Abstract

Hierarchical planning, in particular, Hierarchical Task Networks, was proposed as a method to describe plans by decomposition of tasks to sub-tasks until primitive tasks, actions, are obtained. Plan verification assumes a complete plan as input, and the objective is finding a task that decomposes to this plan. In plan recognition, a prefix of the plan is given and the objective is finding a task that decomposes to the (shortest) plan with the given prefix. This paper describes how to verify and recognize plans using a common method known from formal grammars, by parsing.

Introduction

Hierarchical planning is a practically important approach to automated planning based on encoding abstract plans as hierarchical task networks (HTNs) (Erol, Hendler, and Nau 1996). The network describes how compound tasks are decomposed, via decomposition methods, to sub-tasks and eventually to actions forming a plan. The decomposition methods may specify additional constraints among the sub-tasks such as partial ordering and causal links.

As of this writing, there exist only two systems for verifying if a given plan complies with the HTN model, that is, if a given sequence of actions can be obtained by decomposing some task. One system is based on transforming the verification problem to SAT (Behnke, Höller, and Biundo 2017) and the other system is using parsing of attribute grammars (Barták, Maillard, and Cardoso 2018). Only the parsing-based system supports HTN fully (the SAT-based system does not support the decomposition constraints).

Parsing became popular in solving the plan recognition problem (Vilain 1990) as researchers realized soon the similarity between hierarchical plans and formal grammars, specifically context-free grammars with parsing trees close to decomposition trees of HTNs. The plan recognition problem can be formulated as the problem of adding a sequence of actions after some observed partial plan such that the joint sequence of actions forms a complete plan generated from some task (more general formulations also exist). Hence plan recognition can be seen as a generalization of plan verification. There exist numerous approaches to plan recognition using parsing or string rewriting (Avrahami-Zilberbrand and Kaminka 2005; Geib, Maraist, and Goldman 2008; Geib and Goldman 2009; Kabanza et al. 2013), but they use hierarchical models that are weaker than HTNs. The languages defined by HTN planning problems (with partial-order, pre-conditions and effects) lie somewhere between context-free (CF) and context-sensitive (CS) languages (Höller et al. 2014) so to model HTNs, one needs to go beyond the CF grammars. Currently, the only grammar-based model that fully covers HTNs uses attribute grammars (Barták and Maillard 2017). Moreover, the expressivity of HTNs makes the plan recognition problem undecidable (Behnke, Höller, and Biundo 2015). At the moment, there is only one approach for HTN plan recognition. This approach relies on translating the plan recognition problem to a planning problem (Höller et al. 2018), which is a technique that was first introduced in (Ramírez and Geffner 2003).

In this paper, we focus on verification and recognition of HTN plans using parsing. The uniqueness of the proposed methods is that they cover full HTNs including task interleaving, partial order of sub-tasks, and other decomposition constraints (prevailing constraints, specifically). The methods are derived from the plan verification technique proposed in (Barták, Maillard, and Cardoso 2018).

There are two novel contributions of this paper. First, we will simplify the above mentioned verification technique by exploiting information about actions and states to improve practical efficiency of plan verification. Second, we will extend that technique to solve the plan (task) recognition problem. We will show that the verification algorithm can be much simpler and, hence, it is expected to be more efficient. For plan recognition, the method proposed in (Höller et al. 2018) can in principle support HTN fully, if a full HTN planner is used (which is not the case yet as prevailing conditions are not supported). However, like other plan recognition techniques it requires the top task (the goal) and the initial state to be specified as input. A practical difference of our methods is that they do not require information about possible top (root) tasks and an initial state as their input. This is particularly interesting for plan/task recognition, where existing methods require a set of candidate tasks (goals) to select from (in principle, they may use all tasks as candidates, but this makes them inefficient).
Background on Planning

In this paper, we work with classical STRIPS planning (Fikes and Nilsson 1971) that deals with sequences of actions transferring the world from a given initial state to a state satisfying certain goal conditions. World states are modelled as sets of propositions that are true in those states, and actions are modelled to change the validity of certain propositions.

Classical Planning

Formally, let P be a set of all propositions modelling properties of world states. Then a state $S \subseteq P$ is a set of propositions that are true in that state (every other proposition is false). Later, we will use the notation $S^+ = S$ to describe explicitly the valid propositions in the state S and $S^- = P \setminus S$ to describe explicitly the propositions not valid in the state S.

