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ABSTRACT

Deep reinforcement learning has obtained significant breakthroughs in recent
years. Most methods in deep-RL achieve good results via the maximization of the
reward signal provided by the environment, typically in the form of discounted
cumulative returns. Such reward signals represent the immediate feedback of
a particular action performed by an agent. However, tasks with sparse reward
signals are still challenging to on-policy methods. In this paper, we introduce an
effective characterization of past reward statistics (which can be seen as long-term
feedback signals) to supplement this immediate reward feedback. In particular,
value functions are learned with multi-critics supervision, enabling complex value
functions to be more easily approximated in on-policy learning, even when the
reward signals are sparse. We also introduce a novel exploration mechanism called
“hot-wiring” that can give a boost to seemingly trapped agents. We demonstrate the
effectiveness of our advantage actor multi-critic (A2MC) method across the discrete
domains in Atari games as well as continuous domains in the MuJoCo environments.
A video demo is provided at https://youtu.be/zBmpf3Yz8tc and source
codes will be made available upon paper acceptance.

1 INTRODUCTION

Advances in deep learning have mobilized the research community to adopt deep reinforcement
learning (RL) agents for challenging control problems, typically in complex environments with
raw sensory state-spaces. Breakthroughs by Mnih et al. (2015) show RL-agents can reach above-
human performance in Atari 2600 games, and AlphaGo Zero Silver et al. (2017) becomes the world
champions on the game of Go. Still, training RL agents is non-trivial. Off-policy methods typically
require days of training to obtain competitive performance, while on-policy methods could be trapped
in local minima. Recent techniques featuring on-policy learning Mnih et al. (2016); Schulman
et al. (2017); Wu et al. (2017) have shown promising results in stabilizing the learning processes,
enabling an agent to solve a variety of tasks in much less time. In particular, the state-of-the-art
on-policy ACKTR agent by Wu et al. (2017) shows improved sample efficiency with the help of
Kronecker-factored (K-Fac) approximate curvature for natural gradient updates, resulting in stable
and effective model updates towards a more promising direction.

However, tasks with sparse rewards remain challenging to on-policy methods. An agent could take
massive amount of exploration before reaching non-zero rewards; and as the agent learns on-policy,
the sparseness of reward feedback (receiving all-zero rewards from most actions performed by the
agent) could be malicious and render an agent to falsely predict all states in an environment towards a
value of zero. As there does not exist a universal criterion for measuring “task sparseness”, we show
an ad-hoc metric in Figure 1 in an attempt to provide intuition. For example, we observe that the
ACKTR agent is unable to receive sufficient non-zero immediate rewards that can provide instructive
agent updates in Atari games “Freeway” and “Enduro”, resulting in failures when solving these two
games. Moreover, if ACKTR gets drawn to and trapped in unfavorable states (as in games like Boxing
and WizardOfWor), it could again take long hours of exploration before the agent can get out of the
local minima. Such evidence shows that on-policy agent could indeed suffer from the insufficiencies
of guidance provided by the exclusive immediate reward signals from the environment.

In this paper, we introduce an effective auxiliary reward signal in tasks with sparse rewards to
remedy the deficiencies of learning purely from standard immediate reward feedbacks. As on-policy
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Figure 1: Performance of A2MC on Atari games trained with 15 million timesteps. Our method
has a winning rate of 55.3% among all the Atari games tested, as compared to the ACKTR. Our
A2MC learns quickly in some of the hardest games for on-policy methods, such as “Boxing”,
“Enduro”, “Freeway”, “Robotank” and “WizardOfWor”. The sparseness of a game is defined as
the sparseness of average rewards x obtained by ACKTR within the first n = 106 timesteps by
ϕ(x) =

(√
n− ‖x‖1‖x‖2

)
/(
√
n− 1). A higher value of sparseness indicates sparser rewards. A relative

performance margin (in terms of final reward) larger than 10% is deemed as winning / losing. The
shaded region denotes the standard deviation over 2 random seeds.

agents may take many explorations before reaching non-zero immediate rewards, we argue that
we can leverage past reward statistics to provide more instructive feedbacks to agents in the same
environment. To this end, we propose to characterize the past reward statistics in order to gauge the
“long-term” performance of an agent (detailed in Section 4). After performing an action, an agent
will receive a long-term reward signal describing its past performance upon this step, as well as the
conventional immediate reward from the environment. To effectively characterize the long-term
performance of the agent, we take into considerations both the crude amount of rewards and the
volatility of rewards received in the past, where highly volatile distributions of long-term rewards
are explicitly penalized. This enables complex value functions to be more easily approximated in
multi-critics supervision. We find in practice that by explicitly penalizing highly volatile long-term
rewards while maximizing the expectation of short-term rewards, the learning process and the overall
performance are improved regarding both sample efficiency and final rewards. We further propose
a “hot-wiring” exploration mechanism that can boost seemingly trapped agent in the earlier stage
of learning. By leveraging the characterization of long/short-term reward statistics, our proposed
advantage actor multi-critic model (A2MC) shows significantly improved performance on the Atari
2600 games and the MuJoCo tasks as compared to the state-of-the-art on-policy methods.

