
Parsing-based Approaches for Verification and Recognition of Hierarchical Plans

Roman Barták
Charles University

Faculty of Mathematics and Physics
Prague, Czech Republic

Adrien Maillard
GMV

Flight Dynamics and Operations
Toulouse, France

Rafael C. Cardoso
University of Liverpool

Department of Computer Science
Liverpool, United Kingdom

Abstract

Hierarchical planning, in particular, Hierarchical Task Net-
works, was proposed as a method to describe plans by decom-
position of tasks to sub-tasks until primitive tasks, actions, are
obtained. Plan verification assumes a complete plan as input,
and the objective is finding a task that decomposes to this
plan. In plan recognition, a prefix of the plan is given and the
objective is finding a task that decomposes to the (shortest)
plan with the given prefix. This paper describes how to ver-
ify and recognize plans using a common method known from
formal grammars, by parsing.

Introduction
Hierarchical planning is a practically important approach
to automated planning based on encoding abstract plans
as hierarchical task networks (HTNs) (Erol, Hendler, and
Nau 1996). The network describes how compound tasks are
decomposed, via decomposition methods, to sub-tasks and
eventually to actions forming a plan. The decomposition
methods may specify additional constraints among the sub-
tasks such as partial ordering and causal links.

As of this writing, there exist only two systems for ver-
ifying if a given plan complies with the HTN model, that
is, if a given sequence of actions can be obtained by de-
composing some task. One system is based on transforming
the verification problem to SAT (Behnke, Höller, and Bi-
undo 2017) and the other system is using parsing of attribute
grammars (Barták, Maillard, and Cardoso 2018). Only the
parsing-based system supports HTN fully (the SAT-based
system does not support the decomposition constraints).

Parsing became popular in solving the plan recognition
problem (Vilain 1990) as researchers realized soon the sim-
ilarity between hierarchical plans and formal grammars,
specifically context-free grammars with parsing trees close
to decomposition trees of HTNs. The plan recognition prob-
lem can be formulated as the problem of adding a sequence
of actions after some observed partial plan such that the joint
sequence of actions forms a complete plan generated from
some task (more general formulations also exist). Hence
plan recognition can be seen as a generalization of plan ver-
ification. There exist numerous approaches to plan recogni-
tion using parsing or string rewriting (Avrahami-Zilberbrand

and Kaminka 2005; Geib, Maraist, and Goldman 2008; Geib
and Goldman 2009; Kabanza et al. 2013), but they use hier-
archical models that are weaker than HTNs. The languages
defined by HTN planning problems (with partial-order, pre-
conditions and effects) lie somewhere between context-free
(CF) and context-sensitive (CS) languages (Höller et al.
2014) so to model HTNs, one needs to go beyond the CF
grammars. Currently, the only grammar-based model that
fully covers HTNs uses attribute grammars (Barták and
Maillard 2017). Moreover, the expressivity of HTNs makes
the plan recognition problem undecidable (Behnke, Höller,
and Biundo 2015). At the moment, there is only one ap-
proach for HTN plan recognition. This approach relies on
translating the plan recognition problem to a planning prob-
lem (Höller et al. 2018), which is a technique that was first
introduced in (Ramírez and Geffner 2003).

In this paper, we focus on verification and recognition of
HTN plans using parsing. The uniqueness of the proposed
methods is that they cover full HTNs including task inter-
leaving, partial order of sub-tasks, and other decomposition
constraints (prevailing constraints, specifically). The meth-
ods are derived from the plan verification technique pro-
posed in (Barták, Maillard, and Cardoso 2018).

There are two novel contributions of this paper. First, we
will simplify the above mentioned verification technique by
exploiting information about actions and states to improve
practical efficiency of plan verification. Second, we will ex-
tend that technique to solve the plan (task) recognition prob-
lem. We will show that the verification algorithm can be
much simpler and, hence, it is expected to be more effi-
cient. For plan recognition, the method proposed in (Höller
et al. 2018) can in principle support HTN fully, if a full
HTN planner is used (which is not the case yet as prevail-
ing conditions are not supported). However, like other plan
recognition techniques it requires the top task (the goal) and
the initial state to be specified as input. A practical differ-
ence of our methods is that they do not require information
about possible top (root) tasks and an initial state as their
input. This is particularly interesting for plan/task recogni-
tion, where existing methods require a set of candidate tasks
(goals) to select from (in principle, they may use all tasks as
candidates, but this makes them inefficient).



Background on Planning
In this paper, we work with classical STRIPS plan-
ning (Fikes and Nilsson 1971) that deals with sequences of
actions transferring the world from a given initial state to
a state satisfying certain goal conditions. World states are
modelled as sets of propositions that are true in those states,
and actions are are modelled to change the validity of certain
propositions.