Each action a is described by three sets of propositions (B^+_a, A^+_a, A^-_a), where $B^+_a, A^+_a, A^-_a \subseteq P$, $A^+_a \cap A^-_a = \emptyset$. Set B^+_a describes positive preconditions of action a, that is, propositions that must be true right before the action a. Some modeling approaches also allow negative preconditions, but these preconditions can be compiled away. For simplicity reasons we assume positive preconditions only (the techniques presented in this paper can also be extended to cover negative preconditions directly). Action a is applicable to state S iff $B^+_a \subseteq S$. Sets A^+_a and A^-_a describe positive and negative effects of action a, that is, propositions that will become true and false in the state right after executing the action a. If an action a is applicable to state S then the state right after the action a is:

$$\gamma(S, a) = (S \setminus A^-_a) \cup A^+_a.$$ \hfill (1)

$\gamma(S, a)$ is undefined if an action a is not applicable to state S.

The classical planning problem, also called a STRIPS problem, consists of a set of actions A, a set of propositions S_0 called an initial state, and a set of goal propositions G^+ describing the propositions required to be true in the goal state (again, negative goal is not assumed as it can be compiled away). A solution to the planning problem is a sequence of actions a_1, a_2, \ldots, a_n such that $S = \gamma(\ldots \gamma(\gamma(S_0, a_1), a_2), \ldots, a_n)$ and $G^+ \subseteq S$. This sequence of actions is called a plan.

The plan verification problem is formulated as follows: given a sequence of actions a_1, a_2, \ldots, a_n, and goal propositions G^+, is there an initial state S_0 such that the sequence of actions forms a valid plan leading from S_0 to a goal state? In some formulations, the initial state might also be given as an input to the verification problem.

Hierarchical Task Networks

To simplify and speed up the planning process, several extensions of the basic STRIPS model were proposed to include some control knowledge. Hierarchical Task Networks (Erol, Hendler, and Nau 1996) were proposed as a planning domain modeling framework that includes control knowledge in the form of recipes on how to solve specific tasks. The recipe is represented as a task network, which is a set of sub-tasks to solve a given task together with the set of constraints between the sub-tasks. Let T be a compound task and $(\{T_1, \ldots, T_k\}, C)$ be a task network, where C are its constraints (see later). We can describe the decomposition method as a derivation (rewriting) rule:

$$T \rightarrow T_1, \ldots, T_k \mid C$$

The planning problem in HTN is specified by an initial state (the set of propositions that hold at the beginning) and by an initial task representing the goal. The compound tasks need to be decomposed via decomposition methods until a set of primitive tasks – actions – is obtained. Moreover, these actions need to be linearly ordered to satisfy all the constraints obtained during decompositions and the obtained plan – a linear sequence of actions – must be applicable to the initial state in the same sense as in classical planning.

We denote an action as a_i, where the index i means the order number of the action in the plan (each is the i-th action in the plan). The state right after the action a_i is denoted S_i; S_0 is the initial state. We denote the set of actions to which a task T decomposes as $act(T)$. If U is a set of tasks, we define $act(U) = \cup_{T \in U} act(T)$. The index of the first action in the decomposition of T is denoted $start(T)$, that is, $start(T) = \min\{i | a_i \in act(T)\}$. Similarly, $end(T)$ means the index of the last action in the decomposition of T, that is, $end(T) = \max\{i | a_i \in act(T)\}$.

We can now define formally the constraints C used in the decomposition methods. The constraints can be of the following three types:

- $t_1 \prec t_2$: a precedence constraint meaning that in every plan the last action obtained from task t_1 is before the first action obtained from task t_2, $end(t_1) < start(t_2)$.
- $before(U, p)$: a precondition constraint meaning that in every plan the proposition p holds in the state right before the first action obtained from tasks U, $p \in S_{start(U) - 1}$.
- $between(U, V, p)$: a prevailing condition meaning that in every plan the proposition p holds in all the states between the last action obtained from tasks U and the first action obtained from tasks V, $\forall i \in \{end(U), \ldots, start(V) - 1\}, p \in S_i$.

The HTN plan verification problem is formulated as follows: given a sequence of actions a_1, a_2, \ldots, a_n, is there an initial state S_0 such that the sequence of actions is a valid plan applicable to S_0 and obtained from some compound task? Again, the initial state might also be given as an input in some formulations.