2 RELATED WORK

Reward shaping and pseudo-rewards: To tackle the challenge in tasks with rarely observed
rewards, pseudo-rewards maximization is adopted in earlier works Konidaris & Barto (2009); Silver
& Ciosek (2012). Auxiliary vision tasks (e.g., learning pixel changes or network features) are adopted
in the off-policy UNREAL agent Jaderberg et al. (2016) in order to facilitate learning better feature
representations, particularly for sparse reward environments. Another direction of effort involves
directly engineering a better reward function or shaping the reward signal. Andrychowicz et al. (2017)
enhances off-policy learning by re-producing informative reward in hindsight for sequences of actions
that do not lead to success previously. The HRA approach Van Seijen et al. (2017) exploits domain
knowledge to define a set of environment-specific rewards based on reward categories. And the
winning approach that learns playing “Doom” Lample & Chaplot (2017) shows promising success
in the FPS game that carefully crafting the task rewards would indeed be beneficial. In contrast
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to heuristically defining vision-related auxiliary tasks, our proposed A2MC agent learns from the
characterization of intrinsic past reward statistics obtainable from any environment; and different
from the hybrid architecture pertaining to Ms. Pacman only and the reward shaping settings tailored
specifically to ”Doom”, our proposed reward characterization mechanism is generic and our A2MC
generalizes well to a variety of tasks without the need to engineer a decomposition of problem-
specific environment rewards. Moreover, the capability of the proposed method to further boost
reward shaping is evidenced in our case study on playing Doom (see Appendix F).

Multi-agents: The multi-agent approaches Lanctot et al. (2017); Lowe et al. (2017); Jin et al. (2018)
present another promising direction for learning. They propose to train multiple agents in parallel
when solving a task, and to combine multiple action-value functions with a centralized action-value
function. The multi-critics supervision in our proposed A2MC model can be seen as a form of
joint-task or multi-task learning Teh et al. (2017) for both long-term and short-term rewards.

On-policy v.s. Off-policy: Our empirical results based on learning the characterization of long/short-
term reward statistics also echo the effectiveness of a recently proposed off-policy reinforcement
learning framework Bellemare et al. (2017) that features a distributional variant of Q-learning,
wherein the value functions are learned to match the distribution of standard immediate returns. Also,
Wang et al. (2016) shows that applying experience replay to on-policy methods can further enhance
learning stability. Schulman et al. (2016) proposes a variant of advantage function using eligibility
traces that provides both low-variance and low-bias gradient estimates. These works are orthogonal to
our approach can potentially be combined with the proposed characterization of past reward statistics
to further enhance learning performance. While our extensive experiments (see also Appendix E
and Appendix F) show promising results of our approach in both on- and off-policy frameworks, we
focus on “on-policy” methods (i.e., those that do not involve off-policy trajectories or experience
replay) as in Wu et al. (2017) in the main text in order to systematically evaluate the potential of our
proposed reward mechanism within the scope of this work.

3 PRELIMINARY

Consider the standard reinforcement learning setting where an agent interacts with an environment
over a number of discrete time step. At each time step t, the agent receives an environment state
st, then executes an action at based on policy πt. The environment produces reward rt and next
state st+1, according to which the agent gets feedback of its immediate action and will decide its
next action at+1. The process < S,A,R,S >, typically considered as a Markov Decision Process,
continues until a terminal state sT upon which the environment resets itself and produces a new
episode. Under conventional settings, the return is calculated as the discounted summation of rewards
rt accumulated from time step t onwards Rt =

∑∞
k=0 γ

krt+k. The goal of the agent is to maximize
the expected return from each state st while following policy π. Each policy π has a corresponding
action-value function defined as Qπ(s, a) = E[Rt|st = s, at = a;π]. Similarly, each state s ∈ S
under policy π has a value function defined as: V π(s) = E[Rt|st = s]. In value-based approaches
(e.g., Q-learning Mnih et al. (2015)), function approximator Q(s, a; θ) can be used to approximate
the optimal action value function Q∗(s, a). This is conventionally learned by iteratively minimizing
the below loss function:

L(θ) = E[(ytargett −Q(st, at; θ))
2], (1)

where ytargett = rt + γmaxa′ Q(st+1, a
′; θ) and st+1 is the next state following state st.

In policy-based approaches (e.g., policy gradient methods), the optimal policy π∗(a|s) is approxi-
mated using the approximator π(a|s; θ). The policy approximator is then learned by gradient ascent
on ∇θE[Rt] ≈ ∇θ log π(at|st; θ)Rt. The REINFORCE method Williams (1992) further incorpo-
rates a baseline b(st) to reduce the variance of the gradient estimator: ∇θE[Rt]REINFORCE ≈
∇θ log π(at|st; θ)(Rt − b(st))
In actor-critic based approaches, the variance reduction further evolves into the advantage function
A(st, at) = Q(st, at)− V (st) in Mnih et al. (2016), where the action value Qπ(st, at) is approxi-
mated by Rt and b(st) is replaced by V π(st), deriving the advantage actor-critic architecture where
actor-head π(·|s) and the critic-head V (s) share low-level features. The gradient update rule w.r.t.
the action-head is ∇θ log π(at|st; θ)(Rt − V (st; θ)). The gradient update w.r.t. the critic-head is:
∇θ(Rt − V (st; θ))

2, where Rt = rt + γV (st+1).
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Figure 2: Illustration of the proposed variability-weighted reward (VWR). The first row shows the
raw reward sequence (blue) while the second row presents the post-processed sequence ~R (green)
and the zero-variability reference ~Rzero (orange), andRH is calculated as a reflection of how high
the immediate reward is. The third row shows the volatility statistics of δR, representing how varied
past rewards were. We curated 3 hypothetical reward sequences – (a) highly varied sequence with
low immediate reward, resulting in the lowest VWR; (b) highly varied sequence with high immediate
reward, leading to a relatively high VWR; (c) stable sequence with high immediate reward, achieving
the best VWR. More examples can be found in the Appendix A.

