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ABSTRACT

This paper investigates the intriguing question of whether we can create learning
algorithms that automatically generate training data, learning environments, and
curricula in order to help AI agents rapidly learn. We show that such algorithms
are possible via Generative Teaching Networks (GTNs), a general approach that
is, in theory, applicable to supervised, unsupervised, and reinforcement learning,
although our experiments only focus on the supervised case. GTNs are deep neu-
ral networks that generate data and/or training environments that a learner (e.g.
a freshly initialized neural network) trains on for a few SGD steps before being
tested on a target task. We then differentiate through the entire learning process
via meta-gradients to update the GTN parameters to improve performance on the
target task. GTNs have the beneficial property that they can theoretically gener-
ate any type of data or training environment, making their potential impact large.
This paper introduces GTNs, discusses their potential, and showcases that they
can substantially accelerate learning. We also demonstrate a practical and excit-
ing application of GTNs: accelerating the evaluation of candidate architectures
for neural architecture search (NAS), which is rate-limited by such evaluations,
enabling massive speed-ups in NAS. GTN-NAS improves the NAS state of the
art, finding higher performing architectures when controlling for the search pro-
posal mechanism. GTN-NAS also is competitive with the overall state of the art
approaches, which achieve top performance while using orders of magnitude less
computation than typical NAS methods. Speculating forward, GTNs may repre-
sent a first step toward the ambitious goal of algorithms that generate their own
training data and, in doing so, open a variety of interesting new research questions
and directions.

1 INTRODUCTION AND RELATED WORK

Access to vast training data is now common in machine learning. However, to effectively train
neural networks (NNs) does not require using all available data. For example, recent work in cur-
riculum learning (Graves et al., 2017), active learning (Konyushkova et al., 2017; Settles, 2010) and
core-set selection (Sener & Savarese, 2018; Tsang et al., 2005) demonstrates that a surrogate dataset
can be created by intelligently sampling a subset of training data, and that such surrogates enable
competitive test performance with less training effort. Being able to more rapidly determine the per-
formance of an architecture in this way could particularly benefit architecture search, where training
thousands or millions of candidate NN architectures on full datasets can become prohibitively ex-
pensive. From this lens, related work in learning-to-teach has shown promise. For example, the
learning to teach (L2T) (Fan et al., 2018) method accelerates learning for a NN learner (hereafter,
just learner) through reinforcement learning, by learning how to subsample mini-batches of data.

A key insight in this paper is that the surrogate data need not be drawn from the original data
distribution (i.e. they may not need to resemble the original data). For example, humans can learn
new skills from reading a book or can prepare for a team game like soccer by practicing skills, such
as passing, dribbling, juggling, and shooting. This paper investigates the question of whether we
can train a data-generating network that can produce synthetic data that effectively and efficiently
teaches a target task to a learner. Related to the idea of generating data, Generative Adversarial
Networks (GANs) can produce impressive high-resolution images (Goodfellow et al., 2014; Brock
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et al., 2018), but they are incentivized to mimic real data (Goodfellow et al., 2014), instead of being
optimized to teach learners more efficiently than real data.

Another approach for creating surrogate training data is to treat the training data itself as a hyper-
parameter of the training process and learn it directly. Such learning can be done through meta-
gradients (also called hyper-gradients), i.e. differentiating through the training process to optimize a
meta-objective. This approach was described in Maclaurin et al. (2015), where 10 synthetic training
images were learned using meta-gradients such that when a network is trained on these images, the
network’s performance on the MNIST validation dataset is maximized. In recent work concurrent
with our own, Wang et al. (2019b) scaled this idea to learn 100 synthetic training examples. While
the 100 synthetic examples were more effective for training than 100 original (real) MNIST training
examples, we show that it is difficult to scale this approach much further without the regularity
across samples provided by a generative architecture (Figure 2b, green line).

Being able to very quickly train learners is particularly valuable for neural architecture search (NAS),
which is exciting for its potential to automatically discover high-performing architectures, which
otherwise must be undertaken through time-consuming manual experimentation for new domains.
Many advances in NAS involve accelerating the evaluation of candidate architectures by training
a predictor of how well a trained learner would perform, by extrapolating from previously trained
architectures (Luo et al., 2018; Liu et al., 2018a; Baker et al., 2017). This approach is still expensive
because it requires many architectures to be trained and evaluated to train the predictor. Other
approaches accelerate training by sharing training across architectures, either through shared weights
(e.g. as in ENAS; Pham et al. (2018)), or Graph HyperNetworks (Zhang et al., 2018).

We propose a scalable, novel, meta-learning approach for creating synthetic data called Generative
Teaching Networks (GTNs). GTN training has two nested training loops: an inner loop to train a
learner network, and an outer-loop to train a generator network that produces synthetic training data
for the learner network. Experiments presented in Section 3 demonstrate that the GTN approach
produces synthetic data that enables much faster learning, speeding up the training of a NN by a fac-
tor of 9. Importantly, the synthetic data in GTNs is not only agnostic to the weight initialization of
the learner network (as in Wang et al. (2019b)), but is also agnostic to the learner’s architecture. As
a result, GTNs are a viable method for accelerating evaluation of candidate architectures in NAS.
Indeed, controlling for the search algorithm (i.e. using GTN-produced synthetic data as a drop-in
replacement for real data when evaluating a candidate architecture’s performance), GTN-NAS im-
proves the NAS state of the art by finding higher-performing architectures than comparable methods
like weight sharing (Pham et al., 2018) and Graph HyperNetworks (Zhang et al., 2018); it also is
competitive with methods using more sophisticated search algorithms and orders of magnitude more
computation. It could also be combined with those methods to provide further gains.

One promising aspect of GTNs is that they make very few assumptions about the learner. In contrast,
NAS techniques based on shared training are viable only if the parameterizations of the learners
are similar. For example, it is unclear how weight-sharing or HyperNetworks could be applied to
architectural search spaces wherein layers could be either convolutional or fully-connected, as there
is no obvious way for weights learned for one layer type to inform those of the other. In contrast,
GTNs are able to create training data that can generalize between such diverse types of architectures.