The HTN plan recognition problem is formulated as follows: given a sequence of actions a_1, a_2, \ldots, a_n, is there an initial state S_0 such that the sequence of actions is a valid plan applicable to S_0 and obtained from some compound task? In other words, if the given actions form a prefix of some plan obtained from some compound task T. We will be looking for such a task T minimizing the value m (the number of added actions to complete the plan). If only the task T is of interest (not the actions a_{n+1}, \ldots, a_{n+m}) then it can be referred to as the task (goal) recognition problem.
The Plan Verification Algorithm

The existing parsing-based HTN verification algorithm (Barták, Maillard, and Cardoso 2018) uses a complex structure of a timeline. This structure maintains the decomposition constraints so that they can be checked when composing sub-tasks to a compound task. We propose a simplified verification method that does not require this complex structure, as it checks all the constraints directly in the input plan. This makes the algorithm easier to implement and also potentially faster. Another difference is that we do not assume that the initial state is passed as input, instead we set the initial state as the preconditions of the first action in the plan. However, adding support for it is trivial as we would only have to add the initial state that was given as input to the preconditions of the first action in the plan.

The novel hierarchical plan verification algorithm is shown in Algorithm 1. It first calculates all intermediate states (lines 2-8) by propagating information about propositions in action preconditions and effects. At this stage, we actually solve the classical plan validation problem as the algorithm verifies that the given plan is causally consistent (action precondition is provided by previous actions or by the initial state). The original verification algorithm did this calculation repeatedly each time it composed a compound task. It is easy to show that every action is applicable, that is, \(B^+_i \subseteq S_i \) (lines 2 and 4). Next, we will show that \(\gamma(S_i, a_{i+1}) = S_{i+1} = (S_i \backslash A^-_{a_{i+1}}) \cup A^+_{a_{i+1}} \) Left-to-right propagation (line 4) ensures that \((S_i \backslash A^-_{a_{i+1}}) \cup A^+_{a_{i+1}} \subseteq S_{i+1} \). Right-to-left propagation (line 6) ensures that preconditions are propagated to earlier states if not provided by the action at a given position. In other words, if there is a proposition \(p \in S_{i+1} \) then \(p \) should be at \(S_i \). Line 6 adds such propositions to \(S_i \) so it holds \((S_i \backslash A^-_{a_{i+1}}) \cup A^+_{a_{i+1}} = S_{i+1} \). However, if \(p \in A^-_{a_{i+1}} \) then \(p \) would be deleted by the action \(a_{i+1} \), which means that the plan is not valid. The algorithm detects this at lines 7-8.

When the states are calculated, we apply a parsing algorithm to compose tasks. Parsing starts with the set of primitive tasks (line 9), each corresponding to an action from the input plan. For each task \(T \), we keep a data structure describing the set \(\text{act}(T) \), that is, the set of actions to which the task decomposes. We use a Boolean vector \(I \) of the same size as the plan to describe this set; \(a_i \in \text{act}(T) \) \(\iff I(i) = 1 \). To simplify checks of decomposition constraints, we also keep information about the index of first and last actions from \(\text{act}(T) \). Together, the task is represented using a quadruplet \((T, b, e, I)\) in which \(T \) is a task, \(b \) is the index in the plan of the first action generated by \(T \), \(e \) is the index in the plan of the last action generated by \(T \) (we say that \([i, j]\) represents the interval of actions over which \(T \) spans), and \(I \) is a Boolean vector as described above.

The algorithm applies each decomposition rule to compose a new task from already known sub-tasks (line 12). The composition consists of merging the sub-tasks, when we check that every action in the decomposition is obtained from a single sub-task (line 20), that is, \(\text{act}(T_0) = \bigcup_{j=1}^k \text{act}(T_j) \) and \(\forall i \neq j : \text{act}(T_i) \cap \text{act}(T_j) = \emptyset \). We also check all the decomposition constraints; the pseudo-code is a direct rewriting of constraint definitions. If all tests pass, the new task is added to a set of tasks (line 25). Then we know that the task decomposes to actions, which form a subsequence (not necessarily continuous) of the plan to be verified. The process is repeated until a task that decomposes to all actions is obtained (line 27) or no new task can be composed (line 10). The algorithm is sound as the returned task decomposes to all actions in the input plan. If the algorithm finishes with the value false then no other task can be derived. As there is a finite number of possible tasks, the algorithm has to finish, so it is complete.

