
Under review as a conference paper at ICLR 2020

STUDENT SPECIALIZATION IN DEEP RELU NET-
WORKS WITH FINITE WIDTH AND INPUT DIMENSION

Anonymous authors
Paper under double-blind review

ABSTRACT

To analyze deep ReLU network, we adopt a student-teacher setting in which an
over-parameterized student network learns from the output of a fixed teacher net-
work of the same depth, with Stochastic Gradient Descent (SGD). Our contri-
butions are two-fold. First, we prove that when the gradient is small at every
training sample, student node specializes to teacher nodes in the lowest layer un-
der mild conditions. Second, analysis of noisy recovery and training dynamics in
2-layer network shows that strong teacher nodes (with large fan-out weights) are
learned first and subtle teacher nodes are left unlearned until late stage of train-
ing. As a result, it could take a long time to converge into these small-gradient
critical points. Our analysis shows that over-parameterization is a necessary con-
dition for specialization to happen at the critical points, and helps student nodes
cover more teacher nodes with fewer iterations. Both improve generalization. Dif-
ferent from Neural Tangent Kernel (Jacot et al., 2018) and statistical mechanics
approach (Goldt et al., 2019), our approach operates on finite width, mild over-
parameterization (as long as there are more student nodes than teacher) and finite
input dimension. Experiments justify our finding.

1 INTRODUCTION

Deep Learning has achieved great success in the recent years (Silver et al., 2016; He et al., 2016;
Devlin et al., 2018). Although networks with even one-hidden layer can fit any function (Hornik
et al., 1989), it remains an open question how such networks can generalize to new data. Different
from what traditional machine learning theory predicts, empirical evidence (Zhang et al., 2017)
shows more parameters in neural network lead to better generalization. How over-parameterization
yields strong generalization is an important question for understanding how deep learning works.

In this paper, we analyze deep ReLU networks with teacher-student setting: a fixed teacher network
provides the output for a student to learn via SGD. Both teacher and student are deep ReLU net-
works. Similar to (Goldt et al., 2019), the student is over-realized compared to the teacher: at each
layer l, the number nl of student nodes is larger than the number ml of teacher (nl > ml). Al-
though over-realization is different from over-parameterization, i.e., the total number of parameters
in the student model is larger than the training set size N , over-realization directly correlates with
the width of networks and is a measure of over-parameterization.

The student-teacher setting has a long history (Saad & Solla, 1996; 1995; Freeman & Saad, 1997;
Mace & Coolen, 1998) and recently gains increasing interest (Goldt et al., 2019; Aubin et al., 2018)
in analyzing 2-layered network. While worst-case performance on arbitrary data distributions may
not be a good model for real structured dataset and can be hard to analyze, using a teacher network
implicitly enforces an inductive bias and could potentially lead to better generalization bound.

Specialization, that is, a student node becomes increasingly correlated with a teacher node during
training (Saad & Solla, 1996), is one of the important topic in this setup. If all student nodes are
specialized to the teacher, then student tends to output the same as the teacher and generalization
performance can be expected. Empirically, it has been observed in 2-layer networks (Saad & Solla,
1996; Goldt et al., 2019) and multi-layer networks (Tian et al., 2019; Li et al., 2016), in both synthetic
and real dataset. In contrast, theoretical analysis is limited with strong assumptions (e.g., Gaussian
inputs, infinite input dimension, local convergence, 2-layer setting, small number of hidden nodes).
In this paper, with arbitrary training distribution and finite input dimension, we show rigorously that
when gradient at each training sample is small (i.e., the interpolation setting as suggested in (Ma
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et al., 2017; Liu & Belkin, 2018; Bassily et al., 2018)), the student node at the lowest layer can be
proven to specialize to the teacher nodes: each teacher node is aligned with at least one student
node in the lowest layer. This explains one-to-many mapping between teacher and student nodes
and the existence of un-specialized student nodes, as observed empirically in (Saad & Solla, 1996).
Furthermore, from the proof condition, more over-realization encourages specialization.

Our setting is different from previous works. (1) While statistical mechanics approaches (Saad
& Solla, 1996; Goldt et al., 2019; Gardner & Derrida, 1989; Aubin et al., 2018) assume both the
training set size N and the input dimension d goes to infinite (i.e., the thermodynamics limits) and
assume Gaussian inputs, our analysis allows finite d and impose no parametric constraints on the
input data distribution. (2) While Neural Tangent Kernel (Jacot et al., 2018; Du et al., 2018b) and
mean-field approaches (Mei et al., 2018) requires infinite (or very large) width, our setting applies to
finite width as long as student is slightly over-realized (nl ≥ ml). In this paper we study the infinite
training sample case (the training set is a region), and leave finite sample analysis as the future work.

In addition, we further analyze the training dynamics and show that most student nodes converge
first towards strong teacher nodes with large fan-out weights in magnitude. While this makes train-
ing robust to dataset noise and naturally explains implicit regularization, the same mechanism also
leaves weak teacher nodes unexplained until very late stage of training, yielding high generalization
error with finite iterations. In this situation, we show that over-realization plays another important
role: once the strong teacher nodes have been covered, there are always spare student nodes ready
to switch to weak teacher nodes quickly. Empirically, we show more teacher nodes are covered with
the same number of iterations, and generalization is also improved.

We verify our findings with numerical experiments. Starting with 2-layer setting, we justify Theo-
rem 2 and Theorem 3 with Gaussian inputs, showing one-to-many specialization and existence of
un-specialized nodes. For deep ReLU networks, we show specialization happens not only in the
lowest layer, as suggested by Theorem 4, but also in other hidden layers, on both Gaussian inputs
and CIFAR10. We also perform ablation studies about the effect of student over-realization. For
training dynamics, we show the strong/weak teacher effects in 2-layer settings and over-realization
could improve specialization and generalization.

2 RELATED WORKS

Student-teacher setting. This setting has a long history (Engel & Van den Broeck, 2001; Gard-
ner & Derrida, 1989). The seminar works (Saad & Solla, 1996; 1995) studies 1-hidden layer case
from statistical mechanics point of view in which the input dimension goes to infinity, or so-called
thermodynamics limits. They study symmetric solutions and locally analyze the symmetric break-
ing behavior and onset of specialization of the student nodes towards the teacher. Recent follow-up
works (Goldt et al., 2019) makes the analysis rigorous and empirically shows that random initial-
ization and training with SGD indeed gives student specialization in 1-hidden layer case, which is
consistent with our experiments. With the same assumption, (Aubin et al., 2018) studies phase tran-
sition property of specialization in 2-layer networks with small number of hidden nodes using replica
formula. In these works, inputs are assumed to be Gaussian and step or Gauss error function is used
as nonlinearity. Few works study teacher-student setting with more than two layers. (Allen-Zhu
et al., 2019a) shows the recovery results for 2 and 3 layer networks, with modified SGD, batchsize
1 and heavy over-parameterization.

In comparison, our work shows that specialization happens around the SGD critical points in the
lowest layer for deep ReLU networks, without any parametric assumptions of input distribution.

Local minima is Global. While in deep linear network, all local minima are global (Laurent &
Brecht, 2018; Kawaguchi, 2016), situations are quite complicated with nonlinear activations. While
local minima is global when the network has invertible activation function and distinct training sam-
ples (Nguyen & Hein, 2017; Yun et al., 2018) or Leaky ReLU with linear separate input data (Lau-
rent & von Brecht, 2017), multiple works (Du et al., 2018a; Ge et al., 2017; Safran & Shamir, 2017;
Yun et al., 2019) show that in GD case with population or empirical loss, spurious local minima
can happen even in two-layered network. Many are specific to two-layer and hard to generalize to
multi-layer setting. In contrast, our work brings about a generic formulation for deep ReLU network
and gives recovery properties in the student-teacher setting.
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Figure 1: Problem Setup. (a) Student-teacher setting. The student network learns from the output of a fixed
teacher network via stochastic gradient descent (SGD). (b) Notations. All low cases are scalar, bolds are column
vectors and upper cases are matrices.