Classical Planning
Formally, let P be a set of all propositions modelling prop-
erties of world states. Then a state S ⊆ P is a set of propo-
sitions that are true in that state (every other proposition
is false). Later, we will use the notation S+ = S to de-
scribe explicitly the valid propositions in the state S and
S− = P \S to describe explicitly the propositions not valid
in the state S.

Each action a is described by three sets of propositions
(B+

a , A
+
a , A

−
a ), where B+

a , A
+
a , A

−
a ⊆ P,A+

a ∩ A−a = ∅.
Set B+

a describes positive preconditions of action a, that
is, propositions that must be true right before the action a.
Some modeling approaches allow also negative precondi-
tions, but these preconditions can be compiled away. For
simplicity reasons we assume positive preconditions only
(the techniques presented in this paper can also be extended
to cover negative preconditions directly). Action a is appli-
cable to state S iff B+

a ⊆ S. Sets A+
a and A−a describe posi-

tive and negative effects of action a, that is, propositions that
will become true and false in the state right after executing
the action a. If an action a is applicable to state S then the
state right after the action a is:

γ(S, a) = (S \A−a ) ∪A+
a . (1)

γ(S, a) is undefined if an action a is not applicable to state
S.

The classical planning problem, also called a STRIPS
problem, consists of a set of actions A, a set of proposi-
tions S0 called an initial state, and a set of goal propo-
sitions G+ describing the propositions required to be true
in the goal state (again, negative goal is not assumed as it
can be compiled away). A solution to the planning prob-
lem is a sequence of actions a1, a2, . . . , an such that S =
γ(...γ(γ(S0, a1), a2), ..., an) and G+ ⊆ S. This sequence
of actions is called a plan.

The plan verification problem is formulated as follows:
given a sequence of actions a1, a2, . . . , an, and goal propo-
sitions G+, is there an initial state S0 such that the sequence
of actions forms a valid plan leading from S0 to a goal state?
In some formulations, the initial state might also be given as
an input to the verification problem.

Hierarchical Task Networks
To simplify and speeed up the planning process, several ex-
tensions of the basic STRIPS model were proposed to in-
clude some control knowledge. Hierarchical Task Networks
(Erol, Hendler, and Nau 1996) were proposed as a planning
domain modeling framework that includes control knowl-
edge in the form of recipes on how to solve specific tasks.

The recipe is represented as a task network, which is a set of
sub-tasks to solve a given task together with the set of con-
straints between the sub-tasks. Let T be a compound task
and ({T1, ..., Tk}, C) be a task network, where C are its
constraints (see later). We can describe the decomposition
method as a derivation (rewriting) rule:

T → T1, ..., Tk [C]

The planning problem in HTN is specified by an initial
state (the set of propositions that hold at the beginning) and
by an initial task representing the goal. The compound tasks
need to be decomposed via decomposition methods until
a set of primitive tasks – actions – is obtained. Moreover,
these actions need to be linearly ordered to satisfy all the
constraints obtained during decompositions and the obtained
plan – a linear sequence of actions – must be applicable to
the initial state in the same sense as in classical planning.
We denote an action as ai, where the index i means the or-
der number of the action in the plan (ai is the i-th action in
the plan). The state right after the action ai is denoted Si,
S0 is the initial state. We denote the set of actions to which
a task T decomposes as act(T ). If U is a set of tasks, we
define act(U) = ∪T∈Uact(T ). The index of the first ac-
tion in the decomposition of T is denoted start(T ), that is,
start(T ) = min{i|ai ∈ act(T )}. Similarly, end(T ) means
the index of the last action in the decomposition of T , that
is, end(T ) = max{i|ai ∈ act(T )}.

We can now define formally the constraints C used in the
decomposition methods. The constraints can be of the fol-
lowing three types:
• t1 ≺ t2: a precedence constraint meaning that in every

plan the last action obtained from task t1 is before the
first action obtained from task t2, end(t1) < start(t2),

• before(U, p): a precondition constraint meaning that in
every plan the proposition p holds in the state right before
the first action obtained from tasks U , p ∈ Sstart(U)−1,

• between(U, V, p): a prevailing condition meaning that in
every plan the proposition p holds in all the states between
the last action obtained from tasks U and the first action
obtained from tasks V ,
∀i ∈ {end(U), . . . , start(V )− 1}, p ∈ Si.
The HTN plan verification problem is formulated as fol-

lows: given a sequence of actions a1, a2, . . . , an, is there an
initial state S0 such that the sequence of actions is a valid
plan applicable to S0 and obtained from some compound
task? Again, the initial state might also be given as an input
in some formulations.

The HTN plan recognition problem is formulated as fol-
lows: given a sequence of actions a1, a2, . . . , an, is there an
initial state S0 and actions an+1, . . . , an+m for somem ≥ 0
such that the sequence of actions a1, a2, . . . , an+m is a valid
plan applicable to S0 and obtained from some compound
task? In other words, if the given actions form a prefix of
some plan obtained from some compound task T . We will
be looking for such a task T minimizing the value m (the
number of added actions to complete the plan). If only the
task T is of interest (not the actions an+1, . . . , an+m) then
it can be referred to as the task (goal) recognition problem.