Algorithm 1: Parsing-based HTN plan verification

Function `VERIFYPLAN`

1. \(S_0 \leftarrow B^+_a \)
2. for \(i = 1 \) to \(n \) do
 3. \(S_i \leftarrow B^+_a \cup (S_i-1 \backslash A^-_a) \cup A^+_a \)
4. for \(i = n-1 \) down to 0 do
 5. \(S_i \leftarrow S_i \cup (S_i+1 \backslash A^+_a) \)
6. if \(S_i \cap A^-_a \neq \emptyset \) then
 7. return false

9. \(sp \leftarrow \emptyset; \text{new} \leftarrow \emptyset \)
10. for each decomposition method \(R \) of the form \(T_0 \rightarrow T_1, ..., T_k \) \(\preceq, \text{pre}, \text{btw} \) such that \(\{ (T_j, b_j, e_j, I_j) | j \in \text{Ikt} \} \subseteq sp \) do
 11. if \(\exists (i, j) \in \text{Ikt} : -(e_i < b_j) \) then
 12. break
 13. \(b_0 \leftarrow \min \{ b_j | j \in \text{Ikt} \} \)
 14. \(e_0 \leftarrow \max \{ e_j | j \in \text{Ikt} \} \)
 15. for \(i = / \) to \(n \) do
 16. \(I_0(i) \leftarrow \sum_{j=1}^k I_j(i) \)
 17. if \(I_0(i) > 1 \) then
 18. break
 19. if \(\exists (U, p) \in \text{pre} : p \notin S_{\min(b_j \in V) - 1} \) then
 20. break
 21. if \(\exists (U, V, p) \in \text{btw} : \exists i \in \max \{ e_j | j \in U \}, \min \{ b_j | j \in V \} - 1 : p \notin S_i \) then
 22. break
 23. new \leftarrow new \cup \{ (T_0, b_0, e_0, I_0) \}
 24. if \(\forall k, I_0(k) = 1 \) then
 25. return true

26. return false
The Plan Recognition Algorithm

Any plan verification algorithm, for example, the one from the previous section, can be extended to plan recognition by feeding the verification algorithm with actions a_1, \ldots, a_{n+k}, where we progressively increase k. The actions a_1, \ldots, a_n are given as an input, while the actions a_{n+1}, \ldots, a_{n+k} need to be generated (planned). However, this generate-and-verify approach would be inefficient for larger k as it requires exploration of all valid sequences of actions with the prefix a_1, \ldots, a_n. Assume that there could be 5 actions at the position $n+1$ and 6 actions at the position $n+2$. Then the generate-and-verify approach explores up to 30 plans (not every action at the position $n+2$ could follow every action at the position $n+1$) and for each plan the verification part starts from scratch as the plans are different.

This is where the verification algorithm from (Barták, Maillard, and Cardoso 2018) can be used as it does not require exactly one action at each position. The algorithm stores actions (sub-tasks) independently and only when it combines them to form a new task, it generates the states between the actions and checks the constraints for them. This resembles the idea of the Graphplan algorithm (Blum and Furst 1997). There are also sets of candidate actions for each position in the plan and the plan-extraction stage of the algorithm selects some of them to form a causally valid plan. We use compound tasks together with their decomposition constraints to select and combine the actions (we do not use parallel actions in the plan).

The algorithm from (Barták, Maillard, and Cardoso 2018) extended to the plan recognition problem is shown in Algorithm 2. It starts with actions a_1, \ldots, a_n (line 2) and it finds all compound tasks that decompose to subsets of these actions (lines 4-30). This inner while-loop is taken from (Barták, Maillard, and Cardoso 2018), we only syntactically modified it to highlight the similarity with the verification algorithm from the previous section. If a task that decomposes to all current actions is found (line 30) then we are done. This is the goal task that we looked for and its timeline describes the recognized plan. Otherwise, we add all primitive tasks corresponding to possible actions at position $n+1$ (line 33). Note that these are not parallel actions, the algorithm selects exactly one of them for the plan.

