method. The data
contains records of bike rentals in a bicycle sharing system with more than 500 stations. We consider
p “ 237 stations located in Washington, D.C. and record the number of rentals started at these
stations for every day in 2016, 2017 and 2018. Following the same processing procedure in [32],
we remove the seasonal trend and marginally transform each station’s data to a normal distribution.

1Data available at https://www.capitalbikeshare.com/system-data
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Table 1: Result of nearest-neighbor network
Spec Sens MCC AUC F-norm `8 norm

n “ 100, p “ 100, ρ “ 0

Our method pα “ 1q 1.000(0.000) 0.920(0.038) 0.955(0.022) 0.974(0.017) 2.576(0.221) 0.503(0.083)
Our method pα “ nq 1.000(0.000) 0.993(0.008) 0.991(0.009) 0.996(0.004) 2.094(0.150) 0.449(0.099)
BAGUS 0.994(0.002) 0.816(0.039) 0.794(0.033) 0.903(0.022) 3.184(0.190) 0.551(0.093)
Pooled 0.989(0.003) 0.664(0.056) 0.616(0.048) 0.840(0.029) 7.115(0.380) 0.983(0.035)
GGL 0.948(0.008) 0.707(0.074) 0.401(0.044) 0.845(0.038) 6.338(0.382) 0.604(0.037)

n “ 100, p “ 100, ρ “ 0.25

Our method pα “ 1q 0.994(0.001) 0.823(0.034) 0.803(0.015) 0.954(0.014) 2.862(0.145) 0.443(0.066)
Our method pα “ nq 0.992(0.003) 0.889(0.021) 0.823(0.025) 0.943(0.010) 2.867(0.154) 0.443(0.074)
BAGUS 0.988(0.003) 0.813(0.030) 0.732(0.025) 0.917(0.017) 3.372(0.148) 0.591(0.102)
Pooled 0.976(0.004) 0.571(0.045) 0.472(0.029) 0.783(0.024) 6.179(0.256) 0.871(0.104)
GGL 0.966(0.010) 0.769(0.043) 0.552(0.054) 0.879(0.022) 5.274(0.122) 0.529(0.029)

n “ 100, p “ 100, ρ “ 0.5

Our method pα “ 1q 0.992(0.002) 0.664(0.043) 0.699(0.023) 0.920(0.030) 3.170(0.170) 0.426(0.050)
Our method pα “ nq 0.986(0.008) 0.770(0.043) 0.713(0.035) 0.882(0.020) 3.256(0.112) 0.427(0.043)
BAGUS 0.986(0.002) 0.710(0.030) 0.667(0.023) 0.878(0.014) 3.707(0.146) 0.587(0.089)
Pooled 0.976(0.003) 0.469(0.031) 0.421(0.027) 0.777(0.033) 5.538(0.208) 0.735(0.111)
GGL 0.980(0.007) 0.684(0.077) 0.608(0.028) 0.838(0.038) 4.940(0.256) 0.502(0.026)

Table 2: Result of scale-free network
Spec Sens MCC AUC F-norm `8 norm

n “ 100, p “ 100, ρ “ 0

Our method pα “ 1q 1.000(0.000) 1.000(0.002) 0.993(0.006) 1.000(0.000) 1.664(0.088) 0.514(0.117)
Our method pα “ nq 0.996(0.002) 0.976(0.014) 0.906(0.047) 0.988(0.007) 1.942(0.133) 0.432(0.092)
BAGUS 0.997(0.001) 0.995(0.004) 0.936(0.019) 0.998(0.002) 1.747(0.096) 0.492(0.107)
Pooled 0.958(0.003) 0.746(0.043) 0.429(0.027) 0.903(0.018) 7.148(0.300) 0.869(0.024)
GGL 0.938(0.007) 1.000(0.001) 0.483(0.022) 1.000(0.001) 5.043(0.282) 0.545(0.019)

n “ 100, p “ 100, ρ “ 0.25

Our method pα “ 1q 0.993(0.001) 0.921(0.024) 0.833(0.011) 0.992(0.003) 2.032(0.079) 0.454(0.087)
Our method pα “ nq 0.991(0.002) 0.914(0.020) 0.808(0.021) 0.955(0.010) 2.365(0.083) 0.435(0.050)
BAGUS 0.990(0.001) 0.919(0.021) 0.801(0.019) 0.967(0.009) 2.407(0.100) 0.518(0.088)
Pooled 0.959(0.004) 0.654(0.040) 0.415(0.027) 0.833(0.021) 6.331(0.229) 0.799(0.040)
GGL 0.959(0.006) 0.964(0.013) 0.591(0.029) 0.980(0.007) 4.705(0.137) 0.540(0.024)