Learning wild networks. Recent works on Neural Tangent Kernel (Jacot et al., 2018; Du et al.,
2018b; Allen-Zhu et al., 2019b) show the global convergence of GD for multi-layer networks with
infinite width. (Li & Liang, 2018) shows the convergence in one-hidden layer ReLU network us-
ing GD/SGD to solution with good generalization, when the input data are assumed to be clustered
into classes. Both lines of work assume heavily over-parameterized network, requiring polynomial
growth of number of nodes with respect to the number of samples. (Chizat & Bach, 2018) shows
global convergence of over-parameterized network with optimal transport. (Tian et al., 2019) as-
sumes mild over-realization and gives convergence results for 2-layer network when a subset of the
student network is close to the teacher. Our work extends it with much weaker assumptions.

Deep Linear networks. For deep linear networks, multiple works (Lampinen & Ganguli, 2019;
Saxe et al., 2013; Arora et al., 2019; Advani & Saxe, 2017) have shown interesting training dynam-
ics. One common assumption is that the singular spaces of weights at nearby layers are aligned
at initialization, which decouples the training dynamics. Such a nice property would not hold for
nonlinear network. (Lampinen & Ganguli, 2019) shows that under this assumption, weight compo-
nents with large singular value are learned first, while we analyze and observe empirically similar
behaviors on the student node level. Generalization property of linear networks can also be analyzed
in the limit of infinite input dimension with teacher-student setting (Lampinen & Ganguli, 2019).
However, deep linear networks lack specialization which plays a crucial role in the nonlinear case.
To our knowledge, we are the first to analyze specialization rigorously in deep ReLU networks.

3 MATHEMATICAL FRAMEWORK

Notation. Consider a student network and its associated teacher network (Fig. 1(a)). Denote the
input as x. We focus on multi-layered networks with σ(·) as ReLU nonlinearity. We use the follow-
ing equality extensively: σ(x) = I[x > 0]x, where I[·] is the indicator function. For node j, fj(x),
zj(x) and gj(x) are its activation, gating function and backpropagated gradient after the gating.

Both teacher and student networks have L layers. The input layer is layer 0 and the topmost layer
(layer that is closest to the output) is layer L. For layer l, let ml be the number of teacher node
while nl be the number of student node. The weights Wl ∈ Rnl−1×nl refers to the weight matrix
that connects layer l − 1 to layer l on the student side. Wl = [wl,1,wl,2, . . . ,wl,nl ] where each
w ∈ Rnl−1 is the weight vector. Similarly we have teacher weight W ∗l ∈ Rml−1×ml . Denote
W = {W1,W2, . . . ,WL} as the collection of all trainable parameters.

Let fl(x) = [fl,1(x), . . . , fl,nl(x)]ᵀ ∈ Rnl be the activation vector of layer l, Dl(x) =
diag[zl,1(x), . . . , zl,nl(x)] ∈ Rnl×nl be the diagonal matrix of gating function (for ReLU it is
either 0 or 1), and gl(x) = [gl,1(x), . . . , gl,nl(x)]ᵀ ∈ Rnl be the backpropated gradient vector. By
definition, the input layer has f0(x) = x ∈ Rn0 and m0 = n0. Note that fl(x), gl(x) and Dl(x) are
all dependent onW . For brevity, we often use fl(x) rather than fl(x;W).

All notations with superscript ∗ are from the teacher, only dependent on the teacher and remains the
same throughout the training. D∗L(x) = DL(x) ≡ IC×C since there is no ReLU gating. Note that
C is the dimension of output for both teacher and student. With the notation, gradient descent is:

Ẇl = Ex [fl−1(x)gᵀ
l (x)] (1)

In SGD, the expectation Ex [·] is taken over a batch. In GD, it is over the entire dataset.
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Bias term. With the same notation we can also include the bias term. In this case, Wl ∈
R(nl−1+1)×nl , wl,1 = [w̃; b] ∈ Rnl−1+1, fl ∈ Rnl+1 (last column is all one), gl ∈ Rnl+1 and
Dl ∈ R(nl+1)×(nl+1) (last diagonal element is always 1).

Objective. We assume that both the teacher and the student output a vector. We use the output of
teacher as the input of the student and the objective is:

min
W

J(W) =
1

2
Ex

[
‖f∗L(x)− fL(x)‖2

]
(2)

We want to ask the following qeustion:

Are student nodes specialized to teacher nodes at the same layers after training? (*)

One might wonder this is hard since the student’s intermediate layer receives no direct supervision
from the corresponding teacher layer, but relies only on backpropagated gradient. Surprisingly, the
following theorem shows that it is possible for every intermediate layer:

Lemma 1 (Recursive Gradient Rule). At layer l, the backpropagated gl(x) satisfies

gl(x) = Dl(x) [Al(x)f∗l (x)−Bl(x)fl(x)] , (3)

where the mixture coefficient Al(x) = V ᵀ
l (x)V ∗l (x) ∈ Rnl×ml and Bl(x) = V ᵀ

l (x)Vl(x) ∈
Rnl×nl . The matrices Vl(x) ∈ RC×nl and V ∗l (x) ∈ RC×ml are defined in a top-down manner:

Vl−1(x) = Vl(x)Dl(x)W ᵀ
l , V ∗l−1(x) = V ∗l (x)D∗l (x)W ∗ᵀl (4)

In particular, VL(x) = V ∗L (x) = IC×C .

For convenience, we can write Vl(x) = [vl,1(x),vl,2(x), . . . ,vl,nl(x)], then we have each ele-
ment of Al, αl,jj′(x) = vᵀ

l,j(x)v∗l,j′(x) and element of Bl, βl,jj′(x) = vᵀ
l,j(x)vl,j′(x). Note that

Lemma 1 applies to arbitrarily deep ReLU networks and allows different number of nodes for the
teacher and student. In particular, student can be over-parameterized (or over-realized).

Let R0 = {x : ρ(x) > 0} be the infinite training set, where ρ(x) is the input data distribution. Let
Rl = {fl(x) : x ∈ R0}, which is the image of the training set at the output of layer l, and also a
convex polytope. Then the mixture coefficient Al(x) and Bl(x) have the following property:

Corollary 1 (Piecewise constant). R0 can be decomposed into a finite (but potentially exponential)
set of regionsRl−1 = {R1

l−1, R
2
l−1, . . . , R

J
l−1}. Al(x) and Bl(x) are constant in Rjl−1.

4 CRITICAL POINT ANALYSIS

We first show that due to property of ReLU node and subset sampling in SGD, at SGD critical point,
under mild condition, the teacher node aligns with at least one student node and the goal (*) can be
reached in the lowest layer.

Definition 1 (SGD critical point). Ŵ is a SGD critical point if for any batch, Ẇl = 0 for 1 ≤ l ≤ L.

Theorem 1 (Interpolation). Denote D = {xi} as a dataset of N samples. If Ŵ is a critical point
for SGD, then either gl(xi; Ŵ) = 0 or fl−1(xi; Ŵ) = 0.

Such critical points exist since over-realized student can mimic teacher perfectly. Note that critical
points in SGD is much stronger than those in GD, where the gradient is always averaged at a fixed
data distribution. If fl−1 has a bias term (and fl−1 6= 0 always), then gl(xi; Ŵ) = 0. For topmost
layer, immediately we have gL(xi; Ŵ) = f∗L(xi)− fL(xi) = 0, which is global optimum with zero
training loss. In the following, we want to check whether this condition leads to specialization, i.e.,
whether the teacher’s weights are recovered/aligned by the student, i.e., whether for teacher j, there
exists a student k at the same layer so that wk = γwj for some γ > 0.

Note that gl(xi; Ŵ) = 0 might be a strong assumption since in practice the gradient is small but
never zero. A weaker assumption is that ‖gl(xi; Ŵ)‖∞ ≤ ε or even Et

[
‖gl(xi; Ŵ)‖∞

]
≤ ε. For

this, Theorem 5 shows (approximate) alignment/specialization still holds for noisy case.
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Figure 2: Convergence (2 dimension) for 2 teachers (solid line) and 6 students (dashed line). Legend shows
‖vk‖ for student node k. ‖vk‖ → 0 for nodes that are not aligned with teacher.

4.1 ASSUMPTION OF TEACHER NETWORK

Obviously, an arbitrary teacher network won’t be reconstructed. A trivial example is that a teacher
network always output 0 since all the training samples lie in the inactive halfspace of its ReLU
nodes. Therefore, we need to impose condition on the teacher network.

