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ABSTRACT

The difficulty of obtaining sufficient labeled data for supervised learning has mo-
tivated domain adaptation, in which a classifier is trained in one domain, source
domain, but operates in another, farget domain. Reducing domain discrepancy has
improved the performance, but it is hampered by the embedded features that do
not form clearly separable and aligned clusters. We address this issue by propagat-
ing labels using a manifold structure, and by enforcing cycle consistency to align
the clusters of features in each domain more closely. Specifically, we prove that
cycle consistency leads the embedded features distant from all but one clusters
if the source domain is ideally clustered. We additionally utilize more informa-
tion from approximated local manifold and pursue local manifold consistency for
more improvement. Results for various domain adaptation scenarios show tighter
clustering and an improvement in classification accuracy.

1 INTRODUCTION

Classifiers trained through supervised learning have many applications (Bahdanau et al.|[2015; Red-
mon et al.| [2016)), but it requires a great deal of labeled data, which may be impractical or too costly
to collect. Domain adaptation circumvents this problem by exploiting the labeled data available in
a closely related domain. We call the domain where the classifier will be used at, the target domain,
and assume that it only contains unlabeled data {x'}; and we call the closely related domain the
source domain and assume that it contains a significant amount of labeled data {z*, y*}.

Domain adaptation requires the source domain data to share discriminative features with the target
data (Pan et al., |2010). In spite of the common features, a classifier trained using only the source
data is unlikely to give satisfactory results in the target domain because of the difference between
two domains’ data distributions, called domain shift (Pan et al., 2010). This may be addressed by
fine-tuning on the target domain with a small set of labeled target data, but it tends to overfit to the
small labeled dataset (Csurkal, [2017)).

Another approach is to find discriminative features which are invariant between two domains by
reducing the distance between the feature distributions. For example, domain-adversarial neural
network (DANN) (Ganin et al., [2016) achieved remarkable result using generative adversarial net-
works (GANs) (Goodfellow et al.l 2014). However, this approach still has room to be improved.
Because the classifier is trained using labels from the source domain, the source features become
clustered, and they determine the decision boundary. It would be better if the embedded features
from the target domain formed similar clusters to the source features in class-level so that the deci-
sion boundary does not cross the target features. Methods which only reduce the distance between
two marginal distributions bring the features into general alignment, but clusters do not match satis-
factorily, as shown in Fig. As a consequence, the decision boundary is likely to cross the target
features, impairing accuracy.

In this work, we propose a novel domain adaptation method to align the manifolds of the source and
the target features in class-level, as shown in Fig. We first employ label propagation to evaluate
the relation between manifolds. Then, to align them, we reinforce the cycle consistency that is the
correspondence between the original labels in the source domain and the labels that are propagated
from the source to the target and back to the source domain. The cycle consistency draws features



Under review as a conference paper at ICLR 2020

- o = &
4 -
% 2 e
- - <
-~ % -
T S - -
s . " —
= . <. . ol . -
5.5 5% o
= z F -«." 2] - 0‘-"* il oge
*. e 2 ;"%,,. £
<
. e o
N
(a) DANN model (b) Our model

Figure 1: Features from the SVHN — MNIST scenario visualized using t-SNE. Circle and x markers
represent the source and target domain features, respectively. In (a), features from DANN model are
aligned but the fit is far from perfect, and the boundaries between classes are not clear. In contrast,
our model in (b) produces clearly aligned and clustered features.

from both domains that are near to each other to converge, and those that are far apart to diverge. The
proposed method exploits manifold information using label propagation which had not been taken
into account in other cycle consistency based methods. As a result, our approach outperforms other
baselines on various scenarios as demonstrated in Sec. |4} Moreover, the role of cycle consistency is
theoretically explained in Sec. [3.2]that it leads to aligned manifolds in class-level. To acquire more
manifold information within the limited number of mini-batch samples, we utilize local manifold
approximation and pursue local manifold consistency. In summary, our contributions are as follows:

e We propose a novel domain adaptation method which exploits global and local manifold
information to align class-level distributions of the source and the target.

e We analyze and demonstrate the benefit of the proposed method over the most similar
baseline, Associative domain adaptation (AssocDA) (Haeusser et al., 2017).

e We present the theoretical background on why the proposed cycle consistency leads to
class-level manifold alignment, bringing better result in domain adaptation.

e We conduct extensive experiments on various scenarios and achieve the state-of-the-art
performance.

2 RELATED WORK

Unsupervised Domain Adaptation It has been shown (Ben-David et al.| 2010) that the classifica-
tion error in the target domain is bounded by that in the source domain, the discrepancy between
the domains and the difference in labeling functions. Based on this analysis, a number of works
have endeavored to train domain-confusing features to minimize the discrepancy between the do-
mains (Ganin et al.} 2016 Long et al., [2013; 2015} |Tzeng et al., [2014; 2017). Maximum mean
discrepancy can be used (Long et al., 2015} [Tzeng et al.,|2014) as a measure of domain discrepancy.
In an approach inspired by GANs, a domain confusion can be converted (Ganin et al., 2016; [Tzeng
et al., 2017) into a minmax optimization.