GTNs also open up interesting new research questions and applications to be explored by future
work. Because they can rapidly train new architectures, GTNs could be used to create NNs on-
demand that meet specific design constraints (e.g. a given balance of performance, speed, and en-
ergy usage) and/or have a specific subset of skills (e.g. perhaps one needs to rapidly create a compact
network capable of three particular skills). Because GTNs can generate virtually any learning en-
vironment, they also one day could be a key to creating AI-generating algorithms, which seek to
bootstrap themselves from simple initial conditions to powerful forms of AI by creating an open-
ended stream of challenges (learning opportunities) while learning to solve them (Clune, 2019).

2 METHODS

The main idea in GTNs is to train a data-generating network such that a learner network trained
on data it rapidly produces high accuracy in a target task. Unlike a GAN, here the two networks
cooperate (rather than compete) because their interests are aligned towards having the learner per-
form well on the target task when trained on data produced by the GTN. The generator and the
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learner networks are trained with meta-learning via nested optimization that consists of inner and
outer training loops (Figure 1a). In the inner-loop, the generator G(z, y) takes Gaussian noise (z)
and a label (y) as input and outputs synthetic data (x). Optionally, the generator could take only
noise as input and produce both data and labels as output (Appendix F). The learner is then trained
on this synthetic data for a fixed number of inner-loop training steps with any optimizer, such as
SGD or Adam (Kingma & Ba, 2014): we use SGD with momentum in this paper. SI Equation 1
defines the inner-loop SGD with momentum update for the learner parameters θt. We sample zt
(noise vectors input to the generator) from a unit-variance Gaussian and yt labels for each generated
sample) uniformly from all available class labels. Note that both zt and yt are batches of samples.
We can also learn a curriculum directly by additionally optimizing zt directly (instead of sampling
it randomly) and keeping yt fixed throughout all of training.

The inner-loop loss function `inner can be cross-entropy for classification problems or mean squared
error for regression problems. Note that the inner-loop objective does not depend on the outer-
loop objective and could even be parameterized and learned through meta-gradients with the rest
of the system (Houthooft et al., 2018). In the outer-loop, the learner θT (i.e. the learner parameters
trained on synthetic data after the T inner-loop steps) is evaluated on the real training data, which is
used to compute the outer-loop loss (aka meta-training loss). The gradient of the meta-training loss
with respect to the generator is computed by backpropagating through the entire inner-loop learning
process. While computing the gradients for the generator we also compute the gradients of hyper-
parameters of the inner-loop SGD update rule (its learning rate and momentum), which are updated
after each outer-loop at no additional cost. To reduce memory requirements, we leverage gradient-
checkpointing (Griewank & Walther, 2000) when computing meta-gradients. The computation and
memory complexity of our approach can be found in Appendix D.
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Figure 1: (a) Generative Teaching Network (GTN) Method. The numbers in the figure reflect the
order in which a GTN is executed. Noise is fed as an input to the Generator (1), which uses it to gen-
erate new data (2). The learner is trained (e.g. using SGD or Adam) to perform well on the generated
data (3). The trained learner is then evaluated on the real training data in the outer-loop to compute
the outer-loop meta-loss (4). The gradients of the generator parameters are computed w.r.t. to the
meta-loss to update the generator (5). Both a learned curriculum and weight normalization sub-
stantially improve GTN performance. (b) Weight normalization improves meta-gradient training of
GTNs, and makes the method much more robust to different hyperparameter settings. Each boxplot
reports the final loss of 20 runs obtained during hyperparameter optimization with Bayesian Opti-
mization (lower is better). (c) shows a comparison between GTNs with different types of curricula.
The GTN method with the most control over how samples are presented performs the best.

A key motivation for this work is to generate synthetic data that is learner agnostic, i.e. that gener-
alizes across different potential learner architectures and initializations. To achieve this objective, at
the beginning of each new outer-loop training, we choose a new learner architecture according to a
predefined set and randomly initialize it (details in Appendix A).

Meta-learning with Weight Normalization. Optimization through meta-gradients is often unsta-
ble (Maclaurin et al., 2015). We observed that this instability greatly complicates training because
of its hyperparameter sensitivity, and training quickly diverges if they are not well-set. Combining
the gradients from Evolution Strategies (Salimans et al., 2017) and backpropagation using inverse
variance weighting (Fleiss, 1993; Metz et al., 2019) improved stability in our experiments, but op-
timization still consistently diverged whenever we increased the number of inner-loop optimization
steps. To mitigate this issue, we introduce applying weight normalization (Salimans & Kingma,
2016) to stabilize meta-gradient training by normalizing the generator and learner weights. Instead

3



Under review as a conference paper at ICLR 2020

of updating the weights (W ) directly, we parameterize them as W = g · V/‖V ‖ and instead update
the scalar g and vector V . Weight normalization eliminates the need for (and cost of) calculating ES
gradients and combining them with backprop gradients, simplifying and speeding up the algorithm.

We hypothesize that weight normalization will help stabilize meta-gradient training more broadly,
although future work is required to test this hypothesis in meta-learning contexts besides GTNs.
The idea is that applying weight normalization to meta-learning techniques is analogous to batch
normalization for deep networks (Ioffe & Szegedy, 2015). Batch normalization normalizes the
forward propagation of activations in a long sequence of parameterized operations (a deep NN). In
meta-gradient training both the activations and weights result from a long sequence of parameterized
operations and thus both should be normalized. Results in section 3.1 support this hypothesis.

Learning a Curriculum with Generative Teaching Networks. Previous work has shown that a
learned curriculum can be more effective than training from uniformly sampled data (Graves et al.,
2017). A curriculum is usually encoded with indexes to samples from a given dataset, rendering it
non-differentiable and thereby complicating the curriculum’s optimization. With GTNs however, a
curriculum can be encoded as a series of input vectors to the generator (i.e. instead of sampling the
zt inputs to the generator from a Gaussian distribution, a sequence of zt inputs can be learned). A
curriculum can thus be learned by differentiating through the generator to optimize this sequence
(in addition to the generator’s parameters). Experiments confirm that GTNs more effectively teach
learners when optimizing such a curriculum (Section 3.2).

Accelerating NAS with Generative Teaching Networks. Since GTNs can accelerate learner train-
ing, we propose harnessing GTNs to accelerate NAS. Rather than evaluating each architecture in
a target task with a standard training procedure, we propose evaluating architectures with a meta-
optimized training process (that generates synthetic data in addition to optimizing inner-loop hyper-
parameters). We show that doing so significantly reduces the cost of running NAS (Section 3.4).