Let Ej = {x : fj(x) > 0} be the activation region of node j. Note that the halfspace Ej is an open
set. Let ∂Ej = {x : fj(x) = 0} be the decision boundary of node j.
Definition 2 (Observer). Node k is an observer of node j if Ek ∩ ∂Ej 6= ∅.
Assumption 1 (Teacher Network). For each layer l, we require that (1) the teacher weights w∗l,j
are not co-linear. and (2) the boundary of w∗l,j is visible in the training set: ∂E∗l,j ∩Rl−1 6= ∅.

Assumption 1 is our assumption of the teacher. The first requirement is trivial. The second one is
reasonable since two teacher nodes who behaves linearly in the training set are indistinguishable.

4.2 ALIGNMENT OF TEACHER WITH STUDENT, 2-LAYER CASE

We first start with 2-layer case, in which A1(x) and B1(x) are constant with respect to x, since
there is no ReLU gating at the top layer l = 2. In this case, from the SGD critical point at l = 1,
g1(x) = D1(x) [A1f

∗
1 (x)−B1f1(x)] = 0, alignment between teacher and student can be achieved:

Theorem 2 (Student-teacher Alignment, 2-layers). With Assumption 1, at SGD critical point, if a
teacher node j is observed by a student node k and αkj 6= 0, then there exists at least one student
node k′ aligned with j.

The intuition is that if the input x takes sufficiently diverse values, ReLU activations σ(wᵀ
kx) can

be proven to be mutually linear independent. On the other hand, the gradient of each student node
k when active, is αᵀ

kf1(x) − bᵀ
kf1(x) = 0, a linear combination of teacher and student nodes (note

αᵀ
k and βᵀ

k are k-th rows of A1 and B1). Therefore, zero gradient means that the summation of
coefficients of co-linear ReLU nodes is zero. Since teachers are not co-linear, any teacher node is
co-linear with at least one student node. Alignment with multiple student nodes is also possible. If
there is no nonlinearity (e.g., deep linear models), alignment won’t happen since a linear subspace
has many representations.

Note that a necessary condition of a reconstructed teacher node is that its boundary is in the ac-
tive region of student, or is observed (Definition 2). This is intuitive since a teacher node which
behaves like a linear node is partly indistinguishable from a bias term. This also suggests that over-
parameterization (more student nodes) are important. More student nodes mean more observers,
and the existence argument in Theorem 4 is more likely to happen and more teacher nodes can be
covered by student, yielding better generalization.

For student nodes that are not aligned with the teacher, if they are observed by other student nodes,
then following a similar logic, we have the following:
Theorem 3 (Prunable Un-specialized Student Nodes). With Assumption 1, at SGD critical point,
if an unaligned student k has C independent observers (concatenating v yields a full rank matrix),
then

∑
k′∈co-linear(k) vk′‖wk′‖ = 0. If node k is not co-linear with any other student, then vk = 0.

Corollary 2. With sufficient observers, the contribution of all unaligned student nodes is zero.
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Theorem 3 and Corollary 2 open the way of network pruning (LeCun et al., 1990; Hassibi et al.,
1993; Hu et al., 2016). This is consistent with Theorem 5 in (Tian et al., 2019) which also shows
the fan-out weights are zero up on convergence in 2-layer networks, if the initialization is close. In
contrast, Theorem 3 analyzes the critical point rather than the dynamics.

Note that a relate theorem (Theorem 6) in (Laurent & von Brecht, 2017) studies 2-layer network
with scalar output and linear separable input, and discusses characteristics of individual data point
contributing loss in a local minima of GD. Here no linear separable condition is imposed.

4.3 MULTI-LAYER CASE

Thanks to Lemma 1 which holds for deep ReLU networks, we can use similar intuition to analyze the
behavior of the lowest layer (l = 1) in the multiple layer case. The difference here is that A1(x) and
B1(x) are no longer constant over x. Fortunately, using Corollary 1, we know thatA1(x) andB1(x)
are piece-wise constant that separate the input region R0 into a finite (but potentially exponential)
set of constant regions R0 = {R1

0, R
2
0, . . . , R

J
0 } plus a zero-measure set. This suggests that we

could check each region separately. If the boundary of a teacher j and a student k lies in the region,
similar logic applies (here αkj is the (k, j) entry of A1(x) and is constant in a region R ∈ R0).
Theorem 4 (Student-teacher Alignment, Multiple Layers). With Assumption 1, at SGD critical
points, for any teacher node j at l = 1, if there exists a region R ∈ R and a student observer k so
that ∂E∗j ∩ Ek ∩R 6= ∅ and αkj(R) 6= 0, then node j aligns with at least one student node k′.

Note that even with random V1(x) (e.g., at initialization), Theorem 4 still holds with high probability
(when αkj 6= 0) and teacher f∗1 (x) can still align with student f1(x). This suggests a picture of
bottom-up training in backpropagation: After the alignment of activations at layer 1, we just treat
layer 1 as the low-level features and the procedure repeats until the student matches with the teacher
at all layers. This is consistent with many previous works that empirically show the network is
learned in a bottom-up manner (Li et al., 2018).

Note that the alignment may happen concurrently across layers: if the activations of layer 1 start
to align, then activations of layer 2, which depends on activations of layer 1, will also start to align
since there now exists a W2 that yields strong alignments, and so on. This creates a critical path
from important student nodes at the lowest layer all the way to the output, and this critical path
accelerates the convergence of that student node. We leave a formal analysis to the future work.

Small Gradient Case. In practice, stochastic gradient (or its expectation over time) fluctuates
around zero (‖g1(x)‖∞ ≤ ε, or Et [‖g1(x)‖∞] ≤ ε), but never zero. In this case, Theorem 5
shows that a rough specialization still follows. The ratio of recovery is also shown for weights/biases
separately, as a function of ε. Note θ̃jj′ is the angle of two weights w̃j and w̃j′ .

Theorem 5 (Noisy Recovery). If Assumption 1 holds and any two teachers w∗j , w∗j′ satisfy θ̃jj′ ≥
θ0 > 0 or |b∗j′ − b∗j | ≥ b0 > 0. Suppose ‖g1(x, Ŵ)‖∞ ≤ ε for any x ∈ R0 with ε ≤ ε0, then for any
teacher j at l = 1, if there exists a regionR ∈ R and a student observer k so that ∂E∗j ∩Ek∩R 6= ∅,
and αkj(R) 6= 0, then j is roughly aligned with a student k′: sin θjk′ = O

(
ε1−δ

|αkj |

)
and |b∗j − bk′ | =

O
(
ε1−2δ

|αkj |

)
for any δ > 0. The hidden constants depends on δ, ε0 and the size of region ∂E∗j ∩Ek∩R.

Note that Et [‖g1(x)‖∞] ≤ ε leads to ‖g1(x)‖∞ ≤ ε at least for some iteration t. Therefore,
Theorem 5 still applies since it does not rely on past history of the weight/gradient. Note that
Theorem 5 assumes infinite number of data points and leave finite sample case to future work.

5 ANALYSIS ON TRAINING DYNAMICS

Our analysis so far shows student specialization happens at SGD critical points under mild condi-
tions. A natural question arises: is running SGD long enough sufficient to achieve these critical
points? Some previous works (Ge et al., 2017; Livni et al., 2014) show that empirically SGD does
not recover the parameters of a teacher network up to permutation, while other works (Saad & Solla,
1996; Goldt et al., 2019) show specialization happens. Why there is a discrepancy? There are several
reasons. First, from Theorem 3, there exist un-specialized student nodes, so a simple permutation
test on student weights might fail. Second, as suggested by Theorem 5, it can take a long time to
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recover a teacher node k with small ‖v∗k‖ (since αkj = v∗ᵀk vj). In fact, if v∗k = 0 then it has no
contribution to the output and recovery never happens. This is particularly problematic if the output
dimension is 1 (scalar output), since a single small teacher weight v∗k would block the recovery of
the entire teacher node k. Previous works (Lampinen & Ganguli, 2019) shows similar behaviors
in the dynamics of singular values in deep linear networks in teacher-student setting, which lack
student specialization. Here we study these behaviors in deep ReLU networks.

In the following, we analyze various local dynamic behaviors of 2-layer ReLU network. Due to the
complexity, we leave a formal characterization of the entire training procedure for future work.
Definition 3. A teacher node j is strong (or weak), if ‖v∗j‖ is large (or small).