While minimization of domain discrepancy can be effective in reducing the upper bound on the
error, it does not guarantee that the feature representation in the target domain is sufficiently dis-
criminative. To address this issue, several techniques had been proposed. Explicit separation of the
shared representation from the individual characteristics of each domain may enhance the accuracy
of the model (Bousmalis et al.,|2016). This approach has been implemented as a network with pri-
vate and shared encoders and a shared decoder. The centroid and prototype of each category can
be used for class-level alignment (Pinheirol 2018; |Xie et al.L [2018). An alternative to such feature-
space adaptation techniques is the direct conversion of target data to source data (Bousmalis et al.,
2017; Hoffman et al.,|[2018; Yoo et al.,|2017). Those proposed methods intend to transfer the style of
images to another domain while preserving the content. This performs well on datasets containing
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Figure 2: Overview of our method. The feature generator G projects the input data into the feature
space. The dashed line means weight sharing. The embedded source features f° and the target
features f! are organized into a graph and then used together to evaluate cycle consistency through
label propagation. The embedding classifier C learns from the source ground-truth labels. The
discriminator D determines whether features originated in the source or the target domain.

images that are similar at the pixel-level; they are problematic when the mapping between high-level
features and images is complicated (Tzeng et al., 2017).

Metric Learning Metric learning is learning an appropriate metric distance to measure the similarity
or dissimilarity between data (Bellet et al., [2013). Reducing the distances between similar data
and increasing the distances between distinct data has shown (Schroff et al., [2015) to improve the
accuracy of a classifier.

Metric learning is particularly beneficial when very little labeled data is available, which is the situ-
ation for domain adaptation. Sener et al.|(2016)) combined metric learning and unsupervised domain
adaptation with the enforcement of cycle consistency. In particular, the inner products of source
features and target features with the same label are maximized, and minimized between features
with different labels. AssocDA (Haeusser et al., 2017) enforces the feature alignment between the
source and target by forcing the two step round trip probability to be uniform in the same class and
to vanish between different classes.

Graph-based learning is closely related to metric learning, in that it achieves clustering using dis-
tance information. Label consistency (Zhou et al., [2004) is usually assumed, meaning that adjacent
data tend to have the same labels (Wang et al., 2009). Label propagation (Zhou et al.,[2004) has im-
proved the performance of semi-supervised learning by enforcing label consistency by propagating
labels from labeled to unlabeled data. To overcome need for fixed graphs to be provided in advance,
the distances between each node can be adaptively learned (Liu et al.,[2019;|Oshiba et al.,|2019), as
in metric learning, and this increases accuracy in both semi-supervised and few-shot learning.

3 METHOD

Our algorithm, shown in Fig. [2] uses label propagation and cycle consistency to learn features from
the source and the target domains which are both 1) indistinguishable each other and 2) close when
placed within the same class, but distant when placed in different classes. The details are as follows.

3.1 FEATURE EMBEDDING AND GRAPH CONSTRUCTION

Manifold learning (Nie et al., 2010) extracts intrinsic structures from both unlabeled and labeled
data. We obtain these structures by constructing a graph whose vertexes are the embedded features
and whose edges are the relations between data. We first embed the input data in the feature space,
using the feature generator composed of convolutional layers following previous work (Liu et al.,
2019} |Oshiba et al.l [2019). Subsequently, a fully connected graph is constructed according to the
distances between the features. The edge weights W;; between the input data x;, x; are determined

from the feature vectors using Gaussian similarity, W;; = exp(—%)7 where f;, f; are the
embedded feature vectors of x;,x;, and o is a scale parameter. It is known (Liu et al., 2019) that
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graph-based methods are sensitive to the scale parameter 0. A large o results in an uniformly
connected graph that disregards the latent structure of the data, while a small o produces a sparse
graph which fails to express all the relationship between the data. To adapt o according to the
embedded features, we take o as a trainable variable to be learned during training.

3.2 LABEL PROPAGATION AND CYCLE CONSISTENCY

Label propagation (Zhou et al.,|2004) is a method of manifold regularization, which in turn produces
a classifier that is robust against small perturbations. Label propagation can be seen as a repeated
random walk through the graph of features using an affinity matrix to assign the labels of target
data (Xiaojin & Zoubinl 2002).

A label matrix y,, € RN+N*C refers to the labels assigned to data in both domains at the n-th
step random walk. The dimension of ¥,, is determined by N, N;, and C which are the numbers of
source and target data points and the number of classes, respectively. The first N, rows of y,, contain
the labels of the source data, and the remaining N, rows contain the labels of the target data. The
initial label vector yq contains y° for the source data, which is one-hot coded ground-truth labels
and zero vectors for the target data.

The one step of the random walk transforms the label vector as follows:
Ynt+1 = Tyn (D

I 0

I 0 . o .
> = normalize(W) and W = (Wts th> . Wi, is a similarity matrix

Tys Tu
between the target and source data, and Wy, is a similarity matrix which represents the interrelations
in the target data. These are described in the Sec. The normalization operation normalize(-)
transforms the sum of each row to 1. The identity matrix in the normalized transition matrix 7'
signifies that the labels of source data do not change because its labels are already known. In graph
theory, these source data points would be called absorbing nodes.

where, T = <

In label propagation, the labels of the target domain is assigned to the propagated labels 7 by infinite
transition, formulated as §' = lim, o0 Y 1y Tgfthsys, which converges as follows (Xiaojin &
Zoubin, 2002):

gt =1 - Ttt)fthsyS- )

In our method, ¢! is used to obtain the propagated labels of the source data in the same way as
y* = (I — TSS)_lTStgjt where T’ss and T, are defined analogous to T3, and T, so that we can learn
the features of which clusters match each other. We then refer to the property that §° should be the
same as the original label y*® as cycle consistency. Pursuing cycle consistency forces not perfectly
aligned features to move toward the nearest cluster, as shown in Fig.[3] The following theorem shows
that enforcing cycle consistency on ideally clustered source data will segregate different classes of
the source and the target data and gather the same classes.

