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ABSTRACT

This paper aims to address the limitations of mutual information estimators based
on variational optimization. By redefining the cost using generalized functions
from nonextensive statistical mechanics we raise the upper bound of previous
estimators and enable the control of the bias variance trade off. Variational based
estimators outperform previous methods especially in high dependence high di-
mensional scenarios found in machine learning setups. Despite their performance,
these estimators either exhibit a high variance or are upper bounded by log(batch
size). Our approach inspired by nonextensive statistical mechanics uses different
generalizations for the logarithm and the exponential in the partition function. This
enables the estimator to capture changes in mutual information over a wider range
of dimensions and correlations of the input variables whereas previous estimators
saturate them.

1 INTRODUCTION

Understanding the relationship between two variables is a fundamental problem in machine learning,
finance, signal processing and other fields. To quantify such a relationship, we use mutual information,
which measures the mutual dependence between two variables. The mutual information I(X,Y )
represents the ratio of two probabilities that can account for the nonlinear dependence and is defined
as follows:

I(X,Y ) = Ep(x,y)

[
log

p(x|y)

p(x)

]
(1)

It is a major challenge to estimate the mutual information in practical scenarios that involve limited
samples without knowing the distributions or higher-order statistics McAllester & Statos (2018);
Paninski (2003). For instance, existing methods such as the k-NN based Kraskov et al. (2004) and
its variations Gao et al. (2015); Wang et al. (2009); Lord et al. (2018), or KDE based Khan et al.
(2007); Suzuki et al. (2008) calculate the mutual information by estimating the probability density
from the available samples. Although these approaches perform well in the low dimensional and low
dependence case, they do not scale well when either the dimension of the variables or the dependence
between variables increases. Such scenarios are often encountered in machine learning setups.

Estimators based on variational bounds, Belghazi et al. (2018); Poole et al. (2018); Nguyen et al.
(2010); Oord et al. (2018); Zhang (2007); Foster & Grassberger (2011), perform much better in this
scenarios. These estimators are inspired by the Donsker & Varadhan (1983) representation which
states that there exists a function from the sample space to real number that satisfies the following
equality:

I(X,Y ) = sup
f :Ω→R

Ep(x,y) [f(x, y)]− logEp(y)

[
ef(x,y)

]
(2)

Estimators based on variational bounds replace the function f in the above equation with a neural
network trained to maximize a lower bound of the mutual information. The training process terminates
when the lower bounds exhibit convergence, and these bounds are then interpreted as the estimated
mutual information values. This NN-based approach requires good representations of lower bounds
and guaranteed convergence for a wide range of dependence between the input variables which leads
to numerous challenges.
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Current state-of-the-art estimators, when applied to high dimensional high dependence scenarios,
either exhibit a high variance or are bounded by log(K), where K is the batch size. In this work:

1. We propose new variational lower bounds on the mutual information inspired by methods
from nonextensive statistical mechanics.

2. We review generalized versions of the logarithm and exponential function, define a general-
ized version of the partition function, and use them to control the trade off between variance
and bias of the estimator.

3. We outperform previous estimators in capturing the trend when varying the correlation and
the dimension of the input variables by using different generalizations for the logarithm and
partition function.

2 VARIATIONAL ESTIMATORS

In what follows, we present most of the recent developments on variational lower bounds for estima-
tion of mutual information. For a thorough review of variational estimation of mutual information we
refer the reader to the work of Poole et al. (2018).

Most commonly, when estimating the mutual information, both p(x|y) and p(x) distributions in
equation 1 are unknown. The only thing we have are samples from these distributions. In this case, to
calculate the mutual information using the variational method we introduce a variational distribution
p̂(x|y) to learn from samples. Multiplying and dividing equation 1 by this distribution and rewriting
the expression we obtain the Barber & Agakov (2003) lower bound on the mutual information:

I(X,Y ) = Ep(x,y)

[
log

p(x|y) · p̂(x|y)

p(x) · p̂(x|y)

]
= Ep(x,y)

[
log

p̂(x|y)

p(x)

]
+ Ep(y)

[
log

p(x|y)

p̂(x|y)

]
︸ ︷︷ ︸
DKL(p(x|y)||p̂(x|y))

≥ Ep(x,y)

[
log

p̂(x|y)

p(x)

]
(3)

The last inequality holds since the Kullback-Liebler divergence is always non-negative. The bound is
tight when p̂(x|y) = p(x|y), i.e., our variational distribution converges to the true distribution. To
further simplify this variational optimization problem we make p̂(x|y) have the form in Poole et al.
(2018):

p̂(x|y) = p(x)
ef(x,y)

Z(y)
, and Z(y) = Ep(x)

[
ef(x,y)

]
=

1

K

K∑
i=1

ef(xi,y) (4)

where f is the critic, Z is the partition function, and K the number of samples. Equation 4 can also
be written as p̂(x|y) = p(x) ·Kσ(x; y) where σ(x; y) is the softmax function. In this form we see
that softmax function in p̂(x|y) maps the output of the critic to a probability. However, since the
number of states (outputs) is unknown, its average is used instead of the partition function.