Now, the parsing algorithm continues as it may compose new tasks that include one of those recently added primitive tasks. Notice that the algorithm uses all composed tasks from previous iterations in succeeding iterations so it does not start from scratch when new actions are added. This process is repeated until the goal task is found. The algorithm is clearly sound as the task found is the task that decomposes to the shortest plan with a given prefix. This goes from the soundness and completeness of the verification algorithm (in particular, no task that decomposes to a shorter plan exists). The algorithm is semi-complete as if there exists a plan with the length $n+k$ and with a given prefix, the algorithm will eventually find it at the $(k+1)$-th iteration. If no plan with a given prefix exists then the algorithm will not stop. However, recall that the plan recognition problem is undecidable (Behnke, Höller, and Biundo 2015) so any plan recognition approach suffers from this deficiency.

Data: a plan $P = (a_1, \ldots, a_n)$, A_i is a primitive task corresponding to action a_i, and a set of decomposition methods

Result: a Task that decomposes to a plan with prefix P

```
1 Function RECOGNIZEPLAN
2    new ← \{(A_i, i, \{(B^+_a, \emptyset, a_i, A^+_{a_i}, A^-_{a_i})\})|i ∈ \{1, \ldots, n\}\};
3    sp ← \emptyset; l ← n;
4    while new ≠ \emptyset do
5        sp ← sp ∪ new; new ← \emptyset;
6        foreach decomposition method R of the form $T_0 → T_1, \ldots, T_k[\emptyset, \text{pre}, \text{btw}]$ such that $\{(T_i, t_i, \emptyset)|j ∈ \{1, \ldots, k\}\} ⊆ sp$
7            if $\exists (i, j) \in \emptyset (e_i < b_j)$ then
8                break
9            b0 ← min\{b_j|j ∈ \{1, \ldots, k\}\}
10           e0 ← max\{e_j|j ∈ \{1, \ldots, k\}\}
11           tl ← \{(\emptyset, \emptyset, \emptyset, \emptyset)|i ∈ \{b0, \ldots, e0\}\};
12           for $j = 1$ to $k$: $i = b_j$ to $e_j$ do
13                (Pre^+_1, Pre^-_1, A_1, \text{Post}^+_1, \text{Post}^-_1), \in tl
14                (Pre^+_2, Pre^-_2, A_2, \text{Post}^+_2, \text{Post}^-_2), \in tl
15                if $A_1 ≠ empty$, $A_2 ≠ empty$ then
16                    break
17                Pre^+_1 ← Pre^+_1 ⊕ Pre^+_2
18                Pre^-_1 ← Pre^-_1 ⊕ Pre^-_2
19                Post^+_1 ← Post^+_1 ⊕ Post^+_2
20                Post^-_1 ← Post^-_1 ⊕ Post^-_2
21                if $A_1 = empty$ then
22                    $A_1 ← A_2$
23                APPLYPRE(tl, \text{pre});
24                APPLYBTW(tl, \text{btw});
25                PROPAGATE(tl, \text{btw}, c_0 - 1);
26                if $\exists (\text{Pre}^+, \text{Pre}^-, A, \text{Post}^+, \text{Post}^-) \in tl$ :
27                    $\text{Pre}^+ ∩ \text{Pre}^- ≠ \emptyset$ then
28                        break
29                        new ← new ∪ \{(T_0, b_0, c_0, tl)\};
30                        if $b_0 = 0, c_0 = l, \forall (\ldots, a_j, \ldots) \in tl$ :
31                            $a_j ≠ empty$ then
32                                return $(T_0, tl)$
33                            l ← l + 1;
34                        new ← \{(A, l, l, \{(B^+_a, \emptyset, a, A^+_{a}, A^-_{a})\})|a \text{ action can be at position } l; A \text{ is a primitive task for } a\}$
35                        goto 4
```

Algorithm 2: Parsing-based HTN plan recognition

The algorithm maintains a timeline for each compound task to verify all the constraints. This is the major difference from the above verification algorithm that points to the original plan. This timeline has been introduced in (Barták, Maillard, and Cardoso 2018), where all technical details can be found. We include a short description to make the paper self-contained. A timeline is an ordered sequence of slots, where each slot describes an action, its effects, and the state right
before the action. For task T, the actions in slots are exactly the actions from $act(T)$. Both effects and states are modelled using two sets of propositions, $Post^+$ and $Post^-$ modeling positive and negative effects of the action and Pre^+ and Pre^- modeling propositions that must and must not be the true in the state right before the action. Two sets are used as the state is specified only partially and propositions are added to it during propagation so it is necessary to keep information about propositions that must not be true in the state.