In this case, the dynamics can be written as the following:

ẇk = Ex [fl−1zk[f∗ᵀl αk − fᵀl βk]] = Ex [fl−1zk[V ∗l f
∗
l − Vlfl]ᵀvk] = Ex [fl−1zkr

ᵀvk] , (5)

where V1 and V ∗1 are constant, αk = V ∗ᵀl vk, βk = V ᵀ
l vk and residue rl = V ∗l f

∗
l − Vlfl ∈ RC .

5.1 WEIGHT MAGNITUDE

From Eqn. 5, we know that for both ReLU and linear network (since fk(x) = zk(x)wᵀ
kfl−1(x)):

1

2

d‖wk‖2

dt
= wᵀ

kẇk = Ex [fkr
ᵀ
l vk] (6)

When there is only a single output, rl is a scalar and Eqn. 6 is simply an inner product between the
residue and the activation of node k, over the batch. So if the node k has activation which aligns
well with the residual, the inner product is larger and ‖wk‖ grows faster.

5.2 ANGLES BETWEEN TEACHER AND STUDENT WEIGHTS

Note that Eqn. 6 only tell that the weight norm would increase, but didn’t tell whether wk converges
to any teacher node w∗j . It could be the case that ‖wk‖ goes up but doesn’t move towards the teacher.
To see that, let’s check the quantity:

Ex

[
fl−1zkf

∗
j

]
= Ex

[
fl−1zkz

∗
j f

ᵀ
l−1
]
w∗j = Gkjw

∗
j (7)

where Gkj = Ex

[
fl−1zkz

∗
j f

ᵀ
l−1
]
. Putting it in another way, we want to check the spectrum property

of the PSD matrix Gkj . Intuitively, the direction of Ex

[
fl−1zkf

∗
j

]
should lie between wk and w∗j ,

and the magnitude is large when wk and w∗j are close to each other. This means that if r is dominated
by a teacher j (i.e., ‖v∗j‖ is large), then ẇk would push wk towards w∗j . This also shows that SGD
will first try fitting strong teacher nodes, then weak teacher nodes.

Theorem 6 confirms this intuition if fl−1 follows spherical symmetric distribution (e.g., N (0, I)).

Theorem 6. If fl−1 follows spherical symmetric distribution, then Ex

[
fl−1zkf

∗
j

]
∝

‖w∗j ‖‖wk‖
2

[
(π − θ)w∗j + sin θwk

]
, where θ is the angle between w∗j and wk.

As a result, for all θ ∈ [0, π], Ex

[
fl−1zkf

∗
j

]
is always between w∗j and wk since π− θ and sin θ are

always non-negative. Without such symmetry, we assume the following holds:
Assumption 2. Ex [fl−1zkfj ] = ψ(θjk)wj + ψ′(θjk)wk, where ψ(π) = 0.

Note that critical point analysis is applicable to any batch size, including 1. On the other hand,
Assumption 2 holds when a moderately large batchsize leads to a decent estimation of the terms.

With this assumption, we can write the dynamics as ẇk = ‖wk‖rk, where the time-varying residue
rk of node k is defined as the following (ν is a scalar related to ψ′):

rk =
∑
j

αjkψ(θjk)w∗j −
∑
k′

βk′kψ(θk′k)wk′ − νwk (8)

5.3 SYMMETRIC BREAKING, WINNERS-TAKE-ALL AND FOCUS SHIFTING

We could show that for two nodes k 6= k′, regardless of the form of rk, we have (note that w̄ is the
length-normalized version of w):

7
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Figure 3: Student specialization of a 2-layered network with 10 teacher nodes and 1x/2x/5x/10x student
nodes. p is teacher polarity factor (Eqn. 9). For a student node k, we plot its normalized correlation (in terms of
activation vector evaluated in a separate evaluation set) to its best correlated teacher as the x coordinate and the
fan-out weight norm ‖vk‖ as the y coordinate. We plot results from 32 random seed. Student nodes of different
seeds are in different color. An un-specialized student node has low fan-out weight norm (Theorem 3).

.

Theorem 7. For dynamics ẇk = ‖wk‖rk, we have d
dt ln ‖wk‖‖wk′‖

= w̄ᵀ
krk − w̄ᵀ

k′rk′ .

We consider a special (and symmetric) case: rk = r = w∗ −
∑
k akwk with all ak > 0, where w∗

is a joint contribution of all teacher nodes. In this case, we could show that when w̄ᵀ
krk > w̄ᵀ

k′rk′ ,
d
dt (w̄

ᵀ
krk − w̄ᵀ

k′rk′) < 0 and vice versa. So the system provides negative feedback until w̄k = w̄k′

and according to Eqn. 7, the ratio between ‖wk‖ and ‖wk′‖ remains constant, after initial transition.
We can also show that w̄k will align with w∗ and every student node goes to w∗.

However, due to Theorem 6, the net effect w∗ can be different for different students and thus rk are
different. This opens the door for complicated dynamic behavior of neural network training.

Symmetry breaking. As one example, if we add a very small delta to some node, say k = 1 so that
r1 = r+ εw∗. Then to make d

dt (w̄
ᵀ
krk− w̄ᵀ

k′rk′) = 0, we have w̄ᵀ
krk > w̄ᵀ

k′rk′ and thus according
to Theorem 7, ‖wk‖/‖wk′‖ grows exponentially. This symmetric breaking behavior provides a
potential winners-take-all mechanism, since according to Theorem 6, the coefficient of w∗ depends
critically on the initial angle between wk and w∗.

Strong teacher nodes are learned first. If ‖v∗j‖ is the largest among teacher nodes, then the joint
w∗ heavily biases towards teacher j and all student nodes move towards teacher j. As a result,
strong teacher learns first and is often covered by multiple co-linear students (Fig. 6, teacher-0).

Focus shifting to weak teacher nodes. The process above continues until residual along the direc-
tion of w∗j quickly shrinks and residual corresponding to other teacher node (e.g., w∗j′ for j′ 6= j)
becomes dominant. Since each rk is different, student node k whose direction is closer to w∗j′
(j′ 6= j) will shift their focus towards w∗j′ , as shown in the green (shift to teacher-2) and magenta
(shift to teacher-5) curves in Fig. 6.

Possible slow convergence to weak teacher nodes. While expected angle between two weights
from initialization is π/2, shifting a student node wk from chasing after a strong teacher node w∗j
to a weaker one w∗j′ could yield a large initial angle (e.g., close to π) between wk and wj′ . For
example, all student nodes have been attracted to the opposite direction of a weak teacher node. In
this case, the convergence can be arbitrarily slow. In fact, if there is only one teacher node and θ
is the angle between teacher and student, then from Eqn. 8 we arrive at θ̇ ∝ −ψ(θ) sin θ. Since
ψ(θ) sin θ ∼ (π− θ)2 around θ = π, the time spent from θ = π− ε to some θ0 is t0 ∼ 1

ε −
1

π−θ0 →
+∞ when ε→ 0. In this case, over-realization helps by having more student nodes that are possibly
ready for shifting towards weaker teachers, and thus accelerate convergence (Fig. 7). Alternatively,
we could reinitialize those student nodes (Prakash et al., 2019).

6 EXPERIMENTS

We first verify our theoretical finding on synthetic dataset. We generate the input using N (0, σ2I)
with σ = 10 and we sample 10k as training and another 10k as evaluation. For deep ReLU net-
works, we regenerate the dataset after every epoch to mimic infinite sample setting. The details of
teacher/student construction is in Appendix (Sec. 8.16). The normalized correlation between nodes
is computed in terms of activation vectors evaluated on a separate evaluation set.

Two layer networks. First we verify Theorem 2 and Theorem 3 in the 2-layer setting. Fig. 6 shows
student nodes correlate with different teacher nodes over time. Fig. 3 shows for different degrees of

8
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Figure 4: The strength of student specialization versus their fan-out coefficients in 4 layer ReLU network.
Number of hidden teacher nodes is 50-75-100-125. Student is 10x over-realized. The dataset is regenerated
with the input distribution after every epoch. For node k, y-axis is

√
Ex [βkk(x)], equivalent to the fan-out

weight norm ‖vk‖ in 2-layer case, and x-axis is its max correlation to the teachers. The lower layer learns first.