Replacing equation 4 into equation 3, nesting the expectations Rainforth et al. (2018), and bounding
logZ(y) ≤ Z(y)

a(y) + log a(y) − 1 ∀x, a(y) > 0, which is a tight bound for a(y) = Z(y), results in
the Nguyen et al. (2010) bound, INWJ(X,Y ):

I(X,Y ) ≥ Ep(x,y) [f(x, y)]− Ep(y) [logZ(y)]

≥ Ep(x,y) [f(x, y)]− Ep(y)

[
Ep(x)[e

f(x,y)]

a(y)
+ log a(y)− 1

]

≥ 1

K

K∑
i=1

f(xi, yi)−
1

e ·K

K∑
i=1

ef(xi,yj) , INWJ

(5)
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where a(y) was set to be the natural constant and the second expectation computed with shuffled
y values. This bound reaches the true mutual information when the critic approaches the optimal
critic f∗(x, y) = 1 + log p(x|y)

p(x) . INWJ estimator performs well in high dimensional high dependence
scenarios but exhibits high variance due to the exponential function in the partition function which
amplifies the critic errors.

One way to reduce the variance is to make the critic depend on multiple samples and use a Monte
Carlo estimator for the partition function. To accomplish this we set the optimal critic to depend
on K additional samples f∗(x1:K , y) = 1 + log ef(x,y)

m(x1:K ,y) where m(x1:K , y) = 1
K

∑K
i=0 e

f(xi,y).
Replacing this new multisample critic in equation 5 and averaging over the batch after iteratively
fixing each sample as x1, we obtain the noise contrastive estimator INCE(X,Y ) introduced by Oord
et al. (2018):

I(X,Y ) ≥ 1

K

K∑
i=1

log
ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)
, INCE (6)

Although, as a result of averaging, the INCE estimator exhibits a much lower variance compared
to INWJ, this estimator is upper bounded by INCE ≤ logK where K is the batch size used to train
the critic. This bound can be verified by extracting the K from the denominator outside the sum,
I(X,Y ) ≥ logK + 〈log σ(xi,y)〉i where the average is always non-positive since softmax returns a
probability which is less or equal to 1.

One possible solution to solve the high variance of INWJ and the upper bound of INCE, proposed
by Poole et al. (2018), is to use a nonlinear interpolation between the two. To accomplish that,
the optimal critic for INWJ, equation 5, is set to f∗(x1:k, y) = 1 + log ef(x1,y)

αm(x1:k,y)+(1−α)q(y) where

m(x1:k, y) is 1
k

∑k
i=0 e

f(xi,y), q(y) is the secondary critic, and α ∈ [0, 1] interpolates between INWJ
(α = 0) and INCE (α = 1). Plugging this critic in equation 5 we obtain Poole et al. (2018) bound Iα:

I(X,Y ) ≥ 1 + Ep(x1:K)p(y|x1)

[
log

ef(x1,y)

αm(x1:k, y) + (1− α)q(y)

]
−Ep(x1:K)p(y)

[
ef(x1,y)

αm(x1:k, y) + (1− α)q(y)

]
, Iα

(7)

Here, similar to INWJ case, the second expectation is calculated using y values independently sampled
from x. The nonlinear interpolation in this case increases the upper bound of the estimator from
logK to log(K/α).

Although these estimators perform much better in high dimensional high dependence scenarios than
the ones based on k-NN or KDE, they still have their own limitations. In particular, INWJ has a high
variance due to the exponential in the partition function that limits its use. INCE solves the variance
problem by averaging the partition function which results in the estimator being bounded by log(K)
where K is the batch size used to train the critic. For the most common values of the batch size, the
upper bound of this estimator is between 6 and 8, much lower than the values of mutual information
encountered in the machine learning setup. Iα estimator, which is a combination of the two, can
reach higher values than INCE, however, the variance is not far from INWJ variance and it requires
training two critics.

In what follows we first present a generalization of the exponential and logarithm function from the
nonextensive statistical mechanics. Then we use these functions to derive a generalized version of
the previous bounds and show how, by using the generalization parameter q, we can overcome their
limitations.