4 CHARACTERIZATION OF PAST REWARD STATISTICS

The conventional reward rt received from the environment at time step t after an action at is
performed represents the immediate reward regarding this particular action. This “immediacy” could
be interpreted as a short-term horizon of how the agent is doing, i.e., evaluating the agent via judging
its actions by immediate rewards. We argue that the deficiencies of learning solely from immediate
rewards mainly come from this limitation that the agent is learning from one single type of exclusive
short-term feedback.

As the goal of providing reward feedback to an agent is to inform the agent of its performance,
we seek to find an auxiliary performance metric that can measure whether the agent is performing
consistently well. Inspired by the formulation of Sharpe Ratio (E[r]× 1

σr
) in evaluating the long-term

performance of porfolio strategies where the return E[r] is inversely weighted by the risk σr, an
effective characterization of historical reward statistics should take into account at least two factors,
namely 1) how high the immediate reward is and 2) how varied past rewards were, bringing the
desired notion of “risk-adjusted return” as in Sharpe (1994).

4.1 VARIABILITY-WEIGHTED REWARD

To this end, we follow insights behind Dowd (2000); Sharpe (1994) and define a variability-weighted
characterization of past rewards. This is illustrated in Figure 2. We consider a historical sequence
of T rewards upon timestep t (looking backward T − 1 timesteps): ~r = [rt−(T−1)..., rt−2, rt−1, rt].
In order to evaluate how high and varied the reward sequence is, a few steps of pre-processing G
is applied, denoted as ~R = G(~r). Specifically, we first derive the reward change at each timestep
(similar to the “differential return” concept in Sharpe (1994)) with dn = rn − rn−1:

~d = [dt−(T−1), dt−(T−2), . . . , dt] = [rt−(T−1), rt−(T−2) − rt−(T−1), . . . , rt − rt−1]. (2)

Then we re-order the sequence by flipping 1 with fn = dt+1−n:

~f = [f1, f2, . . . , fT ] = [dt, dt−1, . . . , dt−(T−1)]. (3)

1By flipping, we further encourage “recent” stable rewards and penalize the volatility of recent past rewards.
A concrete example is given in the Appendix A.
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Next we append f0 = 1 to the head of sequence ~f and take the normalized cumulative sum to obtain
the post-processed reward sequence as ~R = [R0,R1, . . . ,RT ] = 1

T+1 [f0, f0 + f1, . . . ,
∑T
i=0 fi].

Under such processing, numerical instability (see Eq. 4) when all rewards in the sequence are zero
can be alleviated, while the averaging term 1

T+1 mitigates the effect of introducing the artificial f0.

The resulting ~R is a reward sequence withRT −R0 = 1
T+1rt, andRn −Rn−1 = 1

T+1 (rt+1−n −
rt−n). Therefore, the difference betweenRT andR0 represents the immediate reward and the whole
sequence ~R reflects the volatility of past rewards. In Figure 2, three examples of processed sequence
are presented in the second row with the corresponding raw rewards shown in the first row. We
account for how high the immediate reward is by defining the relative percentage log total return as:

RH = 100× (e
1
T ln

RT
R0 − 1) =

RT 1/T −R0
1/T

R0
1/T

× 100. (4)

To account for how varied past rewards were, we first define a smooth zero-variability reference as:
~Rzero = [Rzero0 ,Rzero1 , . . . ,RzeroT ] = R0[e

0×R̃, e1×R̃, . . . , eT R̃] with R̃ = 1
T ln RT

R0
, representing

a smooth monotonic reference sequence fromR0 toRT . Then we define the reward differential δR
as the differential reward versus its zero-variability reference as δR(n) =

Rn−Rzero
n

Rzero
n

, whose statistics
are sketched in the third row of Figure 2. With maximally allowed volatility as σmax, the variability
weights can be defined as: ω = 1− [σ(δR)

σmax
]τ , where σ(·) is the standard deviation and τ controls the

rate to penalize highly volatile reward distribution. Finally we can derive the variability-weighted
past reward indicator rvwr for the characterization of past reward statistics:

rvwr =

{
RH(1− [σ(δR)

σmax
]τ ) if σ(δR) < σmax,RT > 0

0 otherwise
(5)

The formulation of Equation 5 share principled themes as in Sharpe (1994) and Dowd (2000):

1. Dowd (2000) compares the newly obtained SRnew with the previous SRold in choosing
new assets; we deriveRH in Eq. 4 by comparing the latest rewardRT withR0 to explicitly
encourage the agent to aim for reward improvements in “choosing new actions”;

2. Both the Sharpe Ratio (SR) and Eq. 5 involve “variability weights” to adjust for the unit risk
of return E[R] Sharpe (1994) (i.e., 1

σr
for SR and 1− [σ(δR)

σmax
]τ for rvwr);

3. Whereas Dowd (2000) introduces the concept of “minimum required return” based on
the elasticity of value at risk (VaR), we consider the maximum tolerance level σmax with
elasticity controlled by τ for improved learning stability of rvwr(see also Appendix H).

Example computed values of rvwr for the characterization of different reward statistics are shown in
Figure 2 and we show strong empirical results (in Section 6) to confirm the validity and robustness of
the proposed formulation in multiple reinforcement learning domains.

