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ABSTRACT

We undertake the problem of representation learning for time-series by considering
a Group Transform approach. This framework allows us to, first, generalize
classical time-frequency transformations such as the Wavelet Transform, and
second, to enable the learnability of the representation. While the creation of the
Wavelet Transform filter-bank relies on affine transformations of a mother filter,
our approach allows for non-linear transformations. This is achieved by sampling a
subset of invertible maps on R. The subset considered contains strictly increasing
and continuous functions. The transformations induced by such maps enable us to
span a larger class of signal representations, from wavelet to chirplet-like filters.
We propose a parameterization of such a non-linear map such that its sampling can
be optimized for a specific loss and signal. The Learnable Group Transform can
thus be cast into a Deep Neural Network. The experiments on diverse time-series
datasets demonstrate the expressivity of this framework, which competes with
state-of-the-art performances.

1 INTRODUCTION

The selection of the time-frequency representation for analyzing, classifying, and predicting
time-series has long been studied (Coifman & Wickerhauser, 1992; Mallat & Zhang, 1993; Gribonval
& Bacry, 2003). To this day, the front-end processing of time-series remains a keystone toward the
improvement of a wealth of applications such as health-care (Saritha et al., 2008)), environmental
sound (Balestriero et al., 2018; Lelandais & Glotin, 2008), and seismic data analysis (Seydoux
et al., 2016). The common denominator of the recorded signals in these fields is their undulatory
behavior. While these signals share this common behavior, two significant factors imply the need of
learning the representation: 1) time-series are intrinsically different because of their physical nature,
2) the machine learning task can be different even within the same type of data. Therefore, the
representation should be induced by both the signal and the task at hand.

An all too common approach to performing inference on time-series consists of building a
Deep Neural Network (DNN) that operates on a spectral decomposition of the time-series such
as Wavelet Transform (WT) or Mel Frequency Spectral Coefficients (MFSC). The selection of
the judicious transform is either performed by an expert in the signal at hand, or by considering
the aforecited selection methods and their derivatives. However, an inherent drawback is that the
selection of the time-frequency transform is often achieved with criteria that do not align with
the task. For instance, a selection based on the sparsity of the representation while the task is the
classification of the signals. Besides, these selection methods and transformations require substantial
cross-validations of a large number of hyperparameters such as mother filter family, number of
octaves, number of wavelets per octave, size of the window (Cosentino et al., 2017).

To alleviate these drawbacks, Ravanelli & Bengio (2018); Balestriero et al. (2018); Cakir et al.
(2016); Zeghidour et al. (2018) investigated the learnability of a mother filter. This learnable mother
filter is transformed by deterministic affine maps. These transformations constitute the filter-bank.
The representation of the signal is obtained by convolving the filter-bank atoms with the signals.
Recently, Khan & Yener (2018) investigated the learnability of the affine transformations, that is, the
sampling of the dilation parameter of the affine group inducing the wavelet filter-bank. Optimized
jointly with the DNN, their method allows an adaptive transformation of the mother filter. Another
approach consists of building equivariant-invariant representations. In Mallat (2012); Bruna (2013)
they propose a translation-invariant representation, the Scattering Transform, which is stable under
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the action of small diffeomorphisms. In Oyallon et al. (2018); Cohen & Welling (2016), they focus
on equivariant-invariant representations for images, which reduces the sample complexity and endow
DNN’s layers with interpretability.

In this work, we focus on GT, which is achieved by taking the inner product between the
filter-bank, which is built by taking the action of a transformation map on a mother filter, and the
signal. Well-known GTs are the Short-Time Fourier Transform (STFT) and the Continuous Wavelet
Transform (CWT). We propose to extend these GTs and improve their flexibility by introducing the
Learnable Group Transform (LGT) by 1) generalizing the affine transformations of a mother filter
leading to wavelet filter-bank by introducing non-linear transformations (Section 3.1), 2) proposing a
parameterization of such non-linear map such that it can be learned efficiently and jointly with any
DNN, (Sections 3.2, 3.3), 3) Replacing the affine transformations of CWT by non-linear maps allows
for greater flexibility in the learnable spectral decomposition which displays different equivariance
properties (Section 3.4). This flexibility improves the linearization capability of the representation
as it eases the learning of a spectral decomposition that is able to discard intricate patterns in the
time-series that are nuisances. This specific transformation of a filter induces a filter with a non-linear
instantaneous phase, which in turn, allows to span filters a la chirplets, which are of interest in a
variety of domains such as biology and medicine, mechanics and vibrations, and sonar systems
(Flandrin, 2001). Also, this generalization implies that for fixed network topology, replacing the
learnable affine group with the continuous group leads to a larger class of spannable functions,
which improves the approximation property of the DNN at hand (Winkler & Le, 2017; Balestriero &
Baraniuk, 2018). In order to show the generality of our approach, we apply our algorithm on two
diverse time-series classification problems (Section 4).