Theorem 1. Let {e;|1 < i < C} be the standard bases of C-dimensional Euclidean space. For
the sake of simplicity, source data x1,x3,- - ,xN, are assumed to be arranged so that the first n;
data belong to class 1, the no data to class 2, and so forth. Assume that 1) the source data is ideally
clustered, in the sense that Tss has positive values if the row and the column are the same class
and zero otherwise, i.e., Tss = diag(Ty,Ts, - ,Tc), the block diagonal where T is a n; X n;
positive matrix for i = 1,2,--- ,C and 2) y° = y*. Then for all 1 < j < C, there exists a
nonnegative vector v; € RNs such that 1) the part where source data belongs to §** class (from
[ni+ne+--+nj_1+ 1]*™" element to [ny +ng + -+ + nj]th element) are positive and the other
elements are all zero and 2) v;—TStgtei =0foralll <i<C,i#].

Proof. The illustration and the proof is given in Appx.[A] O

In Thm. [I| g'e; refers to the assigned probability as i*" class to the target data. The conclusion
implies that if a target data is enough to be predicted as i*" class through label propagation, i.e.,
ith elements of the row in §’ corresponding to the target data is nonzero, then the elements of
T,; which represent the transitions from source data of all but i*" class to the target data should
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Figure 3: Graphical interpretation of the effect of cycle loss in the SVHN—MNIST scenario. (a)
The model constructs a graph in the feature space, and the darkness of each line is proportional to
similarity of the features. (b) Features with high similarity, expressed as both direct and indirect
connections, cluster together by class to enforce cycle consistency.

vanish, i.e., the target data is segregated from the source data in different classes. As described in
Sec.[3.4] we employed DANN to prevent the target data distribution to be distinct from the source
data distribution. If a column of Ty is a zero vector, the feature of the corresponding target data for
the column is considerably distant from all source data features. However, minimizing the DANN
loss makes target features lie around source features, and thus each column of 7, is not likely to be a
zero vector. Combining this conjecture with Thm. |1} each row of §j* has only one nonzero value, i.e.,
every target data belongs to only one cluster. We thus argue that by pursuing this property, generator
can learn more discriminative shared features, and classification performance may improve. Cycle
consistency is enforced by minimizing the /; loss Lcyc1c between §° and y°:

Lcycle = Hgs - yS”l . (3)
Comparison with AssocDA The proposed method has some resemblance with AssocDA in that
they both consider the similarities and transitions between data. However, we argue that AssocDA
is a special case of our method. First, our method exploits manifold over each domain by taking
relations within the same domain into account through label propagation, whereas AssocDA only
considers relations across the domains. Specifically, in Eq.[l} our method utilizes both T}, and Ty,
but AssocDA ignores T}; which often has useful information about the target data manifold. Second,
AssocDA forces the two-step transition to be uniform within the same class. This strict condition
may drive the source features of each class to collapse to one mode and can cause overfitting. On
the contrary, our method only constrains source data to preserve its original labels after the label
propagation. Thus, it does not require all source data be close to each other within the same class; it
allows moderate intra-class variance. The experiment in Sec.d.T|and Fig. ] support these arguments
and visualize the effect of the differences.

3.3 LOCAL MANIFOLD CONSISTENCY

As shown in Thm.[I] the introduced cycle consistency utilizes graph based global manifold informa-
tion and enforces the source and target features to be aligned in class-level. However, in practice, the
limited size of mini-batch may restrict the available information of graph. The knowledge from the
local manifold of each sample, in this case, can complement the global manifold information. In this
regard, we additionally pursue local manifold consistency that the output should not be sensitive to
small perturbations in the local manifold, as suggested elsewhere (Simard et al., |[1992; |Kumar et al.,
2017; Q1 et al 2018)). Concretely, localized GAN (LGAN) (Qi et al) 2018)) is employed to ap-
proximate the local manifold of each data and sample a marginally perturbed image along the local
manifold from the given data. LGAN allows it as LGAN focuses on learning and linking patches
of local manifolds in its training procedure. The difference between the predicted label of the per-
turbed image and that of the original image is minimized to impose local manifold consistency of
the classifier as follows:

N,
Liocal = MNLS ZEZNPzH(O(G(CCf)), C(G(GL(:ZJ,‘:, Z))))
! N )
Ty 20 Eeer H(C(G()), GG, ),
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where, C, G and G, are the embedding classifier, the feature generator and the LGAN generator,
respectively. LGAN generator, G, (z, z), takes an image x and noise z to generate locally perturbed
image along the approximated local manifold. H (-, -) denotes cross entropy. p and 7 are coefficients
for the source and the target local manifold consistency loss, respectively.