The Plan Verification Algorithm
The existing parsing-based HTN verification algo-
rithm (Barták, Maillard, and Cardoso 2018) uses a
complex structure of a timeline. This structure maintains
the decomposition constraints so that they can be checked
when composing sub-tasks to a compound task. We propose
a simplified verification method that does not require this
complex structure, as it checks all the constraints directly in
the input plan. This makes the algorithm easier to implement
and also potentially faster. Another difference is that we do
not assume that the initial state is passed as input, instead
we set the initial state as the preconditions of the first action
in the plan. However, adding support for it is trivial as we
would only have to add the initial state that was given as
input to the preconditions of the first action in the plan.

The novel hierarchical plan verification algorithm is
shown in Algorithm 1. It first calculates all intermediate
states (lines 2-8) by propagating information about propo-
sitions in action preconditions and effects. At this stage, we
actually solve the classical plan validation problem as the
algorithm verifies that the given plan is causally consistent
(action precondition is provided by previous actions or by
the initial state). The original verification algorithm did this
calculation repeatedly each time it composed a compound
task. It is easy to show that every action is applicable, that
is, B+

ai
⊆ Si−1 (lines 2 and 4). Next, we will show that

γ(Si, ai+1) = Si+1 = (Si \ A−ai+1
) ∪ A+

ai+1
. Left-to-right

propagation (line 4) ensures that (Si \ A−ai+1
) ∪ A+

ai+1
⊆

Si+1. Right-to-left propagation (line 6) ensures that precon-
ditions are propagated to earlier states if not provided by
the action at a given position. In other words, if there is a
proposition p ∈ Si+1 \ A+

ai+1
then this proposition should

be at Si. Line 6 adds such propositions to Si so it holds
(Si \ A−ai+1

) ∪ A+
ai+1

= Si+1. However, if p ∈ A−ai+1
then

p would be deleted by the action ai+1, which means that the
plan is not valid. The algorithm detects this at lines 7-8.

When the states are calculated, we apply a parsing algo-
rithm to compose tasks. Parsing starts with the set of primi-
tive tasks (line 9), each corresponding to an action from the
input plan. For each task T , we keep a data structure describ-
ing the set act(T ), that is, the set of actions to which the task
decomposes. We use a Boolean vector I of the same size as
the plan to describe this set; ai ∈ act(T ) ⇔ I(i) = 1. To
simplify checks of decomposition constraints, we also keep
information about the index of first and last actions from
act(T ). Together, the task is represented using a quadruplet
(T, b, e, I) in which T is a task, b is the index in the plan
of the first action generated by T , e is the index in the plan
of the last action generated by T (we say that [i, j] repre-
sents the interval of actions over which T spans), and I is a
Boolean vector as described above.

The algorithm applies each decomposition rule to com-
pose a new task from already known sub-tasks (line 12).
The composition consists of merging the sub-tasks, when
we check that every action in the decomposition is ob-
tained from a single sub-task (line 20), that is, act(T0) =⋃k

j=1 act(Tj) and ∀i 6= j : act(Ti) ∩ act(Tj) = ∅. We also
check all the decomposition constraints; the pseudo-code is

Data: a plan P = (a1, ..., an) and a set of decomp.
methods

Result: a Boolean equal to true if the plan can be
derived from some compound task, false
otherwise

1 Function VERIFYPLAN
2 S0 ← B+

a1

3 for i = 1 to n do
4 Si ← B+

ai+1
∪ (Si−1\A−ai

) ∪A+
ai

5 for i = n-1 down to 0 do
6 Si ← Si ∪ (Si+1\A+

ai+1
)

7 if Si ∩A−ai
6= ∅ then

8 return false

9 sp← ∅; new← {(Ai, i, i, Ii) |i ∈ 1..n}
Data: Ai is a primitive task corresponding to action

ai, Ii is a Boolean vector of size n, such that
∀i ∈ 1..n, Ii(i) = 1, ∀j 6= i, Ii(j) = 0

10 while new 6= ∅ do
11 sp← sp∪new; new← ∅
12 foreach decomposition method R of the form

T0 → T1, ..., Tk [≺,pre,btw] such that
{(Tj , bj , ej , Ij)|j ∈ 1..k} ⊆ sp do

13 if ∃(i, j) ∈≺: ¬(ei < bj) then
14 break
15 b0 ← min{bj |j ∈ 1..k}
16 e0 ← max{ej |j ∈ 1..k}
17 for i = 1 to n do
18 I0(i)←

∑k
j=1 Ij(i);

19 if I0(i) > 1 then
20 break

21 if ∃(U, p) ∈ pre : p 6∈ Smin{bj |j∈U}−1 then
22 break
23 if ∃(U, V, p) ∈ btw ∃i ∈ max{ej |j ∈