3 NONEXTENSIVE STATISTICAL MECHANICS

The most known universality class in statistical mechanics is the Boltzmann–Gibbs class. In this class
the entropy is defined in terms of a probability set, and in particular, for a thermodynamic system at
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equilibrium it is calculated as:

SBG = −kB

W∑
i=0

pi log(pi) with pi =
e−βEi

ZBG
and ZBG =

W∑
j=1

e−βEj (8)

where Ei is the energy of the system in state i, β = 1/kBT is the thermodynamic beta, and ZBG is
the partition function that encodes the distribution of the probabilities among states. This expression
found much attention in many fields outside statistical mechanics and most notably in information
theory. In the information theoretic context, the Bolzmann constant kB = 1 and the pair −βEi is an
unnormalized function for which the entropy is calculated. This is exactly the case of expression 4
where we normalize the critic using the partition function.

The Boltzmann-Gibbs entropy was generalized in the work of Tsallis (1988) which introduces
a parameter q, named generalization, to control weight of the individual probabilities. Tsallis
generalized entropy is defined as:

Sq = k
1−

∑W
i=1 p

q
i

q − 1
= −k 1

W

W∑
i=1

logq(pi) (9)

where logq is the q-logarithm which converges to the classical logarithm when q → 1. The gen-
eralization q can be viewed as a “bias”. When q < 1 smaller probabilities are amplified, whereas
when q > 1 the larger ones are amplified. Although a majority of systems are well described by
the classical entropy and partition function, more complex system such as brain activity Tong et al.
(2002), financial markets Michael & Johnson (2003), and black holes Majhi (2017) often do not
follow the classical laws and are better captured by the generalized version.

Over the years, Tsallis entropy evolved into a separate branch of statistical mechanics known
as nonextensive statistical mechanics Tsallis (2009). This new branch extensively makes use of
generalized logarithm and exponential shown in Figure 1a and 1b defined as:

expq(x) = [1 + (1− q)x]
1

1−q

+

logq(x) =
x1−q − 1

1− q

(10)

where [z]+ = max(z, 0). The following identities, which we will use in the next section to derive new
variational bounds, are true: expq(x+y) = expq(x)⊗q expq(y) and logq(xy) = logq(x)⊕q logq(y)
where ⊕q and ⊗q are the q-addition and q-multiplication. For the definition of the q-operators and a
brief introduction to q-algebra, consult Appendix B.

Similar to generalized entropy, the generalized mutual information is defined as:

Iq(X,Y ) = Ep(x,y)

[
logq

p(x|y)

p(x)

]
(11)

Moreover, we can define a generalized version of the partition function using the generalized
exponential:

Zq(x) =
1

N

N∑
i=1

expq(xi) (12)

The advantage of the generalized partition function is the freedom to choose how much weight
large values will receive when mapping to probability. Figure 1c shows how the triplet (1, 2, 3) is
mapped into probabilities for different values of q. We will use this in the next section to improve the
perfomance of the estimators.

4 VARIATIONAL ESTIMATORS BASED ON TSALLIS STATISTICS

In this section, we derive a generalized version of previously introduced bounds using Tsallis statistics
in order to overcome the limitations of the previous variational bounds. Although, the generalized
mutual information differs in value with the classical mutual information due to the generalization.
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Figure 1: Generalized functions. (a) q-generalization of the logarithm function. When the gener-
alization parameter q → 1 we recover the classical logarithm log(x), for q = 0 a linear function
that passes through (1, 0), and for other values of q a nonlinear interpolation between the two. (b) q-
generalization of the exponential function. The behaviour of expq(x) is similar to logq(x) with
respect to the generalization parameter q. For the same value of q the two functions are the inverse
of each other, i.e., expq(logq(x)) = x and logq(expq(x)) = x. (c) Normalizing the triplet (1, 2, 3)
using the q-generalization of the partition function for different values of q. Higher the value of q,
higher the probability mass is attributed to the largest value in the set.