4.2 MULTI-CRITIC ARCHITECTURE

A higher value of rvwr indicates better agent performance as the result of the historical sequence
of actions. The same set of optimization procedures for conventional value function (i.e., via
maximization of immediate reward signal r) update can be applied accordingly. The actual returns
computed from both the “long-term” and “short-term” rewards are discounted by the same factor γ.
In particular, for standard N -step look-ahead approaches, we have:

Rshort-term
t =

N−1∑
n=0

γnrt+n + γNV (st+N ), Rlong-term
t =

N−1∑
n=0

γnrvwrt+n + γNV vwr(st+N ) (6)

Similar to the standard state value function V (s), we further define V vwr(s) as the value function
w.r.t the variability-weighted reward rvwr. These value functions form multiple critics judging a
given state s. The gradients w.r.t. the critics then become:

∇θshort-term [(Rshort-term
t − V (st; θ

short-term))2] +∇θlong-term [(Rlong-term
t − V vwr(st; θlong-term))2] (7)
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Figure 3: Performance of A2MC on Atari games. “Hot-Wiring” exploration makes the agent easier to
figure out how to play challenging games like “Robotank” and “WizardOfWor”, and for most games,
it provides a better initial state for the agent to start off at a game and hence to obtain better final
results. The number in figure legend shows the average reward among the last 100 episodes and the
percentage shows the performance margin as compared to ACKTR. The shaded region denotes the
standard deviation over 2 random seeds.

where the standard grading clipping approach can be applied in Eq. 7 for enhanced stability. More
advanced methods for estimating Rshort-term

t and Rlong-term
t above, such as the online variant of

generalized advantage estimation (GAE) using eligibility traces Schulman et al. (2016) can be
adopted in place of Eq. 6, as shown below (see also Appendix G):

Ashort-term
t =

∞∑
n=0

(γλ)nδvwrt+n , with δt = rt + γV (st+1)− V (st)

Along-term
t =

∞∑
n=0

(γλ)nδvwrt+n , with δvwrt = rvwrt + γV vwr(st+1)− V vwr(st)
(8)

where the generalized estimator of the advantage function Ashort-term
t and Along-term

t allows a trade-off
of bias v.s. variance using the parameter 0 ≤ λ ≤ 1, similar to the TD(λ) approach for eligibility
traces. We show the effectiveness of the proposed characterization of past reward statistics in multiple
advantage actor-critic frameworks (i.e., ACKTR and PPO), where the two different value functions
can share the same low-level feature representation, enabling a single agent to learn multiple critics
parameterized by θj , j ∈ {short-term, long-term}. (See also Appendix I for the full algorithm).

5 HOT-WIRE ε-EXPLORATION

Being handed a game-stick, a human most likely would try out all the available buttons on it to
see which particular button entails whatever actions on the game screen, hence receiving useful
feedbacks. Inspired by this, we propose to hot-wire the agent to perform an identical sequence of
randomly chosen actions in the N-step look-ahead during the initial stage (randomly pressing down a
game-stick button for a while):

at+k =

{
a random action identical for all k with prob ε

π(at+k|st+k) for k = 0, 1, 2, ..., N − 1 with prob 1− ε (9)

We show that by enabling the “hot-wiring” mechanism2, a seemingly trapped agent can be boosted to
learn to quickly solve problems where rewards can only be triggered by particular action sequences,
as shown in games like “Robotank” and “WizardOfWor” in Figure 3.

2hot-wire is triggered only when the agent is unable to receive meaningful rewards in an initial learning stage.
The legend “vwr + hotWire” in Fig. 3 indicates that the mechanism is “enabled” but not “enforced”.
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6 EXPERIMENTS

We use the same network architecture and natural gradient optimization method as in the ACKTR
model Wu et al. (2017). We set σmax = 1.0, τ = 2.0 and T = 20 in the computation of variability-
weighted reward (see Appendix C for hyperparameter studies). For hot-wiring exploration, we
choose ε = 0.20 and initial stage to be first 1

40 of the total training period for all experiments. Other
hyperparameters such as learning rate and gradient clipping remain the same as in the ACKTR
model Wu et al. (2017), in addition to adopting GAE Schulman et al. (2016) for a stronger ACKTR
baseline (see Sec 4.2). We first present results of evaluating the proposed A2MC model in two
standard benchmarks, the discrete Atari experiments and the continuous MuJoCo domain. Then we
show ablation studies on the robustness of the hyper-parameters involved as well as evaluating the
extensibility of the proposed long/short-term reward characterizations to other on-policy methods.
Further extensions to off-policy domains are presented in Appendix E and Appendix F.

6.1 ATARI 2600 GAMES

We follow standard evaluation protocol to evaluate A2MC in a variety of Atari game environments
(starting with 30 no-op actions). We train our models for 15 million timesteps for each game
environment and score each game based on the average episode rewards obtained among the last 100
episodes as in Wu et al. (2017). The learning results on 12 Atari games are shown in Figure 3 where
we also included an ablation experiment of A2MC without hot-wiring. We observe that on average
A2MC improves upon ACKTR in terms of final performance under the same training budget. Our
A2MC is able to consistently improve agent performance based on the proposed characterization
of reward statistics, hence the agent is able to get out of local minima in less time (higher sample
efficiency) compared to ACKTR. The complete learning results on all games are attached in the
Appendix B.
Table 1: Comparison of average episode rewards at the end of 50 million timesteps in Atari
experiments. The reward scores and the first episodes reaching human-level performance Mnih
et al. (2015) are reported as in Wu et al. (2017). A2MC is able to solve games that are challenging to
ACKTR and also retain comparable performance in the rest of games.

ACKTR A2MC

Domain Human Level Rewards Episode Rewards Episode

Asteroids 47388.7 34171.0 N/A 830232.5 11314
Beamrider 5775.0 13581.4 3279 13564.3 3012
Boxing 12.1 1.5 N/A 99.1 158
Breakout 31.8 735.7 4097 411.4 3664
Double Dunk -16.4 -0.5 742 21.3 544
Enduro 860.5 0.0 N/A 3492.2 730
Freeway 29.6 0.0 N/A 32.7 1058
Pong 9.3 20.9 904 19.4 804
Q-bert 13455.0 21500.3 6422 25229.0 7259
Robotank 11.9 16.5 - 25.7 4158
Seaquest 20182.0 1776.0 N/A 1798.6 N/A
Space Invaders 1652.0 19723.0 14696 11774.0 11064
Wizard of Wor 4756.5 702 N/A 7471.0 8119

We further expand the training budget and continue learning the games until 50 million timesteps
as in Wu et al. (2017). As shown in Table 1, our A2MC model can solve games like “Boxing”,
“Freeway” and “Enduro” that are challenging for the baseline ACKTR model. For a full picture of
model performance in Atari games, A2MC has a human-level performance rate of 74.5% (38 out of
51 games) in the Atari benchmarks, compared to 63.6% reached by ACKTR. Individual game scores
for all the Atari games are reported in the Appendix B.