3.4 TRAINING PROCESS

Our method learns a clustered feature representation that is indistinguishable across the source and
target domains through the training process as follows:

max Lgann (%)
réllg Llass + AaLgann + )\ﬁLcycle + Liocal, (6)

where, D is the discriminator. o and 3 are coefficients for the last two terms and A is a scheduling
parameter described in Appx [B.I] Laiass is a widely used cross-entropy loss for labeled source data
and Lgann 1S @ GAN loss (Ganin et al.| 2016; /Goodfellow et al., [2014):

N

1 X
Letass = 1 > —logpi(y = u;) @)
5 =1
N Ny
1 & s 1
Ldann = EZIOgD(G(xz)) + EZIOg (1 —D(G(JZ;)))’ (8)
i=1 j=1

where discriminator’s output D(-) is the probability that the input originated from the source domain.
From the metric learning perspective, L.1,ss serves to separate the source features according to their
ground-truth labels, which supports the assumption in Thm. [T} the ideally clustered source features.
Subsequently, L4ann takes a role in moving the target features toward the source features, but it is
insufficient to produce perfectly aligned clusters. Our cycle 10ss Lcycie and local loss Liocar facilitate
clustering by enforcing cycle consistency and local manifold consistency.

4 EXPERIMENTS

4.1 Toy EXAMPLE

We present a toy example to empirically demonstrate the effect of our proposed cycle loss using man-
ifold information compared to the most similar method, AssocDA. We designed synthetic dataset
in 2-dimensional feature space with two classes as illustrated in the leftmost of Fig.[d The source
data lie vertically and the target data are slightly tilted and translated. The second column shows the
negative gradients of AssocDA loss and our cycle loss with respect to each data. Negative gradients
can be interpreted as the movement of features at each iteration. The third and fourth are the updated
features using gradient descent in the middle and at the end of feature update

As argued in Sec. AssocDA does not consider the transition within the same domain and thus
target data which are close to source data with different label (points inside red circles in the second
column) are strongly attracted to them. On the other hand, the gradients of the cycle loss are much
smaller than AssocDA. We speculate that it is because the attractions from source data in the same
class are propagated through target data manifold. As a result, AssocDA leads some data to move
in wrong direction, being misclassified, while cycle loss brought correctly aligned manifolds. In
addition, AssocDA attracts all features too close at the end of updates, which may cause overfitting.
Last but not least, our cycle loss aligned source and target clusters correctly without the aid of dann
loss. We thus argue that our method is complementary to DANN rather than an extension.

4.2 REAL DATASET EXPERIMENT

We show the performance of the proposed method on two real visual dataset. First dataset, which we
call by Digit & Object dataset, includes digit dataset such as SVHN and Synthetic Digits (DIGITS),

!The animation of update progress is available at https://youtu.be/09PE5iXwvzY
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Gradients of loss Progress at 150 steps  Progress at 600 steps

AssocDA

N
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Figure 4: Visualization of toy experiment. (Best viewed in color.) Blue and orange colors represent
labels. Circles with light color are source data and x markers with dark color are target data. The
left-most one depicts the initial data distribution. For the right six sub-figures, the top row refers to
AssocDA and the bottom row refers to ours. The second column illustrates the negative gradients
of loss for target data that are close to the source with different labels. The third and fourth columns
are the updated data after gradient descent in the middle and at the end of the training. The black
lines indicate the decision boundaries of logistic regression models trained with source labels. Ours
aligns manifolds better than AssocDA and results in an accurate classifier for the target.

(a) SVHN — MNIST (b) USPS — MNIST  (c) MNIST — MNIST-M  (d) MNIST — USPS

Figure 5: Visualization of learned features using t-SNE. Circles and x markers respectively indicate
the source and target features. Colors correspond to labels. In all cases, the features from two
domains form similar and tight clusters, which is the key objective of our method.

and object dataset such as STL and CIFAR. We used ImageCLEF-DA as second dataset for more
challenging benchmark. We employed three networks as previous work (Shu et al.| [2018; Xie et al.,
2018 [Long et al. [2018). A network with two convolutional layers and two fully connected layers
for digit dataset and a network with nine convolutional layers and one fully connected layer for
object dataset were implemented. Pretrained ResNet (He et al.,[2016)) was used for ImageCLEF-DA
dataset. More details on training settings, adaptation scenarios and an experiment on non-visual

dataset are provided in Appx. and

Tab. [T|compares the accuracy of our method on Digit & Object dataset with that of other approaches.
For our method, we reported the results of three models, one with local loss (L), another with cycle
loss (C) and the other with both losses (C+L). Our algorithm outperformed the others on most of the
tasks. In the most experiments, the performance of the proposed method was better than the state-of-
the-art. This suggests that enforcing alignment in addition to domain-invariant embedding reduces
the error-rate. PixelDA (Bousmalis et al.,|2017) showed superior performance on MNIST—MNIST-
M, but it is attributable to the fact that PixelDA learns transferring the style of images at a pixel
level which is similar (Pinheiro| 2018)) to the way MNIST-M is generated from MNIST. T-SNE
embeddings in Fig. [5indicates that the learned features are well aligned and clustered.
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Table 1: Accuracy (%) on Digit & Object dataset. Most results are excerpted from (Bousmalis et al.,
2017;|Tzeng et al} 2017). All experiments were run 5 times.