The timeline always spans from the first to the last action of the task. Due to interleaving of tasks (actions from one task might be located between the actions of another task in the plan), some slots of the task might be empty. These empty slots describe “space” for actions of other tasks. When we are merging sub-tasks (lines 12-22), we merge their timelines, slot by slot. This is how the actions from sub-tasks are put together in a compound task. Notice, specifically, that it is not allowed for two merged sub-tasks to have actions in the same slot (line 15). This ensures that each action is generated by exactly one task.

Algorithm 3: Apply before constraints

Data: a set of slots $slots$, a set of before constraints

Result: an updated set of slots

1. **Function** APPLYPRE($slots$, pre)

   ```
   foreach $(U, l) \in pre$
   
   id = \min\{b_j | j \in U\};
   
   \begin{align*}
   Pre^+_{id} &\leftarrow Pre^+_{id} \cup \{p | l = p\}; \\
   Pre^-_{id} &\leftarrow Pre^-_{id} \cup \{p | l = \neg p\}
   \end{align*}
   ```

Algorithm 3: Apply before constraints

Algorithm 4: Apply between constraints

Data: a set of slots $slots$, a set of between constraints

Result: an updated set of slots

1. **Function** APPLYBETWEEN($slots$, $between$)

   ```
   foreach $(U, V, l) \in between$
   
   s = \max\{e_i | i \in U\} + 1;
   
   e = \min\{b_i | i \in V\};
   
   for $id = s$ to $e$
   
   \begin{align*}
   Pre^+_{id} &\leftarrow Pre^+_{id} \cup \{p | l = p\}; \\
   Pre^-_{id} &\leftarrow Pre^-_{id} \cup \{p | l = \neg p\}
   \end{align*}
   ```

Algorithm 4: Apply between constraints

Propositions from before and between constraints are “stored” in the corresponding slots (Algorithms 3 and 4) and their consistency is checked each time the slots are modified (line 26 of Algorithm 2). Consistency means that no proposition is true and false at the same state. Information between subsequent slots is propagated similarly to the verification algorithm (see Algorithm 5). Positive and negative propositions are now propagated separately taking in account empty slots. If there is no action in the slot then effects are unknown and hence propositions cannot be propagated.

Algorithm 5: Propagate

Data: a set of slots $slots$

Result: an updated set of slots

1. **Function** PROPAGATE($slots$, lb, ub)

   ```
   /* Propagation to the right */
   for $i = lb$ to $ub$ do
   
   if $a_i \neq$ empty then
   
   \begin{align*}
   Pre^+_{i+1} &\leftarrow Pre^+_{i+1} \cup (Pre^+_{i} \setminus Post^-_{i}) \cup Post^+_i; \\
   Pre^-_{i+1} &\leftarrow Pre^-_{i+1} \cup (Pre^-_{i} \setminus Post^+_i) \cup Post^-_i
   \end{align*}
   
   /* Propagation to the left */
   for $i = ub$ down to $lb$ do
   
   if $a_i \neq$ empty then
   
   \begin{align*}
   Pre^+_i &\leftarrow Pre^+_i \cup (Pre^+_i \setminus Post^+_i); \\
   Pre^-_i &\leftarrow Pre^-_i \cup (Pre^-_i \setminus Post^-_i)
   \end{align*}
   ```

Algorithm 5: Propagate

A unique property of the proposed techniques is handling task interleaving – actions generated from different tasks may interleave to form a plan. This is the property that parsing techniques based on CF grammars cannot handle.

The example in Figure 1 demonstrates how the timelines are filled by actions as the tasks are being derived/composed from the plan. Assume, first, that a complete plan consisting of actions a_1, a_2, \ldots, a_7 is given. The plan recognition algorithm can also handle such situations, when a complete plan is given, so it can serve for plan verification too (the verification variant of Algorithm 2 should stop with a failure at line 33 as no action can be added during plan verification). In the first iteration, the algorithm will compose tasks T_2, T_3, T_4 as these tasks decompose to actions directly. Notice, how the timelines with empty slots are constructed. We know where the empty slots are located in the plan. In the second iteration, only the task T_1 is composed from already known tasks T_3 and T_4. Notice how the slots from these tasks are copied to the slots of a new timeline for T_1. On the contrary, the slots in original tasks remain untouched as these tasks may merge with other tasks to form alternative decomposition trees (see the discussion below). Finally, in the third iteration, tasks T_1 and T_2 are merged to a new task T_0 and the algorithm stops there as a complete timeline that fully spans the plan is obtained (condition at line 30 of Algorithm 2 is satisfied).