2 BACKGROUND AND NOTATIONS

We first highlight the properties of particular GTs by expressing their time-frequency tiling.

2.1 TIME-FREQUENCY TILING

Figure 1: Time-Frequency Tilings at a given time τ : (left)
Short-Time Fourier Transform, i.e., constant bandwidth,
(middle) Wavelet Transform, i.e., proportional bandwidth,
(right) Learnable Group Transform, i.e, adaptive bandwidth,
the ”tiling” is induced by the learned non-linear transforma-
tion underlying the filter-bank decomposition.

The spread of a filter and its Fourier
transform are inversely proportional
as per the Heisenberg uncertainty prin-
ciple (Mallat, 1999). Following this
principle, we can observe that in the
case of STFT (respectively WT with
a Gabor wavelet), at a given time τ ,
the signal is transformed by a window
of constant bandwidth (respectively
proportional bandwidth) modulated
by complex exponential resulting in
a uniform tiling (respectively propor-
tional) on the frequency axis, Fig-
ure (1). In the case of a chirp-like fil-
ter, as proposed in Baraniuk & Jones
(1996), each tile is a sheared rectangu-
lar, more generally, an affinely trans-
formed rectangular. In this case, as well, the lower bound area of the sheared rectangular is constrained
by the uncertainty principle. As such, the understanding of the benefits of various time-frequency
decompositions can be achieved by analyzing how they tile the time-frequency plane. For instance,
in the case of WT, the precision in frequency degrades as the frequency increases while its precision
in time increases (Mallat, 1999). In the case of STFT, the uniform tiling implies that the precision is
constant along the frequency axis. In our proposed framework, the LGT allows for an adaptive tiling,
as illustrated in Figure (1) such that the trade-off between time and frequency precision depends on
the task and data.
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3 LEARNABLE GROUP TRANSFORM

To extend the filter-bank derivation as proposed in a wavelet decomposition we introduce a learnable
group transform. We now define a subset of invertible maps on R enabling the transformation of
a mother filter . Then, we provide a parameterization of such functions and show how one can
efficiently learn these parameters. Finally, we derive the equivariance properties of the induced group
transform. The overall building block the LGT and its application on a signal is depicted in Figure (2).

Figure 2: Learnable Group Transform: (left) generating the strictly increasing continuous func-
tions ρinc(g(ak,bk)) which stands for the strictly increasing and continuous transformation operator
with parameters (ak,bk), ∀k ∈ {1, . . . ,K}, where K denotes the number of filters in the filter-
bank. (middle) Each generated operators ρinc(g(ak,bk)) are applied to the mother filter denoted by
ψ (presently a Morlet wavelet), where the imaginary part is shown in red and the real part in blue.
This transformation leads to the filter-bank, ρinc(g(ak,bk)))ψ where g(ak,bk) ∈ Cinc(R). Then, the
convolution between this generated filter-bank and the signal leads to the LGT of the signal. The
black box on the LGT representation (right) corresponds to the convolution of the kth filter with the
signal. The strictly increasing and continuous piece-wise linear functions can be learned efficiently
by back-propagating the error induced by the generated GT.

3.1 STRICTLY INCREASING AND CONTINUOUS TRANSFORMATIONS

In order to generalize the classical affine transformations used in WT, we propose the utilization of
strictly increasing and continuous functions defined as

Cinc(R) = {g ∈ C(R)|g is strictly increasing} , (1)

where C(R) defines the space of continuous functions defined on R. This set of function is composed
of invertible maps which is crucial in order to derive invariance properties as well as avoid artifacts in
the transformed filters.

We define the linear operator ρinc(g) by

[ρinc(g)ψ](t) = ψ
(
g(t)

)
, ∀ψ ∈ L2(R),∀g ∈ Cinc(R), (2)

where ψ denotes a mother filter. We can see that the increasing and continuous group representation
operator ρinc induces a mapping which depends on the function g ∈ Cinc(R). If for instance g = e
, i.e., the identity map, then we have ρinc(e)ψ = ψ, it is in fact the identity operator in the space
of the mother filter. Given a mother filter ψ ∈ L2(R), ρinc(g)ψ, ∀g ∈ Cinc(R) induces a non-
linear transformation of the mother filter which can be visualized in Figure (3). Note that in signal
processing, such a transformation is called warping (Goldenstein & Gomes, 1999; Kerkyacharian
et al., 2004).

g ∈ Cinc(R) ψ(g(t))

Affine Wavelet
Quadratic Convex Increasing Quadratic Chirplet
Quadratic Concave Decreasing Quadratic Chirplet
Logarithmic Logarithimic Chirplet
Exponential Exponential Chirplet

Table 1: Special cases of the function g inducing filters belonging to well-known filter-banks.
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Figure 3: Transformation of a Morlet Wavelet: For all the filters, the real part is shown in blue
and the imaginary in red. (left) Morlet wavelet mother filter. (middle) Transformation of the mother
filter with respect to an affine transform: the dilation parameter 0 < a < 1, i.e., contraction, and
translation b = 0, i.e., no translation. (right) Increasing and continuous transformation of the mother
filter for some randomly generated function g ∈ Cinc(R) leading to chirplet-like filter.