0 4 8 12 16
Teacher idx

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
 R

ec
ov

er
y 

Ra
te p = 0.5

1x
2x
5x
10x

0 4 8 12 16
Teacher idx

p = 1

0 4 8 12 16
Teacher idx

p = 1.5

0 4 8 12 16
Teacher idx

p = 2

0 4 8 12 16
Teacher idx

p = 2.5

Figure 5: Success rate (over 32 trials with different random seeds) of recovery of 20 teacher nodes on 2-layer
network at different teacher polarity p (Eqn. 9) and different over-realization. Dotted line: successful rate after
5 epochs. Solid line: successful rate after 100 epochs.

over-realization (1×/2×/5×/10×), for nodes with weak specialization (i.e., its normalized correla-
tion to the most correlated teacher is low), their magnitudes of fan-out weights are small. Otherwise
the nodes with strong specialization have high fan-out weights.

Deep Networks. For deep ReLU networks, we observe specialization not only at the lowest layer, as
suggested by Theorem 4, but also at multiple hidden layers. This is shown in Fig. 4. For each student
node k, the x-axis is its best normalized correlation to teacher nodes, and y-axis is

√
Ex [βkk(x)],

which is equivalent to ‖vk‖ in 2-layer case. In the plot, we can also see the lowest layer learns first
(the “L-shape” curve was established at epoch 10), then the top layers follow.

Ablation on the effect of over-realization. To further understand the role of over-realization, we
plot the average rate of a teacher node that is matched with at least one student node successfully
(i.e., correlation > 0.95). Fig. 5 shows that stronger teacher nodes are more likely to be matched,
while weaker ones may not be explained well, in particular when the strength of the teacher nodes
are polarized (p is large). Over-realized student can explain more teacher nodes, while a student
with 1× nodes has sufficient capacity to fit the teacher perfectly, it gets stuck despite long training.

In addition, the evaluation loss (Appendix Fig. 11) shows that over-realization yields better general-
ization, in particular with large teacher node polarity (p is large), where weak teacher nodes are hard
to capture. For good performance on real datasets, getting weak teacher nodes can be important.

Training Dynamics. We set up a diverse strength of teacher node by constructing the fanout weights
of teacher node j as follows:

‖v∗j‖ ∼ 1/jp, (9)
where p is the teacher polarity factor that controls how strong the energy decays across different
teacher nodes. p = 0 means all teacher nodes are symmetric, and large p means that the strength of
teacher nodes are more polarized.
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Figure 6: Student specialization with teacher polarity p = 1 (Eqn. 9). Same students are represented by
the same color across plots. Three rows represent three different random seeds. We can see more students
nodes specialize to teacher-1 first. In contrast, teacher-5 was not specialized until later by a node (e.g.,
magenta in the first row) that first chases after teacher-1 then shifts its focus.
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Figure 7: Evolution of best student correlation to teacher over iterations. Each rainbow color represents one
of the 20 teachers (blue: strongest, red: weakest). 5x over-parameterization on 2-layer network.

Fig. 6 and Fig. 7 show that many student nodes specialize to a strong teacher node first. Once the
strong teacher node was covered well, weaker teacher nodes are covered after many epochs.

CIFAR-10. We also experiment on CIFAR-10. We first pre-train a teacher network with 64-64-64-
64 ConvNet (64 are channel sizes of the hidden layers, L = 5) on CIFAR-10 training set. Then
the teacher network is pruned in a structured manner to keep strong teacher nodes. The student is
over-realized based on teacher’s remaining channels.

The convergence and specialization behaviors of student network is shown in Fig. 8. Spe-
cialization happens at all layers for different degree of over-realization. Over-realization
boosts student specialization, measured by mean of maximal normalized correlation ρmean =
meanj∈ teacher maxj′∈ student f̃

∗ᵀ
j f̃j′ at each layer (f̃j is the normalized activation of node j over

N evaluation samples), and improves generalization, evaluated on CIFAR-10 evaluation set.

7 CONCLUSION AND FUTURE WORK

In this paper, we use student-teacher setting to analyze how an (over-parameterized) deep ReLU
student network trained with SGD learns from the output of a teacher. When the magnitude of gra-
dient per sample is small (student weights are near the critical points), the teacher can be proven to
be covered by (possibly multiple) students and thus the teacher network is recovered in the lowest
layer. By analyzing training dynamics, we also show that strong teacher node with large ‖v∗‖ is
reconstructed first, while weak teacher node is reconstructed slowly. This reveals one important rea-
son why the training takes long to reconstruct all teacher weights and why generalization improves
with more training. As the next step, we would like to extend our analysis to finite sample case, and
analyze the training dynamics in a more formal way. Verifying the insights from theoretical analysis
on a large dataset (e.g., ImageNet) is also the next step.
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Figure 8: Mean of the max teacher correlation ρmean with student nodes over epochs in CIFAR10. More
over-realization gives better student specialization across all layers and achieves strong generalization (higher
evaluation accuracy on CIFAR-10 evaluation set).
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8 APPENDIX

8.1 LEMMA 1

Proof. We prove by induction. When l = L we know that gL(x) = f∗L(x) − fL(x), by setting
V ∗L (x) = VL(x) = IC×C and the fact that DL(x) = IC×C (no ReLU gating in the last layer), the
condition holds.

Now suppose for layer l, we have:

gl(x) = Dl(x) [Al(x)f∗l (x)−Bl(x)fl(x)] (10)
= Dl(x)V ᵀ

l (x) [V ∗l (x)f∗l (x)− Vl(x)fl(x)] (11)

Using

fl(x) = Dl(x)W ᵀ
l fl−1(x) (12)

f∗l (x) = D∗l (x)W ∗ᵀl f∗l−1(x) (13)
gl−1(x) = Dl−1(x)Wlgl(x) (14)

we have:

gl−1(x) = Dl−1(x)Wlgl(x) (15)
= Dl−1(x)WlDl(x)V ᵀ

l (x)︸ ︷︷ ︸
V ᵀ
l−1(x)

[V ∗l (x)f∗l (x)− Vl(x)fl(x)] (16)

= Dl−1(x)V ᵀ
l−1(x)

V ∗l (x)D∗l (x)W ∗ᵀl︸ ︷︷ ︸
V ∗l−1(x)

f∗l−1(x)− Vl(x)Dl(x)W ᵀ
l︸ ︷︷ ︸

Vl−1(x)

fl−1(x)

 (17)

= Dl−1(x)V ᵀ
l−1(x)

[
V ∗l−1(x)f∗l−1(x)− Vl−1(x)fl−1(x)

]
(18)

= Dl−1(x)
[
Al−1(x)f∗l−1(x)−Bl−1(x)fl−1(x)

]
(19)

8.2 THEOREM 1

Proof. By definition of SGD critical point, we know that for any batch Bj , Eqn. 1 vanishes:

Ẇl = Ex

[
gl(x; Ŵ)fᵀl−1(x; Ŵ)

]
=
∑
i∈Bj

gl(xi; Ŵ)fᵀl−1(xi; Ŵ) =
∑
i∈Bj

Ui = 0 (20)

where Ui = gl(xi; Ŵ)fᵀl−1(xi; Ŵ). Note that Bj can be any subset of samples from the data
distribution. Therefore, for a dataset of sizeN , Eqn. 20 holds for all

(
N
|B|
)

batches, but there are only
N data samples. With simple Gaussian elimination we know that for any i1 6= i2, Ui1 = Ui2 = U .
Plug that into Eqn. 20 we know U = 0 and thus for any i, Ui = 0. Since Ui is an outer product, the
theorem follows.

Note that if ‖Ẇl‖∞ ≤ ε, which is ‖
∑
i∈Bj Ui‖∞ ≤ ε, then with simple Gaussian elimination for

two batches B1 and B2 with only two sample difference, we will have for any i1 6= i2, ‖Ui1 −
Ui2‖∞ = ‖

∑
i∈B1

Ui −
∑
i∈B2

Ui‖∞ ≤ ‖
∑
i∈B1

Ui‖∞ + ‖
∑
i∈B2

Ui‖∞ = 2ε. Plug things back
in and we have |B|‖Ui‖∞ ≤ [2(|B| − 1) + 1]ε, which is ‖Ui‖∞ ≤ 2ε. If fl−1(x; Ŵ) has the bias
term, then immediately we have ‖gl(x; Ŵ)‖∞ ≤ ε.
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(a) (b) (c)

Figure 9: Proof illustration for (a) Lemma 2, (b) Lemma 3 and (c) Theorem 4.