The two have the same properties and capture the dependence between input variables. To obtain a
variational bound on the generalized mutual information we start from the definition, expression 11,
which we multiply and divide by the variational distribution p̂(x|y):

Iq(X,Y ) = Ep(x,y)

[
logq

p(x|y) · p̂(x|y)

p(x) · p̂(x|y)

]
= Ep(x,y)

[
logq

p̂(x|y)

p(x)

]
⊕q Ep(y)

[
logq

p(x|y)

p̂(x|y)

]
︸ ︷︷ ︸
DKLq (p(x|y)||p̂(x|y))

≥ Ep(x,y)

[
logq

p̂(x|y)

p(x)

]
(13)

Again the inequality holds since the DKLq (p(x|y)||p̂(x|y)) is a positive number for all values of q
and is tight when p̂(x|y) = p(x|y) as 0 is a neutral element for the generalized q-addition. Again,
this expression can be further simplified by selecting p̂(x|y) be of the form:

p̂(x|y) = p(x)
expq(f(x, y))

Zq(y)
, and Zq(y) = Ep(x)

[
expq(f(x, y))

]
=

1

N

N∑
i=1

expq(f(xi, y)) (14)

where Zq is the generalized partition function. For q = 0 we recover the counting measure, for q = 1
we obtain the softmax function, and for other value we obtain a nonlinear interpolation between the
two. In what follows we set the q of the partition function equal to the Tsallis divergence, however,
there is no reason to have them equal as the partition function has the role of a normalizer. Replacing
equality 14 into 13 we obtain:

I(X,Y ) ≥ Ep(x,y) [f(x, y)]	q Ep(y)

[
logq Zq(y)

]
(15)
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Next, to obtain the Nguyen, Wainwright and Jordan bound, INWJ, we bound the partition function
using the following inequality logq Zq(y) ≤ Zq(y)

a(y) + logq a(y) − 1 ∀x, q, a(y) > 0 which is tight
when a(y) = Zq(y). Setting a(y) = expq(y) yields the bound:

I(X,Y ) ≥ Ep(x,y) [f(x, y)]	q expq(−1)Ep(y) [Zq(y)] (16)

which reaches the true mutual information when the critic approaches the optimal critic f∗(x, y) =

1⊕q logq
p(x|y)
p(x) that can be verified by replacing this expression for critic in equation 16.

To obtain the q-equivalent for the multisample bound INCE we replace the optimal critic
with the multisample optimal critic f∗(x1:k, y) = 1 ⊕q logq

expq(f(x,y))

m(x1:K ,y) with m(x1:K , y) =
1
K

∑K
i=0 expq(f(xi, y)) in inequality 16 which results in:

I(X,Y ) ≥ 1⊕q Ep(x1:K)p(y|x1)

[
logq

expq(f(x, y))

m(x1:K , y)

]
	q Ep(x1:K)p(y)

[
expq(f(x, y))

m(x1:K , y)

]
(17)

By iteratively reindexing each sample in x1:K as x1 and averaging the result, the last term becomes:

1

K

K∑
i=1

Ep(x1:K)p(y)

[
expq(f(x, y))

m(x1:K , y)

]
= Ep(x1:K)p(y)

[
1
K

∑K
i=1 expq(f(x, y))

m(x1:K , y)

]
= 1 (18)

Replacing expression 18 into 17, and then as in previous step iteratively reindexing each sample in
x1:K as x1 and averaging the result we obtain:

I(X,Y ) ≥ 1

K

K∑
i=1

E
[
logq

expq(f(x, y))

m(x1:K , y)

]

≥ E

[
1

K

K∑
i=1

logq
expq(f(xi, yi))

1
K

∑K
j=0 expq(f(xi, yj))

] (19)

which is our proposed lower bound on mutual information based on nonextensive statistical mechanics
which we name accordingly INES. Similar to the original INCE, equation 6, our estimator is upper
bounded by logq(K). However, we can overcome this limitation by choosing a generalization
q < 1 for the logarithm. In addition, since the generalization of the logarithm is independent of the
generalization of the partition function we can set them independently. Thus, we control how the
critic output is mapped to a probability using the generalization q of the partition function and the
estimator bound through the generalization q of the logarithm. To show this, we rewrite expression
19 as:

I(X,Y ) ≥ E

[
1

K

K∑
i=1

logq1
expq2(f(xi, yi))

1
K

∑K
j=0 expq2(f(xi, yj))

]
, INES (20)

where q1 is the logarithm generalization and q2 is the partition function generalization.

5 EXPERIMENTAL RESULTS

We use Gaussian distributed random vectors to test our estimator and compare its performance with
previous works. For the particular case when the vector elements with the same index have correlation
ρ and 0 when indices do not match, the mutual information can be calculated using the following
formula:

I(X,Y ) =
dim(X)

2
(1− ρ)2 (21)
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Figure 2: Estimated mutual information from 3000 samples and using a batch size of 512. The two
parameters of INES are 0.6 for the logarithm and 2 for the partition function, and α = 0.01 for the Iα
estimator. (a) The influence of the dimension on the estimated mutual information for a correlation
ρ of 0.8. INWJ and INCE estimators saturate for dim > 10, Iα captures the trend but fluctuates as
it require both critics to converge. INES performs the best although the returned of value of this
estimator is not directly comparable with other estimators due to the generalized logarithm. (b)
Impact of the vector correlation on the estimated mutual information for input vectors of dimension
10. All estimators follow the trend up to a correlation ρ of 0.9. Only INWJ and INES perform beyond
this limit with the later capturing the trend even for a correlation of 0.99. (c) Variance of the estimated
bound for different dimensions of the input vector. INES exhibits a higher variance than INCE and Iα
due to the generalization q > 1 used in the partition function. (d) The influence of the correlation on
the variance of the estimated mutual information.