The goal of these experiments is to find a high-performing CNN architecture for the CIFAR10
image-classification task (Krizhevsky et al., 2009) with limited compute costs. We use the same
architecture search-space, training procedure, hyperparameters, and code from Neural Architecture
Optimization (Luo et al., 2018), a state-of-the-art NAS method. The search space consists of the
topology of two cells: a reduction cell and a convolutional cell. Multiple copies of such cells are
stacked according to a predefined blueprint to form a full CNN architecture (see Luo et al. (2018)
for more details). The blueprint has two hyperparameters N and F that control how many times the
convolutional cell is repeated (depth) and the width of each layer, respectively. Each cell contains
B = 5 nodes. For each node within a cell, the search algorithm has to choose two inputs as well as
two operations to apply to those inputs. The inputs to a node can be previous nodes or the outputs
of the last two layers. There are 11 operations to choose from (Appendix C).

Following Luo et al. (2018), we report the performance of our best cell instantiated with N =
6, F = 36 after the resulting architecture is trained for a significant amount of time (600 epochs).
Since evaluating each architecture in those settings (named final evaluation from now on) is time
consuming, Luo et al. (2018) uses a surrogate evaluation (named search evaluation) to estimate
the performance of a given cell wherein a smaller version of the architecture (N = 3, F = 32)
is trained for less epochs (100) on real data. We further reduce the evaluation time of each cell
by replacing the training data in the search evaluation with GTN synthetic data, thus reducing the
training time per evaluation by 300x (which we call GTN evaluation). While we were able to train
GTNs directly on the complex architectures from the NAS search space, training was prohibitively
slow. Instead, for these experiments, we optimize our GTN ahead of time using proxy learners
described in Appendix A.2, which are smaller fully-convolutional networks (this meta-training took
8h on one p6000 GPU). Interestingly, although we never train our GTN on any NAS architectures,
because of generalization, synthetic data from GTNs were still effective for training them.

3 RESULTS

We first demonstrate that weight normalization significantly improves the stability of meta-learning,
an independent contribution of this paper (Section 3.1). We then show that training with synthetic
data is more effective when learning such data jointly with a curriculum that orders its presentation
to the learner (Section 3.2). We next show that GTNs can generate a synthetic training set that
enables more rapid learning in a few SGD steps than real training data in two supervised learning
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domains (MNIST and CIFAR10) and in a reinforcement learning domain (cart-pole, Appendix H).
We then apply GTN-synthetic training data for neural architecture search to find high performing
architectures for CIFAR10 with limited compute, outperforming comparable methods like weight
sharing (Pham et al., 2018) and Graph HyperNetworks (Zhang et al., 2018) (Section 3.4).

We uniformly split the usual MNIST training set into training (50k) and validation sets (10k). The
training set was used for inner-loop training (for the baseline) and to compute meta-gradients for
all the treatments. We used the validation set for hyperparameter tuning and report accuracy on the
usual MNIST test set (10k images). We followed the same procedure for CIFAR10, resulting in
training, validation, and test sets with 45k, 5k, and 10k examples, respectively. Unless otherwise
specified, we ran each experiment 5 times and plot the mean and its 95% confidence intervals from
(n=1,000) bootstrapping. Appendix A describes additional experimental details.

3.1 IMPROVING STABILITY WITH WEIGHT NORMALIZATION

To demonstrate the effectiveness of weight normalization for stabilizing and robustifying meta-
optimization, we compare the results of running hyperparameter optimization for GTNs with and
without weight normalization on MNIST. Figure 1b shows the distribution of the final performance
obtained for 20 runs during hyperparameter tuning, which reflects how sensitive the algorithms
are to hyperparameter settings. Overall, weight normalization substantially improved robustness to
hyperparameters and final learner performance, supporting the initial hypothesis.

3.2 IMPROVING GTNS WITH A CURRICULUM

We experimentally evaluate four different variants of GTNs, each with increasing control over the
ordering of the z codes input to the generator, and thus the order of the inputs provided to the learner.
The first variant (called GTN - No Curriculum), trains a generator to output synthetic training data
by sampling the noise vector z for each sample independently from a Gaussian distribution. In the
next three GTN variants, the generator is provided with a fixed set of input samples (instead of a
noise vector). These input samples are learned along with the generator parameters during GTN
training. The second GTN variant (called GTN - All Shuffled) learns a fixed set of 4,096 input
samples that are presented in a random order without replacement (thus learning controls the data,
but not the order in which they are presented). The third variant (called GTN - Shuffled Batch) learns
32 batches of 128 samples each (so learning controls which samples coexist within a batch), but the
order in which the batches are presented is randomized (without replacement). Finally, the fourth
variant (called GTN - Full Curriculum) learns a deterministic sequence of 32 batches of 128 samples,
giving learning full control. Learning such a curriculum incurs no additional computational expense,
as learning the zt tensor is computationally negligible and avoids the cost of repeatedly sampling
new Gaussian z codes. We plot the test accuracy of a learner (with random initial weights and
architecture) as a function of outer-loop iterations for all four variants in Figure 1c. Although GTNs
- No curriculum can seemingly generate endless data (see Appendix G), it performs worse than
the other three variants with a fixed set of generator inputs. Overall, training the GTN with exact
ordering of input samples (GTN - Full Curriculum) outperforms all other variants.

While curriculum learning usually refers to training on easy tasks first and increasing their difficulty
over time, our curriculum goes beyond presenting tasks in a certain order. Specifically, GTN - Full
Curriculum learns both the order in which to present samples and the specific group of samples to
present at the same time. The ability to learn a full curriculum improves GTN performance. For that
reason, we adopt that approach for all GTN experiments.

3.3 GTNS FOR SUPERVISED LEARNING

To explore whether GTNs can generate training data that helps networks learn rapidly, we compare
to 3 treatments for MNIST classification. 1) Real Data - Training learners with random mini-batches
of real data, as is ubiquitous in SGD. 2) Dataset Distillation - Training learners with synthetic data,
where training examples are directly encoded as tensors optimized by the meta-objective, as in Wang
et al. (2019b). 3) GTN - Our method where the training data presented to the learner is generated
by a neural network. Note that all three methods meta-optimize the inner-loop hyperparameters (i.e.
the learning rate and momentum of SGD) as part of the meta-optimization.