8.3 COROLLARY 1

Proof. The base case is that VL(x) = V ∗L (x) = IC×C , which is constant (and thus piece-wise
constant) over the entire input space. If for layer l, Vl(x) and V ∗l (x) are piece-wise constant, then
by Eqn. 4 (rewrite it here):

Vl−1(x) = Vl(x)Dl(x)W ᵀ
l , V ∗l−1(x) = V ∗l (x)D∗l (x)W ∗ᵀl (21)

since Dl(x) and D∗l (x) are piece-wise constant and W ᵀ
l and W ∗ᵀl are constant, we know that for

layer l − 1, Vl−1(x) and V ∗l−1(x) are piece-wise constant. Therefore, for all l = 1, . . . L, Vl(x) and
V ∗l (x) are piece-wise constant.

Therefore, Al(x) and Bl(x) are piece-wise constant with respect to input x. They separate the
region R0 into constant regions with boundary points in a zero-measured set.

8.4 LEMMA 2

Lemma 2. Consider K ReLU activation functions fj(x) = σ(wᵀ
j x) for j = 1 . . .K. If wj 6= 0

and no two weights are co-linear, then
∑
j′ cj′fj′(x) = 0 for all x ∈ Rd+1 suggests that all cj = 0.

Proof. Suppose there exists some cj 6= 0 so that
∑
j cjfj(x) = 0 for all x. Pick a point x0 ∈ ∂Ej

so that wᵀ
j x0 = 0 but all wᵀ

j′x0 6= 0 for j′ 6= j, which is possible due to the distinct weight
conditions. Consider an ε-ball Bx0,ε = {x : ‖x − x0‖ ≤ ε}. We pick ε so that sign(wᵀ

j′x) for
all j′ 6= j remains the same within Bx0,ε (Fig. 9(a)). Denote [j+] as the indices of activated ReLU
functions in Bx0,ε except j.

Then for all x ∈ Bx0,ε ∩ Ej , we have:

h(x) ≡
∑
j′

cj′fj′(x) = cjw
ᵀ
j x +

∑
j′∈[j+]

cj′w
ᵀ
j′x = 0 (22)

Since Bx0,ε is a d-dimensional object rather than a subspace, for x0 and x0 + εek ∈ B(x0, ε), we
have

h(x0 + εek)− h(x0) = ε(cjwjk +
∑

j′∈[j+]

cj′wj′k) = 0 (23)

where ek is axis-aligned unit vector (1 ≤ k ≤ d). This yields

cjw̃j +
∑

j′∈[j+]

cj′w̃j′ = 0d (24)

Plug it back to Eqn. 22 yields
cjbj +

∑
j′∈[j+]

cj′bj′ = 0 (25)

where means that for the (augmented) d+ 1 dimensional weight:

cjwj +
∑

j′∈[j+]

cj′wj′ = 0d+1 (26)

15



Under review as a conference paper at ICLR 2020

However, if we pick x′ = x0 − ε w̃j
‖w̃j‖2 ∈ Bx0,ε ∩ E{

j , then fj(x′) = 0 but
∑
j′∈[j+] f

′
j(x
′) =

−cjwᵀ
j x
′ = εcj and thus ∑

j′

cj′fj′(x
′) = εcj 6= 0 (27)

which is a contradiction.

8.5 LEMMA 3

Lemma 3 (Local ReLU Independence). Let R be an open set. Consider K ReLU nodes fj(x) =
σ(wᵀ

j x), j = 1, . . . ,K. wj 6= 0, wj 6= γwj′ for j 6= j′ with any γ > 0.

If there exists c1, . . . , cK , c• so that the following is true:∑
j

cjfj(x) + c•wᵀ
• x = 0, ∀x ∈ R (28)

and for node j, ∂Ej ∩R 6= ∅, then cj = 0.

Proof. We can apply the same logic as Lemma 2 to the region R (Fig. 9(b)). For any node j, since
its boundary ∂Ej is in R, we can find a similar x0 so that x0 ∈ ∂Ej ∩ R and x0 /∈ ∂Ej′ for any
j′ 6= j. We construct Bx0,ε. Since R is an open set, we can always find ε > 0 so that Bx0,ε ⊆ R
and no other boundary is in this ε-ball. Following similar logic of Lemma 2, cj = 0.

8.6 LEMMA 4

Lemma 4 (Relation between Hyperplanes). Let wj and wj′ two distinct hyperplanes with ‖w̃j‖ =
‖w̃j′‖ = 1. Denote θjj′ as the angle between the two vectors wj and wj′ . Then there exists
ũj′ ⊥ w̃j and wᵀ

j′ ũj′ = sin θjj′ .

Proof. Note that the projection of w̃j′ onto w̃j is:

ũj′ =
1

sin θjj′
P⊥w̃j w̃j′ (29)

It is easy to verify that ‖ũj′‖ = 1 and wᵀ
j′ ũj′ = sin θjj′ .

8.7 LEMMA 5

Lemma 5 (Evidence of Data points on Misalignment). Let R ⊂ Rd be an open set. Consider K
ReLU nodes fj(x) = σ(wᵀ

j x), j = 1, . . . ,K. ‖w̃j‖ = 1, wj are not co-linear. Then for a node j
with ∂Ej ∩R 6= ∅, and ε ≤ ε0, either of the conditions holds:

(1) There exists node j′ 6= j so that sin θjj′ ≤MKε1−δ/|cj | and |bj′ − bj | ≤M2ε
1−2δ/|cj |.

(2) There exists xj ∈ ∂Ej ∩R so that for any j′ 6= j, |wᵀ
j′xj | > 5ε/|cj |.

where θjj′ is the angle between w̃j and w̃j′ , δ > 0, r is the radius of a d − 1 dimensional ball

contained in ∂Ej ∩R, M =
10εδ0
r

√
d
2π , M0 = maxx∈∂Ej∩R ‖x‖ and M2 = 2M0MKεδ0 + 5ε2δ0 .

Proof. Define qj = 5ε/|cj |. For each j′ 6= j, define Ij′ = {x : |wᵀ
j′x| ≤ qj , x ∈ ∂Ej}. We prove

by contradiction. Suppose for any j′ 6= j, sin θjj′ > KMε1−δ/|cj | or |bj′ − bj | > M2ε
1−2δ/|cj |.

Otherwise the theorem already holds.

Case 1. When sin θjj′ > KMε1−δ/|cj | holds.

From Lemma 4, we know that for any x ∈ ∂Ej , if wᵀ
j′x = −qj , with aj′ ≤ 2qj |cj |/MKε1−δ =

10εδ/MK, we have x′ = x + aj′uj′ ∈ ∂Ej and wᵀ
j′x
′ = +qj .
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Consider a d − 1-dimensional sphere B ⊆ Ωj and its intersection of Ij′ ∩ B for j′ 6= j. Suppose
the sphere has radius r. For each Ij′ ∩B, its d− 1-dimensional volume is upper bounded by:

V (Ij′ ∩B) ≤ aj′Vd−2(r) ≤ εδ 10

MK
Vd−2(r) (30)

where Vd−2(r) is the d− 2-dimensional volume of a sphere of radius r. Intuitively, the intersection
between wᵀ

j′x = −qj and B is at most a d − 2-dimensional sphere of radius r, and the “height” is
at most aj′ .

Case 2. When sin θjj′ ≤ KMε1−δ/|cj | but |bj′ − bj | > M2ε
1−2δ/|cj | holds.

In this case, we want to show that for any x ∈ Ωj , |wᵀ
j′x| > qj and thus Ij′ ∩ B = ∅. If this is not

the case, then there exists x ∈ Ωj so that |wᵀ
j′x| ≤ qj . Then since x ∈ ∂Ej , we have:

|wᵀ
j′x| = |(wj′ −wj)

ᵀx| = |(w̃j′ − w̃j)
ᵀx̃ + (b′j − bj)| ≤ qj (31)

Therefore, from Cauchy inequality and triangle inequality, we have:

‖w̃j′ − w̃j‖‖x̃‖ ≥ |(w̃j′ − w̃j)
ᵀx̃| ≥ |b′j − bj | − |w

ᵀ
j′x| (32)

From the condition, we have ‖w̃j′ − w̃j‖ = 2 sin
θjj′

2 ≤ 2 sin θjj′ ≤ 2KMε1−δ/|cj |. Then

2M0MKε1−δ/|cj | ≥ |(w̃j′ − w̃j)
ᵀx̃| ≥ |bj′ − bj | − qj > M2ε

1−2δ/|cj | − 5ε/|cj | (33)

which is equivalent to:
2M0MKεδ > M2 − 5ε2δ (34)

which means that
M2 < 2M0MKεδ + 5ε2δ ≤ 2M0MKεδ0 + 5ε2δ0 (35)

for ε ≤ ε0. This is a contradiction. Therefore, Ij′ ∩B = ∅ and thus V (Ij′ ∩B) = 0.