Source MNIST MNIST USPS SVHN DIGITS CIFAR STL
Target MNIST-M USPS MNIST MNIST SVHN STL CIFAR
Source Only 63.6 75.2 57.1 60.1 86.9 76.3 63.6
DANN (Ganin et al.|[2016) 76.7 77.1 73.0 73.9 90.3 - -
DRCN (Ghifary et al.[2016) - 91.8 73.7 82.0 - 66.4 58.7
CoGAN (Liu & Tuzel{2016) 62.0 91.2 89.1 - - - -
DSN (Bousmalis et al.[[2016) 83.2 - - 82.7 91.2 - -
JAN (Long et al.[|2017) 76.9 81.1 - 71.1 88.0 - -
ADDA (Tzeng et al.[[2017) - - - 76.0 - - -
AssocDA (Haeusser et al.|[2017) 89.5 - - 97.6 91.9 - -
PixelDA (Bousmalis et al.|[2017) 98.2 95.9 - - - - -
ATT (Saito et al.[|2017) 94.2 - - 86.2 92.9 - -
LEL (Luo et al.[]2017) - - - 81.0 - - -
CyCADA (Hottman et al.{[2018) - 95.6 96.5 90.4 - - -
SimNet (Pinheiro][2018) 90.5 96.4 95.6 - - - -
MSTN (Xie et al.![2018) - - - 91.7 - - -
MCD (Saito et al.|[2018) - - - 96.2 - - -
CDAN+E (Long et al.{[2018) - 95.6 98.0 89.2 - - -
VADA' (Shu et al.[[2018} 91.1 91.3 914 93.1 89.8 80.0 75.3
DIRT-T' (Shu et al.|2018) 93.7 90.5 93.3 n.cf 90.0 - -
PFAN (Chen et al.{[2019) - - - 93.9 - - -
rRevGrad+CAT (Deng et al.||2019) - - - 98.8 - - -
MCD+CAT (Deng et al.||2019) - - - 97.1 - - B
Ours (L) 91.240.8 959+0.3 97.6+£0.3 76.2+8.1 91.9+0.2 80.1+0.8 75.8+0.4
Ours (C) 96.5+0.1  97.3+£0.2 98.6+0.1 98.2+0.2 92.1+0.2 80.5+0.3 69.94+0.3
Ours (C+L) 96.4+0.1 97.2+0.2 99.2+0.1 98.2+0.1 93.4+0.1 81.4+0.5 75.6+04

T Results on VADA and DIRT-T for all but CIFAR<+STL experiment are obtained by running publicly available code with a mod-
ification of network to be same with ours for a fair comparison. In SVHN — MNIST experiment, DIRT-T did not converge and
collapsed.

Table 2: Accuracy (%) on ImageCLEF-DA for domain adaptation tasks

Source — Target | I—-P P—1 I-»C C—1 C—P P—C Avg
Source Only 74.8£0.3 83.94+0.1 91.5+0.3 78.0+£0.2 65.5+03 91.2+03 80.7
DAN (Long et al.[[2015) 74.5+£04 82.240.2 92.840.2 86.3+04 69.2+0.4 89.8+04 82.5
DANN (Ganin et al.|[2016) 75.0+£0.6 86.0+0.3 96.2+£0.4 87.0£0.5 743+05 91.5+0.6 85.0
JAN (Long et al.![2017) 76.8+£04 88.0+0.2 94.740.2 89.5+0.3 742403 91.7£0.3 85.8
CDAN (Long et al.[[2018) 76.7+£0.3  90.6+0.3 97.0£0.4 90.5+04 745403 93.5+04 87.1
CDAN+E (Long et al.|[2018) 77.7+£0.3  90.7+£0.2 97.7£0.3 91.3+0.3 742402 943+03 87.7
MADA (Pei et al.|2018) 75.0£0.3 87.94+0.2 96.0+0.3 88.8+0.3 75.2+0.2 922403 85.8
LAD (Manders et al.[[2019) 76.840.7 90.6+0.6 952403 88.5+1.0 74.0+£1.0 94.1£0.2 86.5
CAT (Deng et al.|2019) 76.7£0.2 89.0+0.7 94.5+04 89.8+0.3 74.0+£0.2 93.7£1.0 86.3
JAN+CAT (Deng et al.[[2019) 76.3£0.8 89.24+0.8 95.340.7 89.3+0.3 759+1.1 922+13 864
rRevGrad+CAT (Deng et al.|[2019) | 77.2£0.2 91.0£0.3 95.54+0.3 91.3+0.3 75.34+0.6 93.6+0.5 87.3
Ours (C) 78.1+0.5 91.840.5 964+0.5 90.6£1.1 76.3+£0.9 95.7+0.6 88.2
Ours (C+L) 77.7£0.6 91.34+0.7 95.84+0.3 89.9+0.5 76.0£0.4 954+0.8 87.7

Tab. ] reports the results on ImageCLEF-DA dataset experiments. The performance of our method
was better than or comparable to those of other baselines. Especially, our method outperforms
CAT Deng et al.|(2019) which also aims to learn clustered and aligned features. Although the objec-
tives are related, the approaches are quite different. Our method utilizes the manifolds of the source
and the target domain through label propagation and cycle consistency, whereas CAT considers the
distance between two samples for clustering and the distance between the first-order statistics of
distributions for alignment. We argue that the better performance is attributed to utilizing manifold
information beyond one to one relations of which benefits are explained in Sec. .1l Throughout
ImageCLEF-DA experiments, the proposed method without the local loss achieved better accuracy
compared to that with the local loss. Approximation of the local manifold on ImageCLEF-DA gener-
ated by LGAN was slightly worse than that on Digit & Object dataset; perturbed image was blurred
and semantically invariant with the original image. Hence, we speculate that the performance of the
proposed method may be improved with better local manifold approximation.
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5 CONCLUSION

In this paper, we proposed a novel domain adaptation which stems from the objective to correctly
align manifolds which might result in better performance. Our method achieved it, which was sup-
ported by intuition, theory and experiments. In addition, its superior performance was demonstrated
on various benchmark dataset. Based on graph, our method depends on how to construct the graph.
Pruning the graph or defining a similarity matrix considering underlying geometry may improve the
performance. Our method also can be applied to semi supervised learning only with slight modifi-
cation. We leave them as future work.
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A PROOF OF THEOREM 1