6.2 CONTINUOUS CONTROL

For the evaluations on continuous control tasks simulated in MuJoCo environment, we first follow Wu
et al. (2017) and tune a different set of hyper-parameters from Atari experiments. Specifically, all
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Figure 4: Performance on the MuJoCo benchmark. A2MC is also competitive on MuJoCo continuous
domain when compared to ACKTR. The shaded region denotes std over 3 random seeds.

MuJoCo experiments are trained with a larger batch size of 2500. The results of eight MuJoCo
environments trained for 1 million timesteps are shown in Figure 4. We observe that A2MC also
performs well in all MuJoCo continuous control tasks. In particular, A2MC has brought significant
improvement on the tasks of HalfCheetah, Swimmer and Walker2d (see Table 2).

To test the robustness of A2MC, we perform another set of evaluations on MuJoCo tasks by keeping
an identical set of hyper-parameters used in the Atari experiments. Figure 7 in Appendix C shows
this ablation result. We observe that even under sub-optimal hyper-parameters, our A2MC model can
still learn to solve the MuJoCo control tasks in the long run. Moreover, it is less prone to overfitting
when compared to ACKTR under such “stress testing”. Additional hyper-parameter studies can be
found in Appendix C.

We also evaluate a multi-critics variant of the proximal policy optimization (PPO) model on the
MuJoCo tasks with our proposed long/short-term rewards. In particular, we observe that our proposed
variability-weighted reward generalizes well with the vanilla PPO, and our multi-critics PPO variant
(MC-PPO) shows more favorable performance, as shown in Table 2. Specifically, MC-PPO shows the
best performance on Hopper and Walker-2d among all models under the 1-million timesteps training
budget. Both of our multi-critics variants (A2MC and MC-PPO) have won 6 out of the 8 MuJoCo
tasks with relative performance margins (percentages in parentheses) larger than 25% (see Table 2).

Table 2: Average episode rewards obtained among the last 10 episodes upon 1 million timesteps of
training in MuJoCo experiments.

GAMES ACKTR Our A2MC PPO Our MC-PPO

Ant 1671.6 2216.1 (32.5%) 411.4 (± 107.7) 618.9 (50.4%)
HalfCheetah 1676.2 2696.6 (60.8%) 1433.7 (± 83.9) 2473.4 (72.5%)
Hopper 2259.1 2835.7 (25.5%) 2055.8 (± 274.6) 3131.3 (52.3%)
InvertedDoublePendulum 6295.4 7872.6 (25.0%) 4454.1 (± 1098.1) 7648.7 (71.7%)
InvertedPendulum 1000.0 957.2 (-4.2%) 839.7 (± 127.1) 777.4 (−7.4%)
Reacher -4.2 -3.9 (0.4%) -5.47 (± 0.3) −10.3 (−8.5%)
Swimmer 43.2 187.4 (333.7%) 79.1 (± 31.2) 102.9 (30.2%)
Walker2d 1090.8 2405.9 (120.5%) 2300.8 (± 397.6) 3718.1 (61.6%)

Win — Fair — Lose N/A 6 — 2 — 0 N/A 6 — 2 — 0

7 CONCLUSION

In this work, we introduce an effective auxiliary reward signal to remedy the deficiencies of learning
solely from the standard environment rewards. Our proposed characterization of past reward statistics
results in improved learning and higher sample efficiencies for on-policy methods, especially in
challenging tasks with sparse rewards. Experiments on both discrete tasks in Atari environment and
MuJoCo continuous control tasks validate the effectiveness of utilizing the proposed long/short-term
reward statistics for on-policy methods using multi-critic architectures. This suggests that expanding
the form of reward feedbacks in reinforcement learning is a promising research direction.
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APPENDIX

A EFFECTS OF FLIPPING

While introducing the variability-weighted reward, a flipping operation is conducted in the pre-
processing of the reward sequence as formulated in Eq. (3). In Figure 5 and 6, we construct 4
reward sequences to show that the flipping operation can further penalize the oscillation in the
recent past rewards while encourage recent stable rewards. (a1, a2, b1, b2) share the same value
of immediate reward at t = 9 and thus the RH of all reward sequences are the same. Therefore,
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Figure 5: Calculation without flipping.
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Figure 6: Calculation with flipping.

the variability-weighted reward only depends on the volatility statistics of δR, i.e., how varied past
rewards were.

Without flipping. In Figure 5, sequence (a1) and (a2) are mirror symmetrical to the y-axis, and the
only difference between them is that the recent past rewards (t = 5, 6, 7, 8) of (a2) are more stable
than (a1). Intuitively, we want to encourage stable past rewards like (a2) while penalizing oscillation
in (a1). As presented in the third row of Figure 5, the rvwr difference of (a1) and (a2) is less than 1
without flipping in the pre-processing.