For each experiment we use 3000 samples to estimate the mutual information and train the critic in
batches of 512 samples to maximize the variational bounds introduced in the previous section. The
result of these experiments are shown in Figure 2.

We observe that for low dimensions dim(X) < 10, a majority of the estimators can capture the trend,
Figure 2a. However, for dimensions dim(X) > 10, INWJ and INCE saturate. Although both INES and
Iα do follow the trend of the true mutual information for all input dimensions, INES outperforms
Iα which uses two critics and requires both of them to converge. Note, the returned value of INES
estimator is not a classical mutual information as it uses a generalized logarithm, however, it has the
same properties as the classical mutual information.

In contrast to the input dimension experiment, estimators capture the trend much better over a wider
range of correlations between inputs, Figure 2b. The two estimators that saturate first in this case
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are INCE and Iα for correlations ρ > 0.9. INES captures the trend and remains consistent across the
whole range up to ρ > 0.99. From Figures 2c and 2d we can see that the performance of the INES
estimators comes with a cost, it exhibits higher variance than INCE but lower than the one of INWJ.

6 CONCLUSION

The main goal of the current work was to improve the performance of mutual information estimators
in the high dependence high dimensional scenarios which are often encountered in machine learning
setups. We reviewed previous variational lower bounds and extended them using generalized
logarithm and exponential functions from nonextensive statistical mechanics. One of the most
significant findings to emerge from this study was that we can control the trade off between the bias
and the variance of the estimator by independently tuning the generalizations q of the logarithm and
partition function. As a result, we are able to better capture the trend when varying the correlation
and dependence of the input variables. This method greatly improves upon the INCE estimator which
has a low variance but a high bias and Iα estimator which requires two critics that can sometimes
be challenging to train. The major limitation of the proposed estimator is that its results are not
equal in value with the classical mutual information due to use of generalization. Despite that, INES
still captures the dependence between the input variable and can be applicable to machine learning
problems where a mutual information estimator is needed such as feature selection, variational
autoencoders, and generative adversarial networks.
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A ADDITIONAL EXPERIMENTS
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Figure 3: Impact of the input dimension on mutual information estimation using 3000 samples.
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Figure 4: Impact of the correlation between vectors on mutual information estimation using 3000
samples.
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Figure 5: Comparison of two version of INES. For ĪNES both generalizations, logarithm and expo-
nential, are equal and set to 0.75. For INES the two generalization are distinct and set to 0.6 and 2
respectively. Mutual information was estimated using 3000 samples with a correlation ρ = 0.8.

10



Under review as a conference paper at ICLR 2020

B Q-ALGEBRA

Brief introduction to q-algebra. For a more in depth treatment consult the works of Tsallis (2009);
Umarov et al. (2008).

Addition and subtraction operations in q-algebra are defined as follow:

x⊕q y = x+ y + (1− q)xy

x	q y =
x− y

1 + (1− q)y
(22)

Similar to the classical algebra, above operations have 0 as the neutral element:

x⊕q 0 = x

x	q 0 = x
(23)

Multiplication and division are have the form:

x⊗q y =
[
x1−q + y1−q − 1

] 1
1−q

+

x�q y =
[
x1−q − y1−q + 1

] 1
1−q

+

(24)

where [z]+ = max(z, 0). For both operators 1 is a neutral element:

x⊗q 1 = x

x�q 1 = x
(25)

Exponential and logarithm are defined as:

expq(x) = [1 + (1− q)x]
1

1−q

+

logq(x) =
x1−q − 1

1− q

(26)

with properties:

expq(0) = 1

logq(1) = 0

expq(logq(x)) = x

logq(expq(x)) = x

(27)

However, exponential and logarithmic identities have a slightly different form:

expq(x+ y) = expq(x)⊗q expq(y)

expq(x⊕q y) = expq(x) · expq(y)

logq(xy) = logq(x)⊕q logq(y)

logq(x⊗q y) = logq(x) + logq(y)

(28)
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