Volume argument. Therefore, from the definition of M , we have V (B) = Vd−1(r) ≥
r
√

2π
d Vd−2(r) = 10

M εδ0Vd−2(r), then for ε ≤ ε0, we have:

V (B) =
10

M
εδ0Vd−2(r) >

∑
j′ 6=j,j′ in case 1

V (Ij′ ∩B) (36)

This means that there exists xj ∈ B ⊆ Ωj so that xj /∈ Ij′ ∩B for any j′ 6= j and j′ in case 1. That
is,

|wᵀ
j′xj | > qj (37)

On the other hand, for j′ in case 2, the above condition holds for entire Ωj , and thus hold for the
chosen xj .

8.8 LEMMA 6

Lemma 6 (Local ReLU Independence, Noisy case). LetR be an open set. ConsiderK ReLU nodes
fj(x) = σ(wᵀ

j x), j = 1, . . . ,K. ‖w̃j‖ = 1, wj are not co-linear. If there exists c1, . . . , cK , c• and
ε ≤ ε0 so that the following is true:∣∣∣∣∑

j

cjfj(x) + c•wᵀ
• x

∣∣∣∣ ≤ ε, ∀x ∈ R (38)

and for a node j, ∂Ej ∩R 6= ∅. Then there exists node j′ 6= j so that sin θjj′ ≤MKε1−δ/|cj | and
|bj′ − bj | ≤M2ε

1−2δ/|cj |, where r, δ,M,M2 are defined in Lemma 5 but with r′ = r − 5ε/|cj |.

Proof. Let qj = 5ε/|cj | and Ωj = {x : x ∈ ∂Ej ∩R, B(x, qj) ⊆ R}. If situation (1) in Lemma 5
happens then the theorem holds. Otherwise, applying Lemma 5 withR′ = {x : x ∈ R, B(x, qj) ⊆
R} and there exists xj ∈ Ωj so that

|wᵀ
j′xj | ≥ qj = 5ε/|cj | (39)
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(a) (b)

Figure 10: (a) Lemma 5. (b) Lemma 6.

Let two points x±j = xj ± qjw̃j ∈ R. In the following we show that the three points xj and
x±j are on the same side of ∂Ej′ for any j′ 6= j. This can be achieved by checking whether
(wᵀ

j′xj)(w
ᵀ
j′x
±
j ) ≥ 0 (Fig. 10):

(wᵀ
j′xj)(w

ᵀ
j′x
±
j ) = (wᵀ

j′xj)
[
wᵀ
j′(xj ± qjw̃j)

]
(40)

= (wᵀ
j′xj)

2 ± qj(wᵀ
j′xj)w

ᵀ
j′w̃j (41)

= |wᵀ
j′xj |(|w

ᵀ
j′xj | ± qjw

ᵀ
j′w̃j) (42)

Since |wᵀ
j′w̃j | ≤ 1, it is clear that (wᵀ

j′xj)(w
ᵀ
j′x
±
j ) ≥ 0. Therefore the three points xj and x±j are

on the same side of ∂Ej′ for any j′ 6= j.

Let h(x) =
∑
j cjfj(x) + c•wᵀ

• x, then |h(x)| ≤ ε for x ∈ R. Since x+
j +x−j = 2xj , we know that

all terms related to w• and wj′ with j 6= j will cancel out (they are in the same side of the boundary
∂Ej′ ) and thus:

4ε ≥ |h(x+
j ) + h(x−j )− 2h(xj)| = |cjqjwᵀ

jwj | = |cj |qj = 5ε (43)

which is a contradiction.

8.9 THEOREM 2

Proof. In this situation, because D2(x) = D∗2(x) = I , according to Eqn. 4, V1(x) = W ᵀ
1 and

V ∗1 (x) = W ∗ᵀ1 are independent of input x. Therefore, both A1 and B1 are independent of input x.

From Assumption 1, since ρ(x) > 0 in R0, from Theorem. 1 we know that the SGD critical points
gives g1(x) = D1(x) [A1f

∗
1 (x)−B1f1(x)] = 0. Picking node k, the following holds for every

node k and every x ∈ R0 ∩ Ek:
αᵀ
kf
∗(x)− βᵀ

kf(x) = 0 (44)

Here αᵀ
k is the k-th row of A1, A1 = [α1, . . . ,αn1 ]ᵀ and similarly for βᵀ

k . Note here layer index
l = 1 is omitted for brevity.

For teacher j, suppose it is observed by student k, i.e., ∂E∗j ∩Ek 6= ∅. Given all teacher and student
nodes, note that co-linearity is a equivalent relation, we could partition these nodes into disjoint
groups. Suppose node j is in group s. In Eqn. 44, if we combine all coefficients in group s together
into one term csw

∗
j (with ‖w∗j‖ = 1), we have:

cs = αkj −
∑

k′∈co-linear(j)
‖wk′‖βkk′ (45)

18



Under review as a conference paper at ICLR 2020

“At most” because from Assumption 1, all teacher weights are not co-linear. Note that co-linear(j)
might be an empty set.

By Assumption 1, ∂E∗j ∩ R0 6= ∅ and by observation property, ∂E∗j ∩ Ek 6= ∅, we know that for
R = R0 ∩ Ek, ∂E∗j ∩ R 6= ∅. Applying Lemma 3, we know that cs = 0. Since αkj 6= 0, we know
co-linear(j) 6= ∅ and there exists at least one student k′ that is aligned with the teacher j.

8.10 THEOREM 3

Proof. We basically apply the same logic as in Theorem 2. Consider the colinear group
co-linear(k). If for all k′ ∈ co-linear(k), βk′k′ ≡ ‖vk′‖2 = 0, then vk′ = 0 and the proof is
complete.

Otherwise, if there exists some student k so that vk 6= 0. By the condition, it is observed by some
student node ko, then with the same logic we will have∑

k′∈co-linear(k)
βko,k′‖wk′‖ = 0 (46)

which is
vᵀ
ko

∑
k′∈co-linear(k)

vk′‖wk′‖ = 0 (47)

Since k is observed by C students k1o , k
2
o , . . . , k

J
o , then we have:

vᵀ
kjo

∑
k′∈co-linear(k)

vk′‖wk′‖ = 0 (48)

By the condition, all the C vectors vᵀ
kjo
∈ RC are linear independent, then we know that∑

k′∈co-linear(k)
vk′‖wk′‖ = 0 (49)

8.11 COROLLARY 2

Proof. We can write the contribution of all student nodes which are not aligned with any teacher
nodes as follows:∑

s

∑
k∈co-linear(s)

vkfk(x) =
∑
s

∑
k∈co-linear(s)

vk‖wk‖σ(w′s
ᵀ
x) (50)

=
∑
s

σ(w′s
ᵀ
x)

∑
k∈co-linear(s)

vk‖wk‖ (51)

where w′s is the unit vector that represents the common direction of the co-linear group s. From
Theorem 3, for group s that is not aligned with any teacher,

∑
k∈co-linear(s) vk‖wk‖ = 0 and thus

the net contribution is zero.

8.12 THEOREM 4

Proof. In multi-layer case,Al(x) andBl(x) are no longer constant over input x. Fortunately, thanks
to the recursive definition (Eqn. 4) which only contains input-independent terms (weights) and gating
function, Al(x) and Bl(x) are piece-wise constant function over the input R0.

Note that R0 can be partitioned into R = {R1
0, R

2
0, . . . , R

J
0 } and a zero-measure set. Each of them

is constant region for Al(x) and Bl(x). Since Rj0 is an intersection of finite open half-planes (from
k’s parent nodes), Rj0 is still an open set.