With flipping. In Figure 6, (b1, b2) exactly have the same reward sequence as (a1, a2), respectively.
However, flipping is performed as a step of pre-processing, largely increasing the rvwr gap (from
less than 1 to nearly 4) between the two constructed sequences. Comparing (b1, b2) with (a1, a2) ,
the post-processed sequences ~R (shown in green) become centrosymmetric to those without flipping.
Specifically, the recent reward drops at t = 6, 7, 8 are reflected as high values at the beginning of
~R as shown in (b1), while oscillations long ago are transformed into high values at the end of ~R
as presented in (b2). When compared to the zero-variability reference (shown in orange), which is
designed as an exponential function, the flipping leads to a higher variability for the former sequence
while a lower variability for the latter one, enlarging the rvwr gap between those two sequences.
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B COMPLETE RESULTS IN ATARI 2600 GAMES

We show the learning curves for 15 million timesteps on all Atari games in Figure 12 and in Table 3
we show the complete results of training til 50 million timesteps. report the mean episode reward as
in Wu et al. (2017). Entries with ∼ indicates approximated value as retrieved from learning figures
published by Wu et al. (2017). Results from other models are taken from Wu et al. (2017) and Mnih
et al. (2015). We show that A2MC has reached a human-level performance rate of 74.5% (38 out of
51 games) as compared to 63.6% reached by ACKTR. The relative performance margin of A2MC as
compared to ACKTR is also shown.

C HYPER-PARAMETER STUDIES

The proposed variability-weighted reward mechanism considers the volatility of rewards by keeping
a T -step history of agent’s performance. The hyper-parameter T = 20 is empirically chosen to be the
same as the look-ahead parameter N in standard on-policy methods, so as to keep the same period
(T = N = 20) in “T-step history” and “N-step forward”. And σmax = 1 is chosen as the maximum
of the observed volatility based on statistics in the T history rewards of the ACKTR models. As
parameter choices could be vital, we perform an additional ablation study shown below. The result
shows that the performance of A2MC is robust across different parameters of choice and is not too
sensitive to changes on either of the hyper-params.

Games ACKTR A2MC w/ T=20 T=10 T=10 T=40 T=40
σmax=1 σmax=1 σmax=2 σmax=1 σmax=2

Boxing 1.23 99.19 94.76 98.51 99.18 98.07
Jamesbond 409.50 453.50 438.50 470.00 442.25 457.75
Wizard of Wor 744.50 5448.00 5601.00 5363.50 2528.50 3287.50

Figure 7: “Stress testing” ablation study on the MuJoCo continuous benchmark using hyperparameters
tuned in Atari discrete control. Although this set of hyperparameters is suboptimal for the MuJoCo
continuous control tasks, A2MC still obtain reasonable performance in the long run and it is less
prone to overfitting.
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Table 3: Raw scores across all games, starting with 30 no-op actions. Scores are reported by averaging
the last 500 episodes upon 50 million timesteps of training as in Wu et al. (2017). A relative margin
comparing A2MC to ACKTR is shown. Scores from other models are taken from Wu et al. (2017)
and Mnih et al. (2015).

GAME Human DQN DDQN Prior. Duel ACKTR Our A2MC (Margin)
Alien 7127.7 1620 3747.7 3941 3197.1 2986.3 -6.6%
Amidar 1719.5 978 1793.3 2296.8 1059.4 2040.1 92.6%
Assault 742.0 4280.4 5393.2 11477 10777.7 9892.4 -8.2%
Asterix 8503.3 4359 17356.5 375080 31583.0 32671.0 3.4%
Asteroids 47388.7 1364.5 734.7 1192.7 34171.6 828931.6 2325.8%
Atlantis 29028.1 279987 106056 395762 3433182.0 2886274.0 -15.9%
Bankheist 753.1 455 1030.6 1503.1 1289.7 1290.6 0.1%
Battlezone 37187.5 29900 31700 35520 8910.0 10570.0 18.6%
Beamrider 16926.5 8627.5 13772.8 30276.5 13581.4 13715.6 1.0%
Berzerk 2630.4 585.6 1225.4 3409 927.2 974.0 5.0%
Bowling 160.7 50.4 68.1 46.7 24.3 31.6 30.0%
Boxing 12.1 88 91.6 98.9 1.5 93.5 6344.8%
Breakout 30.5 385.5 418.5 366 735.7 420.6 -42.8%
Centipede 12017.0 4657.7 5409.4 7687.5 7125.3 12096.5 69.8%
Choppercommand 9882.0 N/A N/A N/A ∼8000 12149.0 ∼42.5%
Crazyclimber 35829.4 110763 117282 162224 150444.0 152439.0 1.3%
Demonattack 1971.0 12149.4 58044.2 72878.6 274176.7 361807.1 32.0%
Doubledunk -16.4 -6.6 -5.5 -12.5 -0.5 20.6 3907.5%
Enduro 860.5 729 1211.8 2306.4 0.0 3550.6 ∞%
Fishingderby -38.7 -4.9 15.5 41.3 33.7 38.4 13.9%
Freeway 29.6 30.8 33.3 33 0.0 32.7 ∞%
Frostbite 4335.0 N/A N/A N/A ∼280 293.7 ∼5.1%
Gopher 2412.5 8777.4 14840.8 104368.2 47730.8 86101.4 80.4%
Gravitar 2672.0 N/A N/A N/A ∼300 995.0 -2.9%
Icehockey 0.9 -1.9 -2.7 -0.4 -4.2 -2.1 16.3%
Jamesbond 302.8 768.5 1358 812 490.0 545.0 11.2%
Kangaroo 3035.0 7259 12992 1792 3150.0 11269.0 257.7%
Krull 2665.5 8422.3 7920.5 10374.4 9686.9 10245.4 5.8%
Kungfumaster 22736.3 26059 29710 48375 34954.0 39773.0 13.8%
Mspacman 15693.0 N/A N/A N/A ∼3500 5006.1 ∼34.5%
Namethisgame 4076.0 N/A N/A N/A ∼12500 12569.9 ∼0.6%
Phoenix 7242.6 8485.2 12252.5 70324.3 133433.7 221288.3 65.8%
Pitfall 6463.7 -286.1 -29.9 0 -1.1 -2.5 -0.3%
Pong 14.6 20.9 21 20.9 20.9 19.7 -5.9%
Privateeye 69571.0 N/A N/A N/A ∼560 507.0 -9.5%
Qbert 13455.0 13117.3 15088.5 18760.3 23151.5 24075.8 4.0%
Riverraid 17118.0 7377.6 14884.5 20607.6 17762.8 18671.9 5.1%
Roadrunner 7845.0 39544 44127 62151 53446.0 50071.0 -6.3%
Robotank 11.9 63.9 65.1 27.5 16.5 26.5 60.5%
Seaquest 42054.7 5860.6 16452.7 931.6 1776.0 1805.6 1.7%
Solaris 12326.7 3482.8 3067.8 133.4 2368.6 2277.2 -3.9%
Spaceinvaders 1668.7 1692.3 2525.5 15311.5 19723.0 13544.2 -31.3%
Stargunner 10250.0 54282 60142 125117 82920.0 89616.0 8.1%
Tennis -8.9 N/A N/A N/A ∼-12 -4.7 ∼20.4%
Timepilot 5229.2 4870 8339 7553 22286.0 21992.0 -1.3%
Tutankham 167.6 68.1 218.4 245.9 314.3 193.7 -38.4%
Upndown 11693.2 9989.9 22972.2 33879.1 436665.8 563659.3 29.1%
Videopinball 17667.9 196760.4 309941.9 479197 100496.0 127452.4 26.8%
Wizardofwor 4756.5 2704 7492 12352 702.0 7864.0 1020.2%
YarsRevenge 54576.9 18098.9 11712.6 69618.1 125169.0 143141.5 14.4%
Zaxxon 9173.3 5363 10163 13886 17448.0 19365.0 11.0%
Human-level
(Win / Total) N/A 21 / 44