U}, . . . ,min{bj |j ∈ V } − 1 : p 6∈ Si then
24 break
25 new← new∪{(T0, b0, e0, I0)}
26 if ∀k, I0(k) = 1 then
27 return true

28 return false
Algorithm 1: Parsing-based HTN plan verification

a direct rewriting of constraint definitions. If all tests pass,
the new task is added to a set of tasks (line 25). Then we
know that the task decomposes to actions, which form a sub-
sequence (not necessarily continuous) of the plan to be ver-
ified. The process is repeated until a task that decomposes
to all actions is obtained (line 27) or no new task can be
composed (line 10). The algorithm is sound as the returned
task decomposes to all actions in the input plan. If the al-
gorithm finishes with the value false then no other task can
be derived. As there is a finite number of possible tasks, the
algorithm has to finish, so it is complete.



The Plan Recognition Algorithm
Any plan verification algorithm, for example, the one from
the previous section, can be extended to plan recogni-
tion by feeding the verification algorithm with actions
a1, . . . , an+k, where we progressively increase k. The ac-
tions a1, . . . , an are given as an input, while the actions
an+1, . . . , an+k need to be generated (planned). However,
this generate-and-verify approach would be inefficient for
larger k as it requires exploration of all valid sequences of
actions with the prefix a1, . . . , an. Assume that there could
be 5 actions at the position n+1 and 6 actions at the position
n+2. Then the generate-and-verify approach explores up to
30 plans (not every action at the position n + 2 could fol-
low every action at the position n+ 1) and for each plan the
verification part starts from scratch as the plans are different.

This is where the verification algorithm from (Barták,
Maillard, and Cardoso 2018) can be used as it does not
require exactly one action at each position. The algorithm
stores actions (sub-tasks) independently and only when it
combines them to form a new task, it generates the states be-
tween the actions and checks the constraints for them. This
resembles the idea of the Graphplan algorithm (Blum and
Furst 1997). There are also sets of candidate actions for each
position in the plan and the plan-extraction stage of the al-
gorithm selects some of them to form a causally valid plan.
We use compound tasks together with their decomposition
constraints to select and combine the actions (we do not use
parallel actions in the plan).

The algorithm from (Barták, Maillard, and Cardoso 2018)
extended to the plan recognition problem is shown in Al-
gorithm 2. It starts with actions a1, . . . , an (line 2) and
it finds all compound tasks that decompose to subsets of
these actions (lines 4-30). This inner while-loop is taken
from (Barták, Maillard, and Cardoso 2018), we only syn-
tactically modified it to highlight the similarity with the ver-
ification algorithm from the previous section. If a task that
decomposes to all current actions is found (line 30) then we
are done. This is the goal task that we looked for and its
timeline describes the recognized plan. Otherwise, we add
all primitive tasks corresponding to possible actions at posi-
tion n+ 1 (line 33). Note that these are not parallel actions,
the algorithm selects exactly one of them for the plan.

Now, the parsing algorithm continues as it may compose
new tasks that include one of those recently added primi-
tive tasks. Notice that the algorithm uses all composed tasks
from previous iterations in succeeding iterations so it does
not start from scratch when new actions are added. This pro-
cess is repeated until the goal task is found. The algorithm is
clearly sound as the task found is the task that decomposes
to the shortest plan with a given prefix. This goes from the
soundness and completeness of the verification algorithm (in
particular, no task that decomposes to a shorter plan exists).
The algorithm is semi-complete as if there exists a plan with
the length n + k and with a given prefix, the algorithm will
eventually find it at the (k + 1)-th iteration. If no plan with
a given prefix exists then the algorithm will not stop. How-
ever, recall that the plan recognition problem is undecidable
(Behnke, Höller, and Biundo 2015) so any plan recognition
approach suffers from this deficiency.

Data: a plan P = (a1, ..., an), Ai is a primitive task
corresponding to action ai, and a set of
decomposition methods

Result: a Task that decomposes to a plan with prefix P
1 Function RECOGNIZEPLAN
2 new← {(Ai, i, i, {(B+

ai
, ∅, ai, A+

ai
, A−ai

)i})|i ∈
1..n} ;

3 sp← ∅; l← n;
4 while new 6= ∅ do
5 sp← sp∪new; new← ∅;
6 foreach decomposition method R of the form

T0 → T1, ..., Tk[≺,pre,btw] such that
{(Tj , bj , ej , tlj)|j ∈ 1..k} ⊆ sp do

7 if ∃(i, j) ∈≺: ¬(ei < bj) then
8 break
9 b0 ← min{bj |j ∈ 1..k}

10 e0 ← max{ej |j ∈ 1..k}
11 tl← {(∅, ∅, empty, ∅, ∅)i|i ∈ b0..e0}
12 for j = 1 to k; i = bj to ej do
13 (Pre+1 ,Pre