Theorem 1. Let {e;|]1 < i < C} be the standard bases of C-dimensional Euclidean space. For
the sake of simplicity, source data x1,x2,- -+ , TN, are assumed to be arranged so that the first n;
data belong to class 1, the no data to class 2, and so forth. Assume that 1) the source data is ideally
clustered, in the sense that Tss has positive values if the row and the column are the same class
and zero otherwise, i.e., Tss = diag(Ty,Ts, - ,Tc), the block diagonal where T} is a n; X n;
positive matrix for i = 1,2,--- . C and 2) §° = y°. Then for all 1 < j < C, there exists a
nonnegative vector v; € RNs such that 1) the part where source data belongs to j*" class (from
[mi+ne+---+n;_1+ 1™ element to [ny +ng + - - -+ nj]th element) are positive and the other
elements are all zero and 2) vaTstgjtei =0foralll <i<C,i#j.

TSS Uj

T1 ‘ n )
T, } n, 0

r Ng
Tj n; nie| +
0
Tc }"c
N ~- J
Ns

Figure 6: Ilustration for Theorem From the assumption, 7 is a block diagonal matrix of which
block elements are 17,75,---,Tc. vj is all zero except n; elements in the middle of v;. The n;
elements are all positive and their indices correspond to those of T} in T,. In the proof, the left
eigenvector u; of T); will be substituted to this part.

Proof. From the Perron-Frobenius Theorem (Frobenius et al.l [1912; Perron, [1907) that positive
matrix has a real and positive eigenvalue with positive left and right eigenvectors, 7, the block
diagonal element of T, has a positive left eigenvector v; with eigenvalue A; forall j =1,2,---C.
Then, as shown below, v; = (00 0u] 0 - 0)T where n; + ng + -+ + n;_1 zeros, u; and
Nj41 + Njy2 + -+ - + ng zeros are concatenated, is a left eigenvector of T, with eigenvalue \; by
the definition of eigenvector.

Ty

T OO---Ou;FOO”-O
U Tss = — — T] )

nitna+t-+nj_1 nj+1t+njy2+-+nc

Tc
=(0 0 Ajuj 00 0) (10)
=X(0 0 -~ 0w 00 -+ 0) (11)
—\o) (12)
From the label propagation, we have,

?)s = (I_ TSS)_lTstﬁgt- (13)
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By multiplying va(I — Tss) on the left and e; on the right to the both sides in Equation |13| and
combining with the assumption 3° = y*, we have, V1 < i < C,i # j,

0] Tag'e; = v (I - Tas)i’e; (14)

=] (I - T)y’e; (15)

=(1- )\j)v;ysei (16)

=0 (17)

The last zero comes from the definition of v;. O

A.1 EXTENSION OF THEOREM 1

In this subsection, we offer the modified version of Thm. [I] when the source features are slightly
perturbed from the ideally clustered condition and the other assumption y® = ¢° holds. We start
from representing 7 as follows to indicate the perturbation.

Ty =T + 6T, (18)

where, 6T, is assumed to be sufficiently small under infinite norm and T§S> is a block diagonal
transition matrix when the source features are ideally clustered as stated in Thm.[T]

In the proof above, we showed eigenvalue A; and its corresponding eigenvector v; of TSS) of which
5" block elements are positive and the others are all zero. We denote those A; and v; by )\5-0) and

U;—O). According to perturbation theory of eigenvalue and eigenvector (Greenbaum et al.,[2019), the
eigenvector can be approximated by first order when the perturbation is small.

v; = v+ O(|[6 sl ) (19)
More generally and precisely,
0 0
1o = 05”1l < o118 1)

where, the norm is vector or matrix 2-norm and m; is determined by T§2). For the sake of simplicity,

we use Big-O notation in Eq.[I9]and Eq.[20]

Now, we reuse Eq.[I6|from the proof of Theorem 1 since it is still valid under the modified condition.

v;‘-FTStQteZ- =(1- /\j)vaysei. (22)

We apply Eq.[19]to the right hand side as follows,

(1= A)vTye; = (1= A) (@ + O(|16Tus|o0)) Ty e (23)

=(1
= O([|0T sl ) (24)

where i # j. Eq.[24|holds because only ;" block elements of v](p) are nonzero. We also used the
fact that y® is bounded by 0 and 1. Similarly, the left hand side of Eq. 22] can be transformed as
follows,
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I Tugtes = (0 + O(10Tusl1o0) Turies *)
= o Tgfe; + O(10Tss | 20

The second term of Eq.[26|holds because T}; and ;* are bounded by 0 and 1. Finally, by combining
Eq.[24and Eq. 26] we have,

T Tgtes = 06T, o). en

Eq. [27) implies that if the perturbation is sufficiently small i.e., ||0Tss||co << 1 and a target data
is enough to be predicted as i*" class through label propagation, then the transitions from source
data of all but i*" class to the target data is negligible because o' s positive for j** block and
zero for others. It is the same with the conclusion of Theorem 1. In addition, the more strongly the
target data is classified as i*" class i.e., the corresponding element of §j* becomes greater, the smaller
the transitions from source data in the other classes are, indicating the segregation against the other
classes.