(47.7%)
31 / 44

(70.4 %)
34 / 44

(77.3 %)
28 / 44

(63.6 %)
38 / 51

(74.5 %)
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D EXTENSION TO MULTI-CRITIC PPO (MC-PPO)

The learning results of the proposed MC-PPO model on the MuJoCo tasks are shown in Figure 8.
MC-PPO shows the best performance on Hopper and Walker-2d among all models under the 1-million
timesteps training budget. Both of our multi-critics variants (A2MC and MC-PPO) have won 6 out of
the 8 MuJoCo tasks with relative performance margins (percentages in parentheses) larger than 25%.

Figure 8: Performance on the MuJoCo continuous control benchmarks using PPO-based methods.
Our proposed long/short-term reward characterization can be extended to the PPO method, i.e., the
proposed multi-critic variant of PPO (MC-PPO). The shaded region denotes the standard deviation
over 3 random seeds.
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E EXTENSION TO OFF-POLICY METHODS

Methods involving experience replay belong to the family of off-policy methods as they learn from
off-policy trajectories. They were considered to be beyond the scope of this work, as we set out to
improve the family of “on-policy” methods and we try to present as complete the analyses as possible
(on both Atari and MuJoCo) in the main text.

Notwithstanding this, we have been actively exploring the potential of applying the proposed reward
mechanism with off-policy methods (in particular, on the strong baseline Rainbow Hessel et al. (2018).
For consistencies in comparisons, all hyperparameters (e.g., learning rate, distributional atoms, noisy
net σ0) are kept identical as in Hessel et al. (2018) except that we used a smaller replay buffer size of
50,000 for both the baseline and our method (due to limited compute). Moreover, we use the same
experiment settings as in Sec 6 and we have NOT further tuned any parameters in VWR. We show
preliminary results at 10 million time steps on Atari games in Figure 9 and we observe it is promising
that introducing the proposed characterization of variability-weighted reward mechanism improves
off-policy methods as well.

The robustness of our proposed reward mechanism across both on-policy and off-policy frameworks
suggests that the concept of “risk-adjusted return” Sharpe (1994) should apply in reinforcement
learning in general, as it brings the desired property in faciliating better sample efficiency and learning
stability. Given limited time and computing resources we are not able to present a full analysis on
all the off-policy frameworks as we did for the on-policy methods within this paper (since training
off-policy models takes significantly longer time). Potentially we aim to have the complete results in
an additional paper in our future works.

Figure 9: Performance of applying the variability-weighted reward to the Rainbow model on the Atari
benchmark. We observe that introducing the proposed reward characterizations significantly expediate
the learning in games such as “Jamesbond” and “NameThisName”, while showing consistent
improvement towards the rest. The shaded region denotes the standard deviation over 2 random
seeds.
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F CASE STUDY: PLAYING DOOM WITH REWARD SHAPING

It is worth investigating whether the proposed auxiliary reward signal VWR can work “side-by-side”
with carefully shaped rewards specific to some particular game scenario – for example, the FPS
game Doom Lample & Chaplot (2017). As our proposed reward characterization is generic in design
and orthogonal to reward shaping, we aim to validate that the concept of risk-adjusted return and
variability weights can be equally applied under such shaping settings.

To this end, we adopt the off-policy agent “Arnold” Lample & Chaplot (2017) with experience replay
as our baseline and we calculate VWR (see Section 4]) based on the historical sequence of the
shaped rewards defined in Lample & Chaplot (2017) (See the Table 4). For VWR parameters, we
set σmax = 5 since the maximum (minimum) attainable reward is 5.0 (−5.0) under such reward
shaping3. The rest of the game setup and bot numbers are defaulted to the code released by Lample
& Chaplot (2017).