−
1 , a1,Post

+
1 ,Post

−
1 )i ∈ tl

14 (Pre+2 ,Pre
−
2 , a2,Post

+
2 ,Post

−
2 )i ∈ tlj

15 if a1 6= empty, a2 6= empty then
16 break
17 Pre+1 ← Pre+1 ∪Pre

+
2

18 Pre−1 ← Pre−1 ∪Pre
−
2

19 Post+1 ← Post+1 ∪Post
−
2

20 Post−1 ← Post−1 ∪Post
−
2

21 if a1 = empty then
22 a1 ← a2

23 APPLYPRE(tl, pre);
24 APPLYBETWEEN(tl, btw);
25 PROPAGATE(tl, b0, e0 − 1);
26 if ∃(Pre+,Pre−, a,Post+,Post−) ∈ tl :

Pre+ ∩Pre− 6= ∅ then
27 break
28 new← new∪{(T0, b0, e0, tl)}
29 if b0 = 1, e0 = l,∀(_, _, aj , _, _)j ∈ tl :

aj 6= empty then
30 return (T0, tl)

31 l← l + 1;
32 new← {(A, l, l, {(B+

a , ∅, a, A+
a , A

−
a )l})|

33 action a can be at position l;A is a primitive task for a}
34 goto 4

Algorithm 2: Parsing-based HTN plan recognition

The algorithm maintains a timeline for each compound
task to verify all the constraints. This is the major difference
from the above verification algorithm that points to the origi-
nal plan. This timeline has been introduced in (Barták, Mail-
lard, and Cardoso 2018), where all technical details can be
found. We include a short description to make the paper self-
contained. A timeline is an ordered sequence of slots, where
each slot describes an action, its effects, and the state right



before the action. For task T , the actions in slots are exactly
the actions from act(T ). Both effects and states are mod-
elled using two sets of propositions, Post+ and Post− mod-
eling positive and negative effects of the action and Pre+

and Pre− modeling propositions that must and must not be
the true in the state right before the action. Two sets are used
as the state is specified only partially and propositions are
added to it during propagation so it is necessary to keep
information about propositions that must not be true in the
state.

The timeline always spans from the first to the last ac-
tion of the task. Due to interleaving of tasks (actions from
one task might be located between the actions of another
task in the plan), some slots of the task might be empty.
These empty slots describe “space” for actions of other
tasks. When we are merging sub-tasks (lines 12-22), we
merge their timelines, slot by slot. This is how the actions
from sub-tasks are put together in a compound task. Notice,
specifically, that it is not allowed for two merged sub-tasks
to have actions in the same slot (line 15). This ensures that
each action is generated by exactly one task.

Data: a set of slots, a set of before constraints
Result: an updated set of slots

1 Function APPLYPRE(slots, pre)
2 foreach (U, l) ∈ pre do
3 id = min{bj |j ∈ U};
4 Pre+id ← Pre+id ∪{p|l = p};
5 Pre−id ← Pre−id ∪{p|l = ¬p}

Algorithm 3: Apply before constraints

Data: a set of slots, a set of between constraints
Result: an updated set of slots

1 Function APPLYBETWEEN(slots, between)
2 foreach (U, V, l) ∈ between do
3 s = max{ei|i ∈ U}+ 1;
4 e = min{bi|i ∈ V };
5 for id = s to e do
6 Pre+id ← Pre+id ∪{p|l = p};
7 Pre−id ← Pre−id ∪{p|l = ¬p}

Algorithm 4: Apply between constraints

Propositions from before and between constraints are
“stored” in the corresponding slots (Algorithms 3 and 4) and
their consistency is checked each time the slots are modified
(line 26 of Algorithm 2). Consistency means that no proposi-
tion is true and false at the same state. Information between
subsequent slots is propagated similarly to the verification
algorithm (see Algorithm 5). Positive and negative proposi-
tions are now propagated separately taking in account empty
slots. If there is no action in the slot then effects are unknown
and hence propositions cannot be propagated.

Data: a set of slots slots
Result: an updated set of slots

1 Function PROPAGATE(slots, lb, ub)
/* Propagation to the right */

2 for i = lb to ub do
3 if ai 6= empty then
4 Pre+i+1 ←

Pre+i+1 ∪(Pre
+
i \Post

−
i ) ∪ Post+i ;

5 Pre−i+1 ←
Pre−i+1 ∪(Pre

−
i \Post

+
i ) ∪ Post−i

/* Propagation to the left */
6 for i = ub down to lb do
7 if ai 6= empty then
8 Pre+i ← Pre+i ∪(Pre

+
i+1 \Post

+
i );

9 Pre−i ← Pre−i ∪(Pre
−
i+1 \Post

−
i )

Algorithm 5: Propagate

Example
A unique property of the proposed techniques is handling
task interleaving – actions generated from different tasks
may interleave to form a plan. This is the property that pars-
ing techniques based on CF grammars cannot handle.