We emphasize that producing state-of-the-art (SOTA) performance (e.g. on MNIST or CIFAR)
when training with GTN-generated data is not important for GTNs. Because the ultimate aim for
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GTNs is to accelerate NAS (Section 3.4), what matters is how well and inexpensively we can identify
architectures that achieve high asymptotic accuracy when later trained on the full (real) training set.
A means to that end is being able to train architectures rapidly, i.e. with very few SGD steps, because
doing so allows NAS to rapidly identify promising architectures. We are thus interested in “few-step
accuracy (i.e. accuracy after a few–e.g. 32 or 128–SGD steps). Besides, there are many reasons not
to expect SOTA performance with GTNs (Appendix B).

Figure 2a shows that the GTN treatment significantly outperforms the other ones (p < 0.01) and
trains a learner to be much more accurate when in the few-step performance regime. Specifically, for
each treatment the figure shows the test performance of a learner following 32 inner-loop training
steps with a batch size of 128. We would not expect training on synthetic data to produce higher
accuracy than unlimited SGD steps on real data, but here the performance gain comes because GTNs
can compress the real training data by producing synthetic data that enables learners to learn more
quickly than on real data. For example, the original dataset might contain many similar images,
where only a few of them would be sufficient for training (and GTN can produce just these few).
GTN could also combine many different things that need to be learned about images into one image.

Figure 2b shows the few-step performance of a learner from each treatment after 2000 total outer-
loop iterations (∼1 hour on a p6000 GPU). For reference, Dataset Distillation (Wang et al., 2019b)
reported 79.5% accuracy for a randomly initialized network (using 100 synthetic images vs. our
4,096) and L2T (Fan et al., 2018) reported needing 300x more training iterations to achieve > 98%
MNIST accuracy. Surprisingly, although recognizable as digits and effective for training, GTN-
generated images (Figure 2c) were not visually realistic (see Discussion).
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Figure 2: Teaching MNIST with GTN-generated images. (a) shows MNIST test set few-step ac-
curacy across outer-loop iterations for different sources of inner-loop training data. The inner-loop
consists of 32 SGD steps and the outer-loop optimizes MNIST validation accuracy. Our method
(GTN) outperforms the two controls (dataset distillation and samples from real data). (b) shows,
given final meta-training iteration, how iterations of inner-loop training compare between training
data sources (measured by MNIST training set accuracy). (c) shows 100 random samples from the
trained GTN. Samples are usually recognizable as digits, but are not realistic (see Discussion). Each
column contains samples from a different digit class, and each row is taken from different inner-loop
iterations (evenly spaced from the 32 total iterations, with early iterations at the top).

3.4 ARCHITECTURE SEARCH WITH GTNS

We next test the benefits of GTN for NAS (GTN-NAS) in CIFAR10, a domain where NAS has
previously shown significant improvements over the best architectures produced by armies of hu-
man scientists. Figure 3a shows the few-step training accuracy of a learner trained with either
GTN-synthetic data or real (CIFAR10) data over meta-training iterations. After 8h of meta-training,
training with GTN-generated data was significantly faster than with real data, as in MNIST.

To explore the potential for GTN-NAS to accelerate CIFAR10 architecture search, we investigated
the Spearman rank correlation (across architectures sampled from the NAS search space) between
accelerated GTN-trained network performance (GTN evaluation) and the usual more expensive per-
formance metric used during NAS (search evaluation). A correlation plot is shown in Figure 3c; note
that a strong correlation implies we can train architectures using GTN evaluation as an inexpensive
surrogate. We find that GTN evaluation enables predicting the performance of an architecture effi-
ciently. The rank-correlation between 128 steps of training with GTN-synthetic data vs. 100 epochs
of real data is 0.3606. The correlation improves to 0.5582 when considering the top 50% of archi-
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tectures recommended by GTN evaluation scores, which is important because those are the ones
that search would select. This improved correlation is slightly stronger than that from 3 epochs of
training with real data (0.5235), a ∼ 9× cost-reduction per trained model.
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Figure 3: Teaching CIFAR10 with GTN-generated images. (a) CIFAR10 training set performance
of the final learner (after 1,700 meta-optimization steps) across inner-loop learning iterations. (b)
Samples generated by GTN to teach CIFAR10 are unrecognizable, despite being effective for train-
ing. Each column contains a different class, and each row is taken from the same inner-loop iteration
(evenly spaced from all 128 iterations, early iterations at the top). (c) Correlation between perfor-
mance prediction using GTN-data vs. Real Data. When considering the top half of architectures
(as ranked by GTN evaluation), correlation between GTN evaluation and search evaluation is strong
(0.5582 rank-correlation), suggesting that GTN-NAS has potential to uncover high performing ar-
chitectures at a significantly lower cost. Architectures shown are uniformly sampled from the NAS
search space. The top 10% of architectures according to the GTN evaluation (blue squares)– those
likely to be selected by GTN-NAS–have high true asymptotic accuracy.

Architecture search methods are composed of several semi-independent components, such as the
choice of search space, search algorithm, and proxy evaluation of candidate architectures. GTNs
are proposed as an improvement to this last component, i.e. as a new way to quickly evaluate a new
architecture. Thus we test our method under the standard search space for CIFAR10, using a simple
form of search (random search) for which there are previous benchmark results. In particular, we ran
an architecture search experiment where we evaluated 800 randomly generated architectures trained
with GTN-synthetic data. We present the performance after final evaluation of the best architecture
found in Table 1. This experimental setting is similar to that of Zhang et al. (2018). Highlighting
the potential of GTNs as an improved proxy evaluation for architectures, we achieve state-of-the-art
results when controlling for search algorithm (the choice of which is orthogonal to our contribution).
While it is an apples-to-oranges comparison, GTN-NAS is competitive even with methods that use
more advanced search techniques than random search to propose architectures (Appendix E). GTN
is compatible with such techniques, and would likely improve their performance, an interesting area
of future work. Furthermore, because of the NAS search space, the modules GTN found can be
used to create even larger networks. A further test of whether GTNs predictions generalize is if
such larger networks would continue performing better than architectures generated by the real-
data control, similarly scaled. We tried F=128 and show it indeed does perform better (Table 1),
suggesting additional gains can be had by searching post-hoc for the correct F and N settings.