n “ 100, p “ 100, ρ “ 0.5

Our method pα “ 1q 0.988(0.001) 0.787(0.031) 0.719(0.018) 0.958(0.009) 2.548(0.088) 0.437(0.058)
Our method pα “ nq 0.983(0.007) 0.816(0.042) 0.696(0.036) 0.904(0.020) 2.813(0.099) 0.443(0.046)
BAGUS 0.986(0.003) 0.822(0.023) 0.716(0.028) 0.938(0.011) 3.106(0.131) 0.595(0.116)
Pooled 0.972(0.003) 0.508(0.032) 0.405(0.025) 0.761(0.030) 5.816(0.178) 0.741(0.052)
GGL 0.978(0.007) 0.847(0.041) 0.672(0.035) 0.921(0.021) 4.808(0.275) 0.539(0.030)

Table 3: Average computational time (in seconds) based on 10 replications.
Nearest-neighbor Network Scale-free Network

ρ “ 0 ρ “ 0.25 ρ “ 0.5 ρ “ 0 ρ “ 0.25 ρ “ 0.5

Our method pα “ 1q 3.667(0.040) 3.645(0.087) 3.552(0.026) 3.556(0.037) 3.545(0.030) 3.537(0.033)
Our method pα “ nq 7.792(0.456) 4.596(0.643) 3.597(0.049) 5.285(2.623) 3.600(0.025) 3.578(0.023)
BAGUS 3.635(0.023) 3.572(0.027) 3.547(0.021) 3.553(0.012) 3.546(0.022) 3.534(0.018)
Pooled 1.211(0.010) 1.178(0.013) 1.169(0.008) 1.184(0.015) 1.173(0.008) 1.168(0.010)
GGL 8.715(0.314) 8.034(0.689) 5.482(1.528) 8.086(0.262) 6.139(0.678) 3.074(0.270)

We divide the observations into K “ 3 classes by year as it is natural to expect the precision matrix
changes over year due to annual policy decisions, economic conditions, and other aspects of the
business. Then, we take the first 80% of observations in each class as training data and the other 20%
as test data.

We apply our method with α “ 365 as well as other methods we compared in the simulation studies,
i.e., BAGUS, Pooled, and GGL, on the training data to estimate µk’s and Θk’s. For year k and
station i, we divide the data Yk,i “ py

p1q
k,i , . . . , y

p237q
k,i q into two parts, Yk,i1 “ py

p1q
k,i , . . . , y

p118q
k,i q and

Yk,i2 “ py
p119q
k,i , . . . , y

p237q
k,i q. Assuming the first half Yk,i1 is observed, we predict the second half

Yk,i2 by the following best linear predictor derived from the multivariate Gaussian distribution:

Ŷk,i2 “ EpYk,i2 | Yk,i1q “ µ̂k2 ` Θ̂k21Θ̂´1
k11
pYk,i1 ´ µ̂k1q, for k “ 1, 2, 3, and i P Tk,

8



5000 15000 25000

0
.3

0
0
.3

2
0
.3

4

A
ve

ra
g
e
d
 A

A
F

E

Number of Nonzero 

 Off−diagonal Entries

Our method

BAGUS

Pooled

GGL

Figure 1: Averaged AAFE versus the
total number of nonzero off-diagonal en-
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Figure 2: Degree distributions of the estimated common
station networks over three years by our method and
BAGUS.

where Tk is the index set of the k-th class of test data, µk “ pµk1, µk2q and Θk “

ˆ

Θk11 Θk12
Θk21 Θk22

˙

.

We use the average absolute forecast error (AAFE) of each class for performance comparison:

AAFEk “
1

119

237
ÿ

j“119

1

cardpTkq
ÿ

iPTk

|ŷ
pjq
k,i ´ y

pjq
k,i |, k “ 1, 2, 3.

In Figure 1, we plot the averaged AAFE versus the number of nonzero off-diagonal entries in the
estimated precision matrices. For our method, BAGUS, and Pooled methods, we plot the curves by
fixing v1 and varying v0. For GGL, we fix the ratio between its two tuning parameters and varying
them together. Different ratios would output similar curves and only one of them is plotted. We
observe that our method not only achieves the lowest averaged AAFE, but also outputs the sparsest
estimated precision matrices when the lowest averaged AAFE is attained.

To get estimates for the station networks, we select the hyperparameters of our method and BAGUS
by BIC and and plot the degree distributions of the estimated common station networks over three
years in Figure 2. From the common structure learned by our method, two stations are found to with
higher connectivity and identified as hubs. It turns out that one is close to Union Station (a major
transportation hub) and the other is close to Dupont Circle (a popular residential neighborhood).
Therefore, it is not surprising the two stations play an important role in the dependence graph.
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