Table 4: Reward shaping settings as in Arnold Lample & Chaplot (2017)

Type Base / Dist Kill Suicide Death Injured Use ammo Weapon / Ammo / Medkit /Armor
Value 0.0 5.0 -5.0 -5.0 -1.0 -0.2 1.0 / 1.0 / 1.0 / 1.0

We follow the evaluation criterion of Track-1 in ViZDoom AI Competition 2016 using “Frags per
episode”, i.e., the number of kills minus the number of suicides for the agent in one round of game
(higher is better). The result under 50 training hours is shown in Figure 10 and we consistently
observe that the Arnold agent can be significantly boosted with the help of VWR. This confirms that
our proposed reward characterization is able to bring further improvements on top of both reward
shaping and experience replay methods across domains.

Figure 10: Doom - Limited Deathmatch (Track-1)

(a) Game statistics in 50 hours

After 24 hours Arnold Arnod + VWR

Kills 105 183

Frags 87 173

K/D ratio 1.48 2.08

After 50 hours

Kills 116 244

Frags 113 223

K/D ratio 2.00 2.65

(b) Learning results averaged over 2 random seeds

3The maximum of the volatility based on statistics in historic reward of length T = 20 (e.g., in a scenario
where the past 20 rewards are [+5.0]× 10 + [−5.0]× 10) gives a good choice for σmax = 5.0.
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G ABLATION STUDY: VWR V.S. ELIGIBILITY TRACE

Eligibility traces TD(λ) is widely used in bridging TD algorithms to Monte Carlo (MC) methods.
Essentially, the discounted cumulative return can be formulated by not just toward “any n-step” return
(using n-step look ahead), but toward any average of n-step look-ahead returns Sutton & Barto (2018).
The online variant of generalized advantage estimation using eligibility traces (GAE) Schulman et al.
(2016) confirms that on-policy methods can benefit from TD(λ) learning.

For the proposed variability-weighted reward, the design theme is to look explicitly backward
and to assess the past performance of the agent via the “risk-adjusted return” concept. These two
mechanisms can be combined seamlessly via Eq. 8 and our empirical results suggest VWR brings
further improvements on top of eligibility traces.

As VWR and eligibility traces are thematically similar in some sense, we further perform an ablation
study to contrast the contributions brought by VWR. As shown in Figure 11, we compare three
different settings: (1) ACKTR + GAE, (2) ACKTR + vwr and (3) ACKTR + GAE + vwr (i.e., the
proposed A2MC). We observe that on average VWR brings greater improvements compared to
eligibility traces, and the combination of both (i.e., A2MC) results in consistently good performance
across the Atari testbed.

Figure 11: Ablation study of separately applying the (1) the eligibility traces (GAE) and (2) variability-
weighted reward (VWR) to the ACKTR model on the Atari benchmark. We observe that the
combination of both (i.e., A2MC) results in consistently good performance across the Atari testbed.
The shaded region denotes the standard deviation over 2 random seeds.
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H THE SHARPE RATIO ITSELF

We have explored other forms of reward that fits the general idea of introducing variability
weights to the reward shaping mechanism. One example is the “Sharpe Ratio” itself, which is
defined as rSR = E[r]

σ(r) . In our initial studies, we found it only improved upon the baseline
marginally, as rSR could end up emphasizing on penalizing high-variations and it might dis-
courage the agent too intensively (see Figure below). Thats why we have sought an alternative
formulation using the proposed rvwr and found that A2MCVWR > A2MCSR > ACKTR.
An example highlighting the vwr benefit is provided in Appendix A and a more thorough sur-
vey on key components in reward designs/formulations will be included in our future works.

I ALGORITHM

The learning algorithm of A2MC is shown in Algorithm 1.

Algorithm 1 Advantage Actor Multi-Critic Learning (A2MC)

1: Initialize parameters: θa, θjv, j ∈ {short-term, long-term}
2: Initialize look-ahead steps: N , step counter: T = 0, maximum step: Tmax
3: Initialize hot-wire probability: ε
4: Initialize environment: Env
5: Initialize reward history: ~r
6: repeat
7: Reset gradients: dθ ← 0 and dθjv ← 0, j ∈ {short-term, long-term}
8: Get state: st ← Env
9: flag = 1, arand is uniformly sampled in action space with probability ε, otherwise flag = 0

10: for t = 0 : N − 1 do
11: Perform at according to policy π(at|st; θa) if not flag else at = arand
12: Received reward rt and new state st+1, append rt to ~r
13: Calculate rvwrt from ~r based on Eq. (2-7)
14: T ← T + 1
15: end for
16: Rshort-term = V (sN ; θshort-term

v )

17: Rlong-term = V (sN ; θlong-term
v )

18: for i = N − 1 to 0 step −1 do
19: Rshort-term ← ri + γRshort-term

20: Rlong-term ← rvwri + γRlong-term

21: Advantange gradients wrt θa : dθa ← dθa +∇θa log π(ai|si; θa)
∑
j(R

j − V (si; θ
j
v))

22: for j ∈ {short-term, long-term} do
23: Accumulate gradients wrt θjv : dθ

j
v ← dθjv + ∂(Rj − V (si; θ

j
v))

2/∂θjv
24: end for
25: end for
26: until T ≥ Tmax
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Figure 12: Performance of A2MC on Atari games. The number in figure legend shows the average
reward among the last 100 episodes upon 15 million timesteps and the percentage shows the
performance margin as compared to ACKTR. The shaded region denotes the standard deviation over
2 random seeds.
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