4 DISCUSSION, FUTURE WORK, AND CONCLUSION

The results presented here suggest potential future applications and extensions of GTNs. Given
the ability of GTNs to rapidly train new models, they are particularly useful when training many
independent models is required (as we showed for NAS). Another such application would be to
teach networks on demand to realize particular trade-offs between e.g. accuracy, inference time, and
memory requirements. While to address a range of such trade-offs would ordinarily require training
many models ahead of time and selecting amongst them (Elsken et al., 2019), GTNs could instead
rapidly train a new network only when a particular trade-off is needed. Similarly, agents with unique
combinations of skills could be created on demand when needed.

Interesting questions are raised by the lack of similarity between the synthetic GTN data and real
MNIST and CIFAR10 data. That unrealistic and/or unrecognizable images can meaningfully affect
NNs is reminiscent of the finding that deep neural networks are easily fooled by unrecognizable
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Table 1: Performance of different architecture search methods. Our results report mean ± SD of 5
evaluations of the same architecture with different initializations. It is common to report scores with
and without Cutout (DeVries & Taylor, 2017), a data augmentation technique used during training.
We found better architectures compared to other methods that reduce architecture evaluation speed
and were tested with random search (Random Search+WS and Random Search+GHN). Increasing
the width of the architecture found (F=128) further improves performance. Because each NAS
method finds a different architecture, the number of parameters differs. Each method ran once.

Model Error(%) #params GPU Days
Random Search + GHN (Zhang et al., 2018) 4.3± 0.1 5.1M 0.42
Random Search + Weight Sharing (Luo et al., 2018) 3.92 3.9M 0.25
Random Search + Real Data (baseline) 3.88± 0.08 12.4M 10
Random Search + GTN (ours) 3.84± 0.06 8.2M 0.67
Random Search + Real Data + Cutout (baseline) 3.02± 0.03 12.4M 10
Random Search + GTN + Cutout (ours) 2.92± 0.06 8.2M 0.67
Random Search + Real Data + Cutout (F=128) (baseline) 2.51± 0.13 151.7M 10
Random Search + GTN + Cutout (F=128) (ours) 2.42± 0.03 97.9M 0.67

images (Nguyen et al., 2015). It is possible that if neural network architectures were functionally
more similar to human brains, GTNs’ synthetic data might more resemble real data. However, an
alternate (speculative) hypothesis is that the human brain might also be able to rapidly learn an
arbitrary skill by being shown unnatural, unrecognizable data (recalling the novel Snow Crash).

The improved stability of training GTNs from weight normalization naturally suggests the hypoth-
esis that weight normalization might similarly stabilize, and thus meaningfully improve, any tech-
niques based on meta-gradients (e.g. MAML (Finn et al., 2017), learned optimizers (Metz et al.,
2019), and learned update rules (Metz et al., 2018)). In future work, we will more deeply investigate
how consistently, and to what degree, this hypothesis holds.

Both weight sharing and GHNs can be combined with GTNs by using the shared weights or Hyper-
Network for initialization of proposed learners and then fine-tuning on GTN-produced data. GTNs
could also be combined with more intelligent ways to propose which architecture to sample next
such as NAO (Luo et al., 2018). Many other extensions would also be interesting to consider. GTNs
could be trained for unsupervised learning, for example by training a useful embedding function.
Additionally, they could be used to stabilize GAN training and prevent mode collapse (Appendix I
shows encouraging initial results). One particularly promising extension is to introduce a closed-
loop curriculum (i.e. one that responds dynamically to the performance of the learner throughout
training), which we believe could significantly improve performance. For example, a recurrent GTN
that is conditioned on previous learner outputs could adapt its samples to be appropriately easier or
more difficult depending on an agent’s learning progress, similar in spirit to the approach of a human
tutor. Such closed-loop teaching can improve learning (Fan et al., 2018).

An additional interesting direction is having GTNs generate training environments for RL agents.
Appendix H shows this works for the simple RL task of CartPole. That could be either for a pre-
defined target task, or could be combined with more open-ended algorithms that attempt to con-
tinuously generate new, different, interesting tasks that foster learning (Clune, 2019; Wang et al.,
2019a). Because GTNs can encode any possible environment, they (or something similar) may be
necessary to have truly unconstrained, open-ended algorithms (Stanley et al., 2017). If techniques
could be invented to coax GTNs to produce recognizable, human-meaningful training environments,
the technique could also produce interesting virtual worlds for us to learn in, play in, or explore.

This paper introduces a new method called Generative Teaching Networks, wherein data genera-
tors are trained to produce effective training data through meta-learning. We have shown that such
an approach can produce supervised datasets that yield better few-step accuracy than an equivalent
amount of real training data, and generalize across architectures and random initializations. We
leverage such efficient training data to create a fast NAS method that generates state-of-the-art ar-
chitectures (controlling for the search algorithm). While GTNs may be of particular interest to the
field of architecture search (where the computational cost to evaluate candidate architectures often
limits the scope of its application), we believe that GTNs open up an intriguing and challenging line
of research into a variety of algorithms that learn to generate their own training data.
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APPENDIX A ADDITIONAL EXPERIMENTAL DETAILS

The outer loop loss function is domain specific. In the supervised experiments on MNIST and
CIFAR, the outer loop loss was cross-entropy for logistic regression on real MNIST or CIFAR
data. The inner-loop loss matches the outer-loop loss, but with synthetic data instead of real data.
Appendix H describes the losses for the RL experiments.

The following equation defines the inner-loop SGD with momentum update for the learner parame-
ters θt.

θt+1 = θt − α
∑

0≤t′≤t

βt−t
′
∇`inner(G(zt′ , yt′), yt′ , θt′), (1)

where α and β are the learning rate and momentum hyperparameters, respectively. zt is a batch of
noise vectors that are input to the generator and are sampled from a unit-variance Gaussian. yt are a
batch of labels for each generated sample/input and are sampled uniformly from all available class
labels. Instead of randomly sampling zt, we can also learn a curriculum by additionally optimizing zt
directly and keeping yt fixed throughout all of training. Results for both approaches (and additional
curriculum ablations) are reported in Section 3.2.

A.1 MNIST EXPERIMENTS:

For the GTN training for MNIST we sampled architectures from a distribution that produces ar-
chitectures with convolutional (conv) and fully-connectd (FC) layers. All architectures had 2 conv
layers, but the number of filters for each layer was sampled uniformly from the ranges U([32, 128])
and U([64, 256]), respectively. After each conv layer there is a max pooling layer for dimensionality
reduction. After the last conv layer, there is a fully-connected layer with number of filters sampled
uniformly from the range U([64, 256]). We used Kaiming Normal initialization (He et al., 2015)
and LeakyReLUs (Maas et al., 2013) (with α = 0.1). We use BatchNorm (Ioffe & Szegedy, 2015)
for both the generator and the learners. The BatchNorm momentum for the learner was set to 0
(meta-training consistently converged to small values and we saw no significant gain from learning
the value).