The example in Figure 1 demonstrates how the timelines
are filled by actions as the tasks are being derived/composed
from the plan. Assume, first, that a complete plan consist-
ing of actions a1, a2, . . . , a7 is given. The plan recognition
algorithm can also handle such situations, when a complete
plan is given, so it can serve for plan verification too (the
verification variant of Algorithm 2 should stop with a failure
at line 33 as no action can be added during plan verifica-
tion). In the first iteration, the algorithm will compose tasks
T2, T3, T4 as these tasks decompose to actions directly. No-
tice, how the timelines with empty slots are constructed. We
know where the empty slots are located as we know the ex-
act location of actions in the plan. In the second iteration,
only the task T1 is composed from already known tasks T3
and T4. Notice how the slots from these tasks are copied to
the slots of a new timeline for T1. On the contrary, the slots
in original tasks remain untouched as these tasks may merge
with other tasks to form alternative decomposition trees (see
the discussion below). Finally, in the third iteration, tasks
T1 and T2 are merged to a new task T0 and the algorithm
stops there as a complete timeline that fully spans the plan
is obtained (condition at line 30 of Algorithm 2 is satisfied).

Let us assume that there is a constraint
between({a1}, {a3}, p) in the decomposition method
for T3. For example, this constraint may model a causal
link between a1 and a3. When composing the task T3, the
second slot of its timeline remains empty, but the proposi-
tion p is placed there (see Algorithm 4). This proposition
is then copied to the timeline of task T1, when merging
the timelines (line 17 of Algorithm 2), and finally also
to the timeline of task T0. During each merge operation,
the algorithm checks that p can still be in the slot, in
particular, that p is not required to be false at the same slot



a1 a2 a3 a4 a5 a6 a7

a4 a5 a6

a2 a3 a4 a5 a6 a7

a1 a2 a3 a4 a5 a6 a7T0

T2

T1

T4

T3

plan

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5 a6

a1 a2 a3 a4 a5 a6 a7

T0

T2

T1

T4T3

T0 ⇢ T1 T2
T1 ⇢ T3 T4
T2 ⇢ a2 a7
T3 ⇢ a1 a3 a5
T4 ⇢ a4 a6

Figure 1: Example of parsing-based plan verification/recognition (the right side shows the decomposition tree with the decom-
position rules above it; the left side shows the tasks with timelines and filled slots)

(line 26). Algorithm 2 repeatedly checks the constraints
from methods.

The new plan verification algorithm (Algorithm 1) han-
dles the method constraints more efficiently as it uses the
complete plan with states to check them. Moreover, the
propagation of states is run just once in Algorithm 1 (lines 2-
8), while Algorithm 2 runs it repeatedly each time the task
is composed from subtasks. Hence, each constraint is ver-
ified just once in Algorithm 1, when a new task is com-
posed. In particular, the constraint between({a1}, {a3}, p)
is verified with respect to the states when task T3 is intro-
duced. Otherwise, both Algorithm 1 and Algorithm 2 derive
the tasks in the same order (if the decomposition methods
are explored in the same order). Instead of timelines, Al-
gorithm 1 uses the Boolean vector I to identify actions be-
longing to each task. For example, for task T3 the vector
is [1, 0, 1, 0, 1, 0, 0] and for task T4 it is [0, 0, 0, 1, 0, 1, 0].
When composing task T1 from T3 and T4 the vectors are
merged to get [1, 0, 1, 1, 1, 1, 0] (see the loop at line 17). No-
tice that the vector always spans the whole plan, while the
timelines start at the first action and finish with the last ac-
tion of the task (and hence the same timeline can be used for
different plan lengths).

Assume now that only plan prefix consisting of
a1, a2, . . . , a6 is given. The plan recognition algorithm (Al-
gorithm 2) will first derive tasks T3 and T4 only. Specifically,
task T2 cannot be derived yet as action a7 is not in the plan.
In the second iteration, the algorithm will derive task T1 by
merging tasks T3 and T4, exactly as we described above. As
no more tasks can be derived, the inner loop finishes and the
algorithm attempts to add actions that can follow the prefix

a1, a2, . . . , a6 (line 33). Let action a7 be added at the 7-th
position in the plan; actually all actions, that can follow the
prefix, will be added as separate primitive tasks at position 7.
Now the inner loop is restarted and task T2 will be added in
its first iteration. In the next iteration, task T0 will be added
and this will be the final task as it satisfies the condition at
line 30.

Assume, hypothetically, that the verification Algorithm 1
is used there. When it is applied to plan a1, a2, . . . , a6, the
algorithm derives tasks T1, T3, T4 and fails as no task spans
the whole plan and no more tasks can be derived. After
adding action a7, the algorithm will start from scratch as
the states might be different due to propagating some propo-
sitions from the precondition of a7. Hence, the algorithm
needs to derive the tasks T1, T3, T4 again and it will also add
tasks T0, T2 and then it will finish with success.