Let us assume that there is a constraint $between(\{a_1\}, \{a_3\}, p)$ in the decomposition method for T_3. For example, this constraint may model a causal link between a_1 and a_3. When composing the task T_3, the second slot of its timeline remains empty, but the proposition p is placed there (see Algorithm 4). This proposition is then copied to the timeline of task T_1, when merging the timelines (line 17 of Algorithm 2), and finally also to the timeline of task T_0. During each merge operation, the algorithm checks that p can still be in the slot, in particular, that p is not required to be false at the same slot.
In the second iteration, the algorithm will derive task T_1. Algorithm 2 repeatedly checks the constraints from methods.

The new plan verification algorithm (Algorithm 1) handles the method constraints more efficiently as it uses the complete plan with states to check them. Moreover, the propagation of states is run just once in Algorithm 1 (lines 2-8), while Algorithm 2 runs it repeatedly each time the task is composed from subtasks. Hence, each constraint is verified just once in Algorithm 1, when a new task is composed. In particular, the constraint between \{a_1\}, \{a_2\}, p is verified with respect to the states when task T_3 is introduced. Otherwise, both Algorithm 1 and Algorithm 2 derive the tasks in the same order (if the decomposition methods are explored in the same order). Instead of timelines, Algorithm 1 uses the Boolean vector I to identify actions belonging to each task. For example, for task T_3 the vector is $[1, 0, 1, 0, 1, 0, 0]$ and for task T_2 it is $[0, 0, 0, 1, 0, 0, 1]$. When composing task T_1 from T_3 and T_4 the vectors are merged to get $[1, 0, 1, 1, 1, 1, 0]$ (see the loop at line 17). Notice that the vector always spans the whole plan, while the timelines start at the first action and finish with the last action of the task (and hence the same timeline can be used for different plan lengths).

Assume now that only plan prefix consisting of a_1, a_2, \ldots, a_6 is given. The plan recognition algorithm (Algorithm 2) will first derive tasks T_3 and T_4 only. Specifically, task T_2 cannot be derived yet as action a_7 is not in the plan. In the second iteration, the algorithm will derive task T_1 by merging tasks T_3 and T_4, exactly as we described above. As no more tasks can be derived, the inner loop finishes and the algorithm attempts to add actions that can follow the prefix a_1, a_2, \ldots, a_6 (line 33). Let action a_7 be added at the 7-th position in the plan; actually all actions, that can follow the prefix, will be added as separate primitive tasks at position 7. Now the inner loop is restarted and task T_2 will be added in its first iteration. In the next iteration, task T_0 will be added and this will be the final task as it satisfies the condition at line 30.

Assume, hypothetically, that the verification Algorithm 1 is used there. When it is applied to plan a_1, a_2, \ldots, a_6, the algorithm derives tasks T_1, T_3, T_4 and fails as no task spans the whole plan and no more tasks can be derived. After adding action a_7, the algorithm will start from scratch as the states might be different due to propagating some propositions from the precondition of a_7. Hence, the algorithm needs to derive the tasks T_1, T_3, T_4 again and it will also add tasks T_0, T_2 and then it will finish with success.

It may happen, that action a_5 can also be consistently placed to position 7. Then, we can derive two versions of task T_3, one with the vector $[1, 0, 1, 0, 1, 0, 0]$ and the other one with vector $[1, 0, 0, 1, 0, 0, 0]$. Let us denote the second version as T_3'. Both versions can then be merged with task T_4 to get two versions of task T_1, one with the vector $[1, 0, 1, 1, 1, 1, 0]$ and one with the vector $[1, 0, 1, 0, 1, 0, 1]$. Let us denote the second version as T_1'. The Algorithm 1 will stop there as no more tasks can be derived. Notice that tasks T_1, T_3, T_4 were derived repeatedly. If we try a_5 earlier than a_7 at position 7 then tasks T_1, T_3, T_4 will actually be generated three times before the algorithm finds a complete plan. On the contrary, Algorithm 2 will add actions a_5 and a_7 together as two possible primitive tasks at position 7. It will use tasks T_1, T_3, T_4 from the previous iteration, it will