Practically, the coefficients for Lcycle and Lcycle are scheduled to facilitate the clustering of source
features correctly at the early stage of training. Thus we may assume that T is marginally perturbed
around the ideally clustered one when our cycle loss takes effect.

B EXPERIMENTAL DETAIL

B.1 TRAINING DETAIL

Scheduling the effect of losses To reduce the effect of noisy signal from Lgann and Lcycle during
the early stages of training, a weight balance factor A = m — 1 is applied in Eq. @ A

constant v determines the rate of increase of \; p is the progress of training, which proceeds from
0 to 1. The parameter was introduced (Ganin et al., |2016) to make a classifier less sensitive to the
erroneous signals from the discriminator in the beginning. Throughout the experiments, v was set
to 10.

Hyperparameter Although it would be ideal to avoid utilizing labels from the target domain in
the hyperparameter optimization, it seems that no globally acceptable method exists for this. One
possibility (Ganin et al.,[2016) is reverse validation scheme but this may not be accurate enough to
estimate test accuracy (Bousmalis et al., 2016). In addition (Bousmalis et al., 2016)), applications
exist where the labeled target domain data is available at the test phase but not at the training phase.
Hence, we adopted the protocol of (Bousmalis et al., 2016) that exploits a small set of labeled
target domain data as a validation set; 256 samples for the Amazon review experiment and 1,000
samples for the other experiments (Bousmalis et al., 201652017 [Saito et al.,[2017). During training,
Adam optimizer (Kingma & Ba,[2015) with learning rate of 10~ was utilized. Exponential moving
averaging was applied to the optimization trajectory.

Batch Sizes It is an inherent characteristic of our method that each data sample affects the graph
structure. So it is important for each class sample in each batch to represent its classes accurately.
In other words, the transition matrix can be corrupted by biases in the samples. Therefore, the
number of data samples in each class in a batch should be sufficient to avoid any likely bias. To
address this problem, we performed experiments with batch size of up to 384 and observed very
little improvement beyond a batch size of 128. So we fixed the batch size to 128 for Digit & Object
dataset. For the ImageCLEF-DA dataset, we set the batch size to 36 because of limited computing
resource.

B.2 ADAPTATION SETTINGS

MNIST — MNIST-M The MNIST database of hand-written digits (LeCun et al.l[1998)) consists of
digit images with 10 classes and MNIST-M (Ganin et al.,|2016)) consists of MNIST digits blended
with natural color patches from the BSDS500 dataset (Arbelaez et al., 2011). In addition, following
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other work (Pinheirol 2018]) the colors of the MNIST images were inverted randomly, because their
colors are always white on black, whereas the MNIST-M images exhibit various colors.

MNIST <+ USPS USPS (Denker et all [1989) is another dataset of hand-written images of dig-
its, with 10 classes. USPS contains 16x 16 images and the size of the USPS image is upscaled
to 28x28, which is the size of the MNIST image in our experiment. The evaluation protocol of
CYCADA (Hoffman et al., [2018]) is adopted.

SVHN — MNIST The Street View House Numbers (SVHN) (Netzer et al., |2011)) dataset consists
of images of house numbers acquired by Google Street View. The natural images that it contains,
are substantially different from the line drawings in the MNIST dataset. The size of each MNIST
image is upscaled to 32x32, which is the size of SVHN images.

SYN DIGITS — SVHN SYN DIGITS dataset is synthetic number dataset which is similar to the
SVHN dataset (Ganin et al., 2016). The most significant difference between the SYN DIGITS
dataset and the SVHN dataset is the untidiness (Ganin et al.,|2016) in the background of real images.

CIFAR < STL Both CIFAR dataset (Krizhevsky & Hintonl 2009)) and STL dataset (Coates et al.,
2011) are 10-class datasets that contain images of animals and vehicles. Not overlapped classes are
removed to make a 9-class domain adaptation task (Shu et al., |2018)). We used the larger network
only for this experiment.

ImageCLEF-DAE] The twelve common classes of three publicly available dataset (Caltech-256,
ImageNet ILSVRC2012, and PASCAL VOC2012) are selected to form visual domain adaptation
tasks. We perform all six possible adaptation scenarios among these three dataset.

C HYPERPARAMETERS

We searched hyperparameters within o = {0, 0.01, 0.1, 1}, 8 = {0.01, 0.1, 1}, = {0, 0.01} and n
= {0, 0.1}. Perturbation to the LGAN generator, i.e. z, is fixed to 0.5 for all experiments. The best
hyperparameters for each task is shown in Table.

Table 3: Hyperparameters for each task

Task | ey B 1 n
MNIST — MNIST-M 0.1 1 0.01 0
MNIST — USPS 0.1 1 0.01 0
USPS — MNIST 0.01 1 0.01 0.1
SVHN — MNIST 0 1 0.01 0
DIGITS — SVHN 0.1 1 0.01 0.1
CIFAR — STL 0.1 1 0 0.1
STL — CIFAR 0.1 0.1 0.01 0.1
I—-P 0.01 0.1 0 0.1
P—1 0.01 1 0 0.1
I—-C 0.1 0.01 0 0.1
C—1 0.1 0.1 0.01 0.1
C—P 0.01 0.1 0 0.1
P—-C 0 1 0.01 0

D ABLATION STUDY

D.1 SCALE PARAMETER

Setting an appropriate value for the scale parameter, o, is important because it has a substantial role
in determining the transition matrix, T. Therefore, we conducted several experiments with fixing o
to various values. For these experiments, we excluded Li,c, to observe the effect of . ‘Adapt’
means that the o is learned to adapt according to the embedded features.