It may happen, that action a5 can also be consistently
placed to position 7. Then, we can derive two versions of
task T3, one with the vector [1, 0, 1, 0, 1, 0, 0] and the other
one with vector [1, 0, 1, 0, 0, 0, 1]. Let us denote the sec-
ond version as T ′3. Both versions can then be merged with
task T4 to get two versions of task T1, one with the vector
[1, 0, 1, 1, 1, 1, 0] and one with the vector [1, 0, 1, 1, 0, 1, 1].
Let us denote the second version as T ′1. The Algorithm 1
will stop there as no more tasks can be derived. Notice that
tasks T1, T3, T4 were derived repeatedly. If we try a5 earlier
than a7 at position 7 then tasks T1, T3, T4 will actually be
generated three times before the algorithm finds a complete
plan. On the contrary, Algorithm 2 will add actions a5 and
a7 together as two possible primitive tasks at position 7. It
will use tasks T1, T3, T4 from the previous iteration, it will



add tasks T ′1, T
′
3 as they can be composed from the primitive

tasks (using the last a5), it will also add tasks T0, T2 (using
the last a7), and will finish with success. Notice that T ′1 can-
not be merged with T2 to get a new T ′0 as T ′1 has action a5
at the 7-th slot while T2 has a7 there so the timelines cannot
be merged (line 15 of Algorithm 2).

Possible Extensions
To describe the verification and recognition algorithms, we
used a “pure” model of HTN. Specifically, each task de-
composes to a non-empty set of sub-tasks, meaning that
the right-hand side of each derivation rule is non-empty. In
some practical applications, it might be useful to also use de-
composition methods with empty task networks. Imagine a
task describing that some agent moves to a specific location.
This task can be full-filled by action move so there will be a
method, where the task decomposes to this action. However,
if the agent is already at the specific location then no action
is necessary and the task is already full-filled. This can be
modeled by an alternative method that decomposes the task
to an empty task network with the precondition (before) con-
straint specifying that the agent is at the required location.
Such empty methods can be compiled away, for example,
using the techniques for converting grammars to a normal
form. Nevertheless, the presented verification and recogni-
tion algorithms can also be extended to handle derivation
rules with empty right-hand side. We will demonstrate this
extension for the verification Algorithm 1. Note, that tasks
that decompose to an empty task network are treated in a
similar way as tasks that decompose directly to actions, that
is, they are added in the initialization stage (line 9). We only
need to identify the proper location indexes of these tasks
and this is where the before constraint can be used. Assume
the following method with empty right-hand side:

T → ∅ [before(∅, p)].
First, the constraint before(U, p) has originally been de-

fined for a non-empty subset U of tasks in the task net-
work, but the task network is now empty so, in this spe-
cial case, we allow U = ∅. Second, the verification algo-
rithm already calculated all the states Si between the ac-
tions. The precondition constraint tells us, where the task
T can be inserted. Specifically, if p ∈ Si, that is, the precon-
dition constraint holds at state Si, then we add a primitive
task (T, i + 0.1, i + 0.1, I) to the initial set of tasks new
(line 9 of Algorithm 1), where the Boolean vector I consists
of zeros only (the task T does not decompose to any action).
We use the (i + 0.1) index as the task T is sitting between
actions Ai and Ai+1 and we need to ensure that possible
precedence constraints involving T work fine. The rest of the
verification algorithm remains without further modification,
we only need to properly round the indexes when checking
the state constraints.

The second extension, that we are going to discuss, is
about the top task to be recognized/verified. Recall, that nei-
ther of the proposed techniques requires a top task to be
given at input. In some applications, a task network with
constraints is given as input and the plan should corre-
spond to this network. This can be trivially handled by the

proposed techniques by introducing, to the HTN model, a
dummy root task that decomposes to this task network and
modifying the terminal conditions of the algorithms to look
for this specific root task rather than for any task (line 27
of Algorithm 1 and line 30 of Algorithm 2). However, what
if the plan consists of interleaved sub-plans obtained from
several tasks that are not known a priori? This situation can
also be handled by modifying the termination condition. In-
stead of looking for a single task that spans the whole plan,
we need to look for a set of already recognized tasks such
that they do not share any action and, together, they span the
whole plan. Note, however, that such a test can be computa-
tionally expensive if implemented in a naive way by check-
ing all subsets of tasks.

Conclusions
In the paper, we proposed two versions of a parsing tech-
nique for verification of HTN plans and for recognition of
HTN plans. To the best of our knowledge, these are the
only approaches that fully cover HTN, including all de-
composition constraints. These approaches can be applied
to solve both verification and recognition problems, but as
we demonstrated using an example, each of them has some
deficiencies when applied to the other problem.