The generator consisted of 2 FC layers (1024 and 128 ∗H/4 ∗H/4 filters, respectively, where H is
the final width of the synthetic image). After the last FC layer there are 2 conv layers. The first conv
has 64 filters. The second conv has 1 filter followed by a Tanh. We found it particularly important to
normalize (mean of zero and variance of one) all datasets. Hyperparameters are shown in Table 2.

Hyperparameter Value
Learning Rate 0.01

Initial LR 0.02
Initial Momentum 0.5

Adam Beta 1 0.9
Adam Beta 2 0.999

Size of latent variable 128
Inner-Loop Batch Size 128
Outer-Loop Batch Size 128

Table 2: Hyperparameters for MNIST experiments

A.2 CIFAR10 EXPERIMENTS:

For GTN training for CIFAR-10, the template architecture is a small learner with 5 convolutional
layers followed by a global average pooling and an FC layer. The second and fourth convolution
had stride=2 for dimensionality reduction. The number of filters of the first conv layer was sam-
pled uniformly from the range U([32, 128]) while all others were sampled uniformly from the range
U([64, 256]). Other details including the generator architecture were the same as the MNIST exper-
iments, except the CIFAR generator’s second conv layer had 3 filters instead of 1. Hyperparameters
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used can be found in Table 3. For CIFAR10 we augmented the real training set when training GTNs
with random crops and horizontal flips. We do not add weight normalization to the final architectures
found during architecture search, but we do so when we train architectures with GTN-generated data
during architecture search to provide an estimate of their asymptotic performance.

Hyperparameter Value
Learning Rate 0.002

Initial LR 0.02
Initial Momentum 0.5

Adam Beta 1 0.9
Adam Beta 2 0.9

Adam ε 1e-5
Size of latent variable 128
Inner-loop Batch Size 128
Outer-loop Batch Size 256

Table 3: Hyperparameters for CIFAR10 experiments

APPENDIX B REASONS GTNS ARE NOT EXPECTED TO PRODUCE SOTA
ACCURACY VS. ASYMPTOTIC PERFORMANCE WHEN TRAINING
ON REAL DATA

There are three reasons not to expect SOTA accuracy levels for the learners trained on synthetic data:
(1) we train for very few SGD steps (32 or 128 vs. tens of thousands), (2) SOTA performance results
from architectures explicitly designed (with much human effort) to achieve record accuracy, whereas
GTN produces compressed training data optimized to generalize across diverse architectures with
the aim of quickly evaluating a new architecture’s potential, and (3) SOTA methods often use data
outside of the benchmark dataset and complex data-augmentation schemes.

APPENDIX C CELL SEARCH SPACE

When searching for the operations in a CNN cell, the 11 possible operations are listed below.

• identity

• 1× 1 convolution

• 3× 3 convolution

• 1× 3 + 3× 1 convolution

• 1× 7 + 7× 1 convolution

• 2× 2 max pooling

• 3× 3 max pooling

• 5× 5 max pooling

• 2× 2 average pooling

• 3× 3 average pooling

• 5× 5 average pooling

APPENDIX D COMPUTATION AND MEMORY COMPLEXITY

With the traditional training of DNNs with back-propagation, the memory requirements are pro-
portional to the size of the network because activations during the forward propagation have to be
stored for the backward propagation step. With meta-gradients, the memory requirement also grows
with the number of inner-loop steps because all activations and weights have to be stored for the

13



Under review as a conference paper at ICLR 2020

2nd order gradient to be computed. This becomes impractical for large networks and/or many inner-
loop steps. To reduce the memory requirements, we utilize gradient-checkpointing (Griewank &
Walther, 2000) by only storing the computed weights of learner after each inner-loop step and re-
computing the activations during the backward pass. This trick allows us to compute meta-gradients
for networks with 10s of millions of parameters over hundreds of inner-loop steps in a single GPU.
While in theory the computational cost of computing meta-gradients with gradient-checkpointing is
4x larger than computing gradients (and 12x larger than forward propagation), in our experiments it
is about 2.5x slower than gradients through backpropagation due to parallelism. We could further
reduce the memory requirements by utilizing reversable hypergradients (Maclaurin et al., 2015), but,
in our case, we were not constrained by the number of inner-loop steps we can store in memory.

APPENDIX E EXTENDED NAS RESULTS

In the limited computation regime (less than 1 day of computation), the best methods were, in
order, GHN, ENAS, GTN, and NAONet with a mean error of 2.84%, 2.89%, 2.92%, and 2.93%,
respectively. A 0.08% difference on CIFAR10 represents 8 out of the 10k test samples. For that
reason, we consider all of these methods as state of the art. Note that out of the four, GTN is the
only one relying on Random Search for architecture proposal.

Table 4: Performance of different architecture search methods. Search with our method required 16h
total, of which 8h were spent training the GTN and 8h were spent evaluating 800 architectures with
GTN-produced synthetic data. Our results report mean ± SD of 5 evaluations of the same architec-
ture with different initializations. It is common to report scores with and without Cutout (DeVries
& Taylor, 2017), a data augmentation technique used during training.We found better architectures
compared to other methods using random search (Random-WS and GHN-Top) and are competitive
with algorithms that benefit from more advanced search methods (e.g. NAONet and ENAS employ
non-random architecture proposals for performance gains; GTNs could be combined with such non-
random proposals, which would likely further improve performance). Increasing the width of the
architecture found (F=128) further improves performance.