Zhttps://www.imageclef.org/2014/adaptation
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Table 4: Accuracy (%) on Digit dataset with different o values. All experiments were run 5 times.

Source MNIST MNIST USPS SVHN DIGITS
Target | MNIST-M USPS MNIST MNIST SVHN

0.1 94.8+0.4  96.5+£03 983+0.1 76.7£7.6 90.6+0.5

1 96.4+£0.5 97.2+0.1 95.8+6.7 98.2+0.1 92.04+0.2

10 84.8+£3.5 954405 95.8+03 742449 87.2+04

Adapt | 96.5+0.1 97.3+0.2 98.6£0.1 98.24+0.2 92.1£0.2

For four out of five scenarios, fixing o to 1 performed better than fixing it to 0.1 or 10. With this
observation, we initialized o to 1 took it as a trainable variable. The result of adaptively learning o
is reported at the bottom row of the table. Compared to fixing o to 1, adaptively learning ¢ achieved
better accuracy and had a lower standard deviation range which means that it is more stable. We also
would like to highlight that our model is robust to the initial value of 0. We conducted extensive
experiments with initializing o to 0.1, 1 and 10 and taking it as a trainable variable.

Table 5: Accuracy (%) on Digit dataset with different o initializations. All experiments were run 5
times.

Source MNIST MNIST USPS SVHN DIGITS
Target | MNIST-M USPS MNIST MNIST SVHN

0.1 96.4+£0.2 97.1£0.1 98.6+0.1 98.0+£0.5 91.9+0.3

1 96.5£0.1 97.3+£0.2 98.6+0.1 98.2+0.2 92.14+0.2

10 96.3£0.1 96.9+0.2 98.6+0.2 91.9+8.8 92.1£0.1

Except for SVHN — MNIST transfer task with setting initial o value to 10, the initial value of o
has a minute influence to the accuracy. We believe that adaptively learning the scale parameter can
be usefully employed in any other graph-based method. The learned o values for various scenarios
are as follows.

Table 6: Accuracy of the learned ¢ on Digit dataset with different o initializations.

Source MNIST MNIST USPS SVHN DIGITS

Target | MNIST-M USPS MNIST MNIST SVHN
0.1 1.20+£0.44 1.04+0.13 1.15£0.54 1.18+£0.10 1.26%+0.12
1 1.29+£0.13 1.00+£0.40 1.07+£046 1.17£0.06 1.26+0.13
10 1.30+£0.14 0.96+0.11 1.13£042 1.21£0.07 1.294+0.10

It seems that o adaptively learns its value according to the transfer task, regardless of its initializa-
tion.

D.2 LO0OSS FUNCTION FOR CYCLE CONSISTENCY

We tried I loss and cross entropy loss to enforce cycle consistency as well. We excluded Ligcq to
compare the effectiveness of these functions.

Table 7: Accuracy (%) on Digit dataset with different loss functions for cycle consistency. All
experiments were run 5 times. CE refers to the cross entropy.

Source MNIST MNIST USPS SVHN DIGITS
Target | MNIST-M USPS MNIST MNIST SVHN

l1 loss 96.5£0.1 97.3+£0.2 98.6£0.1 98.2+0.2 92.1+0.2
l2 loss 96.4+0.2 97.1+£0.2 983+£03 98.0+£0.1 92.0+0.2
CEloss | 96.3+03 969402 98.5+0.2 96.6+29 91.8+0.2
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For all Digit dataset adaptation experiments, evaluating cycle consistency with /; norm achieved the
highest accuracy. We speculate that [; norm is more numerically stable or provides more effective
gradients than other functions in this case.

E NON VISUAL DATASET EXPERIMENT

The Amazon Reviews (Blitzer et al.,2007) dataset provides a non-visual domain for domain adapta-
tion experiments. It contains reviews of books, DVDs, electronics, and kitchen appliances encoded
as 5,000-dimensional feature vectors containing unigrams and bigrams of the texts with binary la-
bels. Four- and five-star reviews are labeled ‘positive’; reviews with fewer stars are labeled ‘nega-
tive’. We used 2,000 labeled source data and 2,000 unlabeled target data for training, and between
3,000 to 6,000 target data for testing.

Tab. E] shows that our method performs better than DANN (Ganin et al.,[2016), VFAE (Louizos et al.,
2016) and ATT (Saito et al., 2017) on the Amazon Reviews data in six out of twelve experiments.
Our method was more accurate than DANN in nine out of twelve settings, showing approximately
2.0% higher classification accuracy on average.

Table 8: Accuracy (%) for nonvisual domain adaptation with Amazon Reviews dataset

book  book  book dvd dvd dvd elec elec elec kit kit kit
dvd elec kit book  elec kit book  dvd kit book  dvd elec

Source
Target

VFAE (Louizos et al.{2016) | 79.9 792 816 755 786 822 727 765 850 720 733 838
DANN (Ganin et al.[[2016) 784 733 779 723 754 783 711 73.8 854 709 740 843
ATT (Saito et al.[|2017) 80.7 798 8.5 732 770 825 732 729 869 725 749 846

Ours 81.3 783 797 772 790 8.5 708 733 871 718 735 854
(std) +0.0 402 405 +1.6 +0.7 +04 +03 +£1.2 +£02 £0.7 £08 =£0.1

book: books, dvd: DVDs, elec: electronics, kit: kitchen appliances
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