The next obvious step is implementation and empirical
evaluation of both techniques. There is no doubt that the
novel verification algorithm is faster than the previous ap-
proaches (Behnke, Höller, and Biundo 2017) and (Barták,
Maillard, and Cardoso 2018). The open question is how
much faster it will be, in particular for large plans. The ef-
ficiency of the novel plan recognition technique in compar-
ison to existing compilation technique (Höller et al. 2018)
is less clear as both techniques use different approaches,
bottom-up vs. top-down. The disadvantage of the compila-
tion technique is that it needs to re-generate the known plan
prefix, but it can exploit heuristics to remove some over-
head there. On the contrary, the parsing techniques looks
more like generate-and-test, but controlled by the hierarchi-
cal structure. It also guarantees finding the shortest extension
of plan prefix.

Acknowledgements Research is supported by the Czech
Science Foundation under the project P103-18-07252S.

References
[Avrahami-Zilberbrand and Kaminka 2005] Avrahami-
Zilberbrand, D., and Kaminka, G. A. 2005. Fast and
complete symbolic plan recognition. In Proceedings
of the 19th International Joint Conference on Artificial
Intelligence, IJCAI’05, 653–658. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

[Barták and Maillard 2017] Barták, R., and Maillard, A.
2017. Attribute grammars with set attributes and global con-
straints as a unifying framework for planning domain mod-
els. In Proceedings of the 19th International Symposium on
Principles and Practice of Declarative Programming, PPDP
’17, 39–48. New York, NY, USA: ACM.



[Barták, Maillard, and Cardoso 2018] Barták, R.; Maillard,
A.; and Cardoso, R. C. 2018. Validation of hierarchical
plans via parsing of attribute grammars. In ICAPS, 11–19.
AAAI Press.

[Behnke, Höller, and Biundo 2015] Behnke, G.; Höller, D.;
and Biundo, S. 2015. On the complexity of HTN plan ver-
ification and its implications for plan recognition. In Braf-
man, R. I.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,
eds., Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2015,
Jerusalem, Israel, June 7-11, 2015., 25–33. AAAI Press.

[Behnke, Höller, and Biundo 2017] Behnke, G.; Höller, D.;
and Biundo, S. 2017. This is a solution! (... but is it though?)
- verifying solutions of hierarchical planning problems. In
Barbulescu, L.; Frank, J.; Mausam; and Smith, S. F., eds.,
Proceedings of the Twenty-Seventh International Confer-
ence on Automated Planning and Scheduling, ICAPS 2017,
Pittsburgh, Pennsylvania, USA, June 18-23, 2017., 20–28.
AAAI Press.

[Blum and Furst 1997] Blum, A. L., and Furst, M. L. 1997.
Fast planning through planning graph analysis. Artificial In-
telligence 90(1):281 – 300.

[Erol, Hendler, and Nau 1996] Erol, K.; Hendler, J. A.; and
Nau, D. S. 1996. Complexity Results for HTN Planning.
Ann. Math. Artif. Intell. 18(1):69–93.

[Fikes and Nilsson 1971] Fikes, R. E., and Nilsson, N. J.
1971. STRIPS: A new approach to the application of the-
orem proving to problem solving. In Proceedings of the 2nd
international joint conference on Artificial intelligence, IJ-
CAI’71, 608–620.

[Geib and Goldman 2009] Geib, C. W., and Goldman, R. P.
2009. A probabilistic plan recognition algorithm based on
plan tree grammars. Artif. Intell. 173(11):1101–1132.

[Geib, Maraist, and Goldman 2008] Geib, C. W.; Maraist, J.;
and Goldman, R. P. 2008. A new probabilistic plan recogni-
tion algorithm based on string rewriting. In ICAPS, 91–98.
AAAI.

[Höller et al. 2014] Höller, D.; Behnke, G.; Bercher, P.; and
Biundo, S. 2014. Language classification of hierarchi-
cal planning problems. In Schaub, T.; Friedrich, G.; and
O’Sullivan, B., eds., ECAI 2014 - 21st European Conference
on Artificial Intelligence, 18-22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014), volume 263 of Frontiers in Artificial
Intelligence and Applications, 447–452. IOS Press.

[Höller et al. 2018] Höller, D.; Behnke, G.; Bercher, P.; and
Biundo, S. 2018. Plan and goal recognition as HTN plan-
ning. In ICTAI, 466–473. IEEE.

[Kabanza et al. 2013] Kabanza, F.; Filion, J.; Benaskeur,
A. R.; and Irandoust, H. 2013. Controlling the hypothe-
sis space in probabilistic plan recognition. In IJCAI, 2306–
2312. IJCAI/AAAI.

[Ramírez and Geffner 2003] Ramírez, M., and Geffner, H.
2003. Plan recognition as planning. In IJCAI.

[Vilain 1990] Vilain, M. 1990. Getting serious about pars-
ing plans: A grammatical analysis of plan recognition. In
Proceedings of the Eighth National Conference on Artificial
Intelligence - Volume 1, AAAI’90, 190–197. AAAI Press.


	Introduction
	Background on Planning
	Classical Planning
	Hierarchical Task Networks

	The Plan Verification Algorithm
	The Plan Recognition Algorithm
	Example
	Possible Extensions
	Conclusions