Model Error(%) #params Random GPU Days
NASNet-A (Zoph & Le, 2017) 3.41 3.3M 7 2000
AmoebaNet-B + Cutout (Real et al., 2019) 2.13 34.9M 7 3150
DARTS + Cutout (Liu et al., 2018b) 2.83 4.6M 7 4
NAONet + Cutout (Luo et al., 2018) 2.48 10.6M 7 200
NAONet-WS (Luo et al., 2018) 3.53 2.5M 7 0.3
NAONet-WS + Cutout (Luo et al., 2018) 2.93 2.5M 7 0.3
ENAS (Pham et al., 2018) 3.54 4.6M 7 0.45
ENAS + Cutout (Pham et al., 2018) 2.89 4.6M 7 0.45
GHN Top-Best + Cutout (Zhang et al., 2018) 2.84± 0.07 5.7M 7 0.84
GHN Top (Zhang et al., 2018) 4.3± 0.1 5.1M X 0.42
Random-WS (Luo et al., 2018) 3.92 3.9M X 0.25
Random Search + Real Data (baseline) 3.88± 0.08 12.4M X 10
RS + Real Data + Cutout (baseline) 3.02± 0.03 12.4M X 10
RS + Real Data + Cutout (F=128) (baseline) 2.51± 0.13 151.7M X 10
Random Search + GTN (ours) 3.84± 0.06 8.2M X 0.67
Random Search + GTN + Cutout (ours) 2.92± 0.06 8.2M X 0.67
RS + GTN + Cutout (F=128) (ours) 2.42± 0.03 97.9M X 0.67

APPENDIX F CONDITIONED GENERATOR VS. XY-GENERATOR

Our experiments in the main paper conditioned the generator to create data with given labels, by
concatenating a one-hot encoded label to the input vector. We also explored an alternative approach
where the generator itself produced a target probability distribution to label the data it generates.
Because more information is encoded into a soft label than a one-hot encoded one, we expected
an improved training set to be generated by this variant. Indeed, such a “dark knowledge” dis-
tillation setup has been shown to perform better than learning from labels (Hinton et al., 2015).
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However, the results in Figure 4 indicate that jointly generating both images and their soft labels
under-performs generating only images, although the result could change with different hyperpa-
rameter values and/or innovations that improve the stability of training.
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Figure 4: Comparison between a conditional generator and a generator that outputs an image/label
pair. We expected the latter “dark knowledge” approach to outperform the conditional generator, but
that does not seem to be the case. Because initialization and training of the dark knowledge variant
were more sensitive, we believe a more rigorous tuning of the process could lead to a different result.

APPENDIX G GTN GENERATES (SEEMINGLY) ENDLESS DATA

While optimizing images directly (i.e. optimizing a fixed tensor of images) would result in a fixed
number of samples, optimizing a generator can potentially result in an unlimited amount of new
samples. We tested this generative capability by generating more data during evaluation (i.e. with
no change to the meta-optimization procedure) in two ways. In the first experiment, we increase
the amount of data in each inner-loop optimization step by increasing the batch size (which results
in lower variance gradients). In the second experiment, we keep the number of samples per batch
fixed, but increase the number of inner-loop optimization steps for which a new network is trained.
Both cases result in an increased amount of training data. If the GTN generator has overfit to the
number of inner-loop optimization steps during meta-training and/or the batch size, then we would
not expect performance to improve when we have the generator produce more data. However, an
alternate hypothesis is that the GTN is producing a healthy distribution of training data, irrespective
of exactly how it is being used. Such a hypothesis would be supported by performance increase in
these experiments.

Figure 5a shows performance as a function of increasing batch size (beyond the batch size used
during meta-optimization, i.e. 128). The increase in performance of GTN means that we can sample
larger training sets from our generator (with diminishing returns) and that we are not limited by
the choice of batch size during training (which is constrained due to both memory and computation
requirements).

Figure 5b shows the results of generating more data by increasing the number of inner-loop opti-
mization steps. Generalization to more inner-loop optimization steps is important when the number
of inner-loop optimization steps used during meta-optimization is not enough to achieve maximum
performance. This experiment also tests the generalization of the optimizer hyperparameters be-
cause they were optimized to maximize learner performance after a fixed number of steps. There
is an increase in performance of the learner trained on GTN-generated data as the number of inner-
loop optimization steps is increased, demonstrating that the GTN is producing generally useful data
instead of overfitting to the number of inner-loop optimization steps during training (Figure 5b).
Extending the conclusion from Figure 2b, in the very low data regime, GTN is significantly better
than training on real data (p < 0.05). However, as more inner-loop optimization steps are taken and
thus more unique data is available to the learner, training on the real data becomes more effective
than learning from synthetic data (p < 0.05) (see Figure 5b).
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Figure 5: (a) The left figure shows that even though GTN was meta-trained to generate synthetic
data of batch size 128, sampling increasingly larger batches results in improved learner performance
(the inner-loop optimization steps are fixed to 16). (b) The right figure shows that increasing the
number of inner-loop optimization steps (beyond the 16 steps used during meta-training) improves
learner performance. The performance gain with real data is larger in this setting. This improvement
shows that GTNs do not overfit to a specific number of inner-loop optimization steps.

Figure 6: GTN samples w/o curriculum.

Another interesting test for our generative model is to test the distribution of learners after they have
trained on the synthetic data. We want to know, for instance, if training on synthetic samples from
one GTN results in a functionally similar set of learner weights regardless of learner initialization
(this phenomena can be called learner mode collapse). Learner mode collapse would prevent the
performance gains that can be achieved through ensembling diverse learners. We tested for learner
mode collapse by evaluating the performance (on held-out data and held-out architecture) of an en-
semble of 32 randomly initialized learners that are trained on independent batches from the same
GTN. To construct the ensemble, we average the predicted probability distributions across the learn-
ers to compute a combined prediction and accuracy. The results of this experiment can be seen in
Figure 7, which shows that the combined performance of an ensemble is better (on average) than
an individual learner, providing additional evidence that the distribution of synthetic data is healthy
and allows ensembles to be harnessed to improve performance, as is standard with networks trained
on real data.

APPENDIX H GTN FOR RL

To demonstrate the potential of GTNs for RL, we tested our approach with a small experiment
on the classic CartPole test problem (see Brockman et al. (2016) for details on the domain. We
conducted this experiment before the discovery that weight normalization improves GTN training,
so these experiments do not feature it; it might further improve performance. For this experiment, the
meta-objective the GTN is trained with is the advantage actor-critic formulation: log π(a|θπ)(R −
V (s; θv)) (Mnih et al., 2016). The state-value V is provided by a separate neural network trained to
estimate the average state-value for the learners produced so far during meta-training. The learners
train on synthetic data via a single-step of SGD with a batch size of 512 and a mean squared error
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Figure 7: Performance of an ensemble of GTN learners vs. individual GTN learners. Ensembling a
set of neural networks that each had different weight initializations, but were trained on data from
the same GTN substantially improves performance. This result provides more evidence that GTNs
generate a healthy distribution of training data and are not somehow forcing the learners to all learn
a functionally equivalent solution.

regression loss, meaning the inner loop is supervised learning. The outer-loop is reinforced because
the simulator is non-differentiable. We could have also used an RL algorithm in the inner loop. In
that scenario the GTN would have to learn to produce an entire synthetic world an RL agent would
learn in. Thus, it would create the initial state and then iteratively receive actions and generate the
next state and optionally a reward. For example, a GTN could learn to produce an entire MDP that
an agent trains on, with the meta-objective being that the trained agent then performs well on a target
task. We consider such synthetic (PO)MDPs an exciting direction for future research.