From the condition, there exists open set R ∈ R and a student observer node k so that ∂E∗j ∩ Ek ∩
R 6= ∅ ((Fig. 9(c)). Let HR and similarly H∗R be the student and teacher nodes whose boundary
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intersects with R. Therefore j ∈ H∗R. For other teacher/student nodes, they are linear functions
within R and thus can be combined together into wᵀ

• x. For all weights in HR, H∗R and w•, applying
Lemma 3 on R ∩ Ek, we know that the SGD critical point αᵀ

R,kf
∗
1 (x) − βᵀ

R,kf1(x) = 0 leads to
alignment betweenHR andH∗R. Let group s be the one that contains all weights that are co-linear to
teacher node j (note that no other teacher nodes are involved), and cs its coefficient. Since j ∈ H∗R,
cs = 0. Since αkj(R) 6= 0, there exists at least one student node k′ that is co-linear to teacher node
j.

8.13 THEOREM 5

Proof. We follow the logic of Theorem 4. Instead of applying Lemma 3, for gradient that is not zero
but bounded within ε, we pick the student observer k and we have for Ek ∩R:

|αᵀ
kf
∗(x)− βᵀ

kf(x)| ≤ ε, (52)

we use Lemma 6 and know that there exists a node k′ 6= j so that sin θk′j = O
(
ε1−δ/|cj |

)
and

|bk′ − b∗j | = O
(
ε1−2δ/|cj |

)
for any δ > 0. Under the observation of student k, the teacher j

has coefficient cj = αkj . Since all teacher weights are distant to each other with positive constant
b0 > 0 and θ0 > 0, with sufficiently small ε0 and ε ≤ ε0, this node k′ has to be a student node and
the bound follows.

8.14 THEOREM 6

Proof. From the expression we can see that it is positive homogeneous with respect to ‖w∗j‖ and
‖wk‖. So we can assume ‖w∗j‖ = ‖wk‖ = 1. Without loss of generality, we set up the coordinate
system so that w∗j = [1, 0]ᵀ and wk = [cos θ, sin θ]ᵀ. Then

Ex

[
fl−1zkf

∗
j

]
= Ex

[
fl−1zkz

∗
j f

ᵀ
l−1
]
w∗j =

∑
fᵀl−1w

∗
j≥0, f

ᵀ
l−1wk≥0

fl−1f
ᵀ
l−1w

∗
j (53)

=

∫ +∞

0

r2p(r)

∫ π
2

−π2 +θ

[
cos θ′

sin θ′

]
cos θ′p(θ′|r)dθ′ + ε (54)

where ε is the term reflecting the asymmetry of the data distribution p(fl−1) with respect to the plane
spanned by the vectors wk and w∗j .

If the data distribution p(fl−1) is scale invariant (rescaling the data point won’t change the angular
distribution), then p(θ′|r) = p(θ′) and we only need to check the angular integral:

I(θ) =

∫ π
2

−π2 +θ

[
cos θ′

sin θ′

]
cos θ′p(θ′)dθ′ (55)

Note that cos2 θ = 1
2 (1 + cos 2θ) and sin θ cos θ = 1

2 sin 2θ, so we have:

2I(θ) =

(∫ π
2

−π2 +θ

p(θ′)dθ′

)
w∗j +

∫ π
2

−π2 +θ

[
cos 2θ′

sin 2θ′

]
p(θ′)dθ′ (56)

=

(∫ π
2

−π2 +θ

p(θ′)dθ′

)
w∗j +

1

2

∫ 2π

2θ

[
cos θ′′

sin θ′′

]
p

(
θ′′

2
− π

2

)
dθ′′ (57)

= I1(θ)w∗j +
1

2
I0 −

1

2
I2(θ) (58)
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where θ′′ = 2θ′ + π and

I1(θ) =

∫ π
2

−π2 +θ

p(θ′)dθ′ (59)

I0 =

∫ 2π

0

[
cos θ′′

sin θ′′

]
p

(
θ′′

2
− π

2

)
dθ′′ (60)

I2(θ) =

∫ 2θ

0

[
cos θ′′

sin θ′′

]
p

(
θ′′

2
− π

2

)
dθ′′

=

{∫ θ

0

[
p

(
θ′

2
− π

2

)
+ p

(
θ − θ′

2
− π

2

)]
cos θ′dθ′

}
wk

+

{∫ θ

0

[
p

(
θ′

2
− π

2

)
− p

(
θ − θ′

2
− π

2

)]
sin θ′dθ′

}
w⊥k (61)

where w⊥k is the unit vector that is perpendicular to wk but still in the plane spanned by wk and
w∗j . Note I0 is the fixed integral of unit vectors weighted by angular distribution of input data on
activated half-plane E∗j of teacher node j.

If p(fl−1) is rotational symmetric, then ε = 0, p(θ′) = 1
2π , then we can compute these terms

analytically: I0 = 0, I1(θ) = 1
2π (π − θ) and I2(θ) = 1

π sin θwk.

8.15 THEOREM 7

Proof. Note that we have:

d

dt
‖wk‖ =

d

dt

√
‖wk‖2 =

2wᵀ
kẇk

2‖wk‖
=

1

‖wk‖
wᵀ
kẇk = wᵀ

krk (62)

Therefore, we have
d

dt
ln ‖wk‖ = w̄ᵀ

krk (63)

and
d

dt

(
ln
‖wk‖
‖wk′‖

)
=

d

dt
(ln ‖wk‖ − ln ‖wk′‖) = w̄ᵀ

krk − w̄ᵀ
k′rk′ (64)

Note that we have:
d

dt
w̄k =

d

dt

(
wk

‖wk‖

)
= rk −wk

wᵀ
krk

‖wk‖2
= (I − w̄kw̄

ᵀ
k)rk = P⊥wkrk (65)

Let hk = w̄ᵀ
krk. We assume all hk > 0 (positive correlation), then we have:

d

dt
hk = rᵀkP

⊥
wk

rk + w̄ᵀ
k ṙk = ‖rk‖2 − h2k + w̄ᵀ

k ṙk (66)

If rk = r = w∗ −
∑
k akwk, then we have:

d

dt
hk = ‖r‖2 − h2k − Shk (67)

where S = (
∑
k ak‖wk‖) > 0 is independent of k. So

d

dt
(hk − hk′) = (h2k′ − h2k) + S(hk′ − hk) = (hk′ − hk)(hk′ + hk + S) (68)

if hk − hk′ > 0, then d
dt (hk − hk′) < 0 and vice versa. This means that Eqn. 64 is zero when the

system enters the stable region. On the other hand, if ‖rk‖2 = ‖rk′‖2 + ε (e.g., rk has stronger
teacher component), then we have:

d

dt
(hk − hk′) = (hk′ − hk)(hk′ + hk + S) + ε (69)

which is only zero when hk > hk′ . This yields exponential growth of ‖wk‖ compared to ‖wk′‖.
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Figure 11: Evaluation loss convergence curve.

8.16 DETAILS IN TEACHER/STUDENT CONSTRUCTION AND TRAINING

We construct teacher networks in the following manner. For two-layered network, the output di-
mension C = 50 and input dimension d = m0 = n0 = 100. For multi-layered network, we use
50-75-100-125 (i.e, m1 = 50,m2 = 75,m3 = 100,m4 = 125, L = 5, d = m0 = n0 = 100
and C = m5 = n5 = 50). The teacher network is constructed to satisfy Assumption 1: at each
layer, teacher filters are distinct from each other and their bias is set so that ∼ 50% of the input data
activate the nodes. This makes their boundary (maximally) visible in the dataset.

To train the model, we use vanilla SGD with learning rate 0.01 and batchsize 16.

8.17 ADDITIONAL FIGURES

Fig. 11 shows how the loss changes over iterations. With high teacher polarity (Eqn. 9), it becomes
harder to learn the weak teacher nodes and over-realization helps in getting low evaluation loss (in
particular for p = 2.5).

Besides Gaussian distribution we also test on uniform distribution x ∼ U [−15, 15]. For training,
we sample 100k data points in each epoch. Fig. 12 shows that the results on 4 layer ReLU network
(50-75-100-125) are similar. Note that in multi-layer setting, Theorem 3 might not hold since it is
for 2-layer so there could be un-specialized student nodes with large βkk(x).
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Figure 12: Strength of student specialization for 4 layer network (50-75-100-125) when each entry
of the input dimension is uniform distributed in U [−15, 15]. For all teacher nodes, the normalized
correlations are all close to 1.0 (ρmean ≥ 0.998 at all layers).
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