Figure 1: Example of parsing-based plan verification/recognition (the right side shows the decomposition tree with the decomposition rules above it; the left side shows the tasks with timelines and filled slots)
We use the actions of zeros only (the task correspond to this network. This can be trivially handled by the constraints is given as input and the plan should correspond to the initial set of tasks. The precondition constraint tells us, where the task is sitting between the actions. The precondition constraint holds at state S_i, then we add a primitive task $\langle T, i + 0.1, i + 0.1, I \rangle$ to the initial set of tasks new (line 9 of Algorithm 1), where the Boolean vector I consists of zeros only (the task T does not decompose to any action). We use the $(i + 0.1)$ index as the task T is sitting between actions A_i and A_{i+1} and we need to ensure that possible precedence constraints involving T work fine. The rest of the verification algorithm remains without further modification, we only need to properly round the indexes when checking the state constraints.

The second extension, that we are going to discuss, is about the top task to be recognized/verified. Recall, that neither of the proposed techniques requires a top task to be given at input. In some applications, a task network with constraints is given as input and the plan should correspond to this network. This can be trivially handled by the proposed techniques by introducing, to the HTN model, a dummy root task that decomposes to this task network and modifying the terminal conditions of the algorithms to look for this specific root task rather than for any task (line 27 of Algorithm 1 and line 30 of Algorithm 2). However, what if the plan consists of interleaved sub-plans obtained from several tasks that are not known a priori? This situation can also be handled by modifying the termination condition. Instead of looking for a single task that spans the whole plan, we need to look for a set of already recognized tasks such that they do not share any action and, together, they span the whole plan. Note, however, that such a test can be computationally expensive if implemented in a naive way by checking all subsets of tasks.

Possible Extensions

To describe the verification and recognition algorithms, we used a “pure” model of HTN. Specifically, each task decomposes to a non-empty set of sub-tasks, meaning that the right-hand side of each derivation rule is non-empty. In some practical applications, it might be useful to also use decomposition methods with empty task networks. Imagine a task describing that some agent moves to a specific location. This task can be filled by action move so there will be a method, where the task decomposes to this action. However, if the agent is already at the specific location then no action is necessary and the task is already full-filled. This can be modeled by an alternative method that decomposes the task to an empty task network with the precondition (before) constraint specifying that the agent is at the required location. Such empty methods can be compiled away, for example, using the techniques for converting grammars to a normal form. Nevertheless, the presented verification and recognition algorithms can also be extended to handle derivation rules with empty right-hand side. We will demonstrate this extension for the verification Algorithm 1. Note, that tasks that decompose to an empty task network are treated in a special case, we allow $U = \emptyset$. Second, the verification algorithm already calculated all the states S_i between the actions. The precondition constraint tells us, where the task T can be inserted. Specifically, if $p \in S_i$, that is, the precondition constraint holds at state S_i, then we add a primitive task $\langle T, i + 0.1, i + 0.1, I \rangle$ to the initial set of tasks new (line 9 of Algorithm 1), where the Boolean vector I consists of zeros only (the task T does not decompose to any action). We use the $(i + 0.1)$ index as the task T is sitting between actions A_i and A_{i+1} and we need to ensure that possible precedence constraints involving T work fine. The rest of the verification algorithm remains without further modification, we only need to properly round the indexes when checking the state constraints.

Conclusions

In the paper, we proposed two versions of a parsing technique for verification of HTN plans and for recognition of HTN plans. To the best of our knowledge, these are the only approaches that fully cover HTN, including all decomposition constraints. These approaches can be applied to solve both verification and recognition problems, but as we demonstrated using an example, each of them has some deficiencies when applied to the other problem.

The next obvious step is implementation and empirical evaluation of both techniques. There is no doubt that the novel verification algorithm is faster than the previous approaches (Behnke, Höller, and Biundo 2017) and (Barták, Maillard, and Cardoso 2018). The open question is how much faster it will be, in particular for large plans. The efficiency of the novel plan recognition technique in comparison to existing compilation technique (Höller et al. 2018) is less clear as both techniques use different approaches, bottom-up vs. top-down. The disadvantage of the compilation technique is that it needs to re-generate the known plan prefix, but it can exploit heuristics to remove some overhead head. On the contrary, the parsing techniques looks more like generate-and-test, but controlled by the hierarchical structure. It also guarantees finding the shortest extension of plan prefix.

Acknowledgements

Research is supported by the Czech Science Foundation under the project P103-18-07252S.

References