The score on CartPole is the number of frames out of 200 for which the pole is elevated. Both
GTN and an A2C (Mnih et al., 2016) control effectively solve the problem (Figure 8). Interestingly,
training GTNs takes the same number of simulator steps as training a single learner with policy-
gradients (Figure 8). Incredibly, however, once trained, the synthetic data from a GTN can be used
to train a learner to maximum performance in a single SGD step! While that is unlikely to be true
for harder target RL tasks, these results suggest that the speed-up for architecture search from using
GTNs in the RL domain can be even greater than in supervised domain.

The CartPole experiments feature a single-layer neural network with 64 hidden units and a tanh
activation function for both the policy and the value network. The inner-loop batch size was 512
and the number of inner-loop training iterations was 1. The observation space of this environment
consists of a real-valued vector of size 4 (Cart position, Cart velocity, Pole position, Pole velocity).
The action space consists of 2 discrete actions (move left or move right). The outer loop loss is the
reward function for the target domain (here, pole-balancing). The inner loop loss is mean squared
error (i.e. the network is doing supervised learning on the state-action mapping pairs provided by
the GTN).

APPENDIX I SOLVING MODE COLLAPSE IN GANS WITH GTNS

We created an implementation of generative adversarial networks (GANs) (Goodfellow et al., 2014)
and found they tend to generate the same class of images (e.g. only 1s, Figure 9), which is a common
training pathology in GANs known as mode collapse (Srivastava et al., 2017). While there are tech-
niques to prevent mode collapse (e.g. minibatch discrimination and historical averaging (Salimans
et al., 2016)), we hypothesized that combining the ideas behind GTNs and GANs might provide a
different, additional technique to help combat mode collapse. The idea is to add a discriminator to
the GTN forcing the data it generates to both be realistic and help a learner perform well on the
meta-objective of classifying MNIST. The reason this approach should help prevent mode collapse
is that if the generator only produces one class of images, a learner trained on that data will not
be able to classify all classes of images. This algorithm (GTN-GAN) was able to produce realistic
images with no identifiable mode collapse (Figure 10). GTNs offer a different type of solution to
the issue of mode collapse than the many that have been proposed, adding a new tool to our toolbox
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Figure 8: An A2C Agent control trains a single policy throughout all of training, while the GTN
method starts with a new, randomly initialized network at each iteration and produces the plotted
performance after a single step of SGD. This plot is difficult to parse because of that difference:
it compares the accumulated performance of A2C across all environment steps up to that point vs.
the performance achieved with GTN data in a single step of SGD from a single batch of synthetic
data. Thus, at the 100,000th step of training, GTNs enable training a newly initialized network to
the given performance (of around 190) 100,000 times faster with GTN synthetic data than with A2C
from scratch. With GTNs, we can therefore train many new, high-performing agents quickly. That
would be useful in many ways, such as greatly accelerating architecture search algorithms for RL. Of
course, these results are on a simple problem, and (unlike our supervised learning experiments) have
not yet shown that the GTN data works with different architectures, but these results demonstrate
the intriguing potential of GTNs for RL. One reason we might expect even larger speedups for RL
vs. supervised learning is because a major reason RL is sample inefficient is because it requires
exploration to figure out how to solve the problem. However, once that exploration has been done,
the GTN can produce data to efficiently teach that solution to a new architecture. RL thus represents
an exciting area of future research for GTNs. Performing that research is beyond the scope of this
paper, but we highlight the intriguing potential here to inspire such future work.

for solving that problem. Note we do not claim this approach is better than other techniques to
prevent mode collapse, only that it is an interesting new type of option, perhaps one that could be
productively combined with other techniques.

Figure 9: Images generated by a basic GAN on MNIST before and after mode collapse. The
left image shows GAN-produced images early in GAN training and the right image shows GAN
samples later in training after mode collapse has occurred due to training instabilities.

APPENDIX J ADDITIONAL MOTIVATION

There is an additional motivation for GTNs that involves long-term, ambitious research goals: GTN
is a step towards algorithms that generate their own training environments, such that agents trained
in them eventually solve tasks we otherwise do not know how to train agents to solve (Clune, 2019).
It is important to pursue such algorithms because our capacity to conceive of effective training en-
vironments on our own as humans is limited, yet for our learning algorithms to achieve their full
potential they will ultimately need to consume vast and complex curricula of learning challenges
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Figure 10: Images generated by a GTN with an auxiliary GAN loss. Combining GTNs with
GANs produces far more realistic images than GTNs alone (which produced alien, unrecognizable
images, Figure 6). The combination also stabilizes GAN training, preventing mode collapse.

and data. Algorithms for generating curricula, such as the the paired open-ended trailblazer (POET)
algorithm (Wang et al., 2019a), have proven effective for achieving behaviors that would otherwise
be out of reach, but no algorithm yet can generate completely unconstrained training conditions. For
example, POET searches for training environments within a highly restricted preconceived space of
problems. GTNs are exciting because they can encode a rich set of possible environments with min-
imal assumptions, ranging from labeled data for supervised learning to (in theory) entire complex
virtual RL domains (with their own learned internal physics). Because RNNs are Turing-complete
(Siegelmann & Sontag, 1995), GTNs should be able to theoretically encode all possible learning
environments. Of course, while what is theoretically possible is different from what is achievable
in practice, GTNs give us an expressive environmental encoding to begin exploring what potential
is unlocked when we can learn to generate sophisticated learning environments. The initial results
presented here show that GTNs can be trained end-to-end with gradient descent through the entire
learning process; such end-to-end learning has proven highly scalable before, and may similarly in
the future enable learning expressive GTNs that encode complex learning environments.

19