Among the possible transformations induced on a mother filter by the mapping g ∈ Cinc(R), some of
them correspond to well-known filters (Table 1).

3.2 SAMPLING THE TRANSFORMATION MAPS

In this work, we are specifically interested in the learnability of such an increasing and continuous
map. As such, we provide a way to sample such a space via its parameterization. We propose to use
piece-wise affine functions constrained such that they belong to the class of strictly increasing and
continuous functions. This constrained piece-wise affine map is defined as

g(a,b)(t) =

n∑
l=1

(alt+ bl)1Il(t), ∀t ∈ R, (3)

s.t.: al > 0, ∀l ∈ {1, . . . , n}, (4)
bl+1 = (al − al+1)tl+1 + bl, ∀l ∈ {1, . . . , n− 1}, (5)

where a = (a1, . . . , an), b = (b1, . . . , bn), 1Il is the indicator function of the intervals Il =
[tl, tl+1),∀l ∈ {2, . . . , n− 1} and I1 = (−∞, t1), In = [tn,+∞), and al and bl denote respectively
the slope and offset of each piece of the function and n is the number of pieces. As such, for each
(a,b) satisfying the constraints (4) and (5) the function g(a,b) is a sample from the set Cinc(R).

Notice that this mapping can be performed using a 1-layer ReLU Neural Network (Arora et al.,
2016). This implementation implies a knot-free piece-wise affine mapping, providing more flexibility
regarding the transformation map. The knot-free mapping is defined such that the uniform support,
i.e., the intervals Il (3), is replaced with varying support for different l ∈ {1, . . . , n}. As such, this
flexibility induces better approximation property (Jupp, 1978).

3.3 LEARNING THE PIECE-WISE AFFINE TRANSFORMATION MAPS

The parameters (ak,bk),∀k ∈ {1, . . . ,K} are differentiable with respect to the filter and thus any
deep learning pipeline using those filters can be used and optimized jointly with the other DNN
parameters by stochastic gradient descend methods. Given a set of signals {si ∈ L2(R)}Ni=1 and
given a task specific loss function L, we aim at solving the following optimization problem

min
(a1,b1)∈Ω1,...,(aK ,bK)∈ΩK

N∑
i=1

L
(
F (W[si, ψ](g, .)

)
, (6)

where N denotes the number of signals, K the number of filters, F represents a DNN, Ωk = {ak ∈
Rn+,bk ∈ Rn|b(k,l+1) = (a(k,l)−a(k,l+1))t(l+1,k) + b(k,l)}∀k ∈ {1, . . . ,K}, and W[si, ψ](g, .) =

[W[si, ψ](g(a1,b1), .), . . . ,W[si, ψ](g(aK ,bK), .)]
T , and

W[si, ψ](g(ak,bk), .) = (si ? ρinc(g(ak,bk))ψ̄)(.), g(ak,bk) ∈ Cinc(R), ∀k ∈ {1, . . . ,K} , (7)

where ψ̄(t) = ψ(−t) and (.) corresponds to the time axis.

We propose different settings that will impact the type of filter-bank our method can reach.
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First, We propose a normalization of the frequency of the transform filter (denoted in the result tables
by nLGT). This normalization helps to reduce the aliasing induced by the filters. We propose to use
f̂ , the normalized frequency f with respect to the maximum slope of the piece-wise affine mapping.
For instance, in the case of a Morlet wavelet, the normalization is as follows

[ρinc(g(a,b))ψ](t) = π−
1
4 exp

(
2πjf̂g(a,b)(t)

)
exp

(
−1

2
(g(a,b)(t)/σ)2

)
,

where f̂ = f/maxl∈{1,...,n} al, j is the imaginary unit, and σ is the width parameter defining the
localization of the wavelet in time and frequency. This normalization will be performed for each
sample of the group, and thus for each generated filter k ∈ {1, . . . ,K} of the filter-bank.

Second, we constrain the domain of the piece-wise affine map, as derived in (3) (denoted in the result
tables by cLGT). In the following experiments, we propose a dyadic constraint of the domain as in the
WT. The support of the filter is close to the support of a wavelet filter-bank. However, the envelope of
the filter and the instantaneous frequency still vary as in the Chirplet Transform (Baraniuk & Jones,
1996).

3.4 EQUIVARIANCE PROPERTIES

The equivariance-invariance properties of signal representations play a crucial role in the efficiency
of the algorithm at hand (Mallat, 2016). By considering the mapping ρinc as a group action on the
space of the mother filter, i.e., L2(R), or more precisely, a representation of a group on L2(R) we can
develop the equivariance properties of the LGT. More details regarding the background of this group
theoretical approach are given in Appendix A. We can consider the set Cinc(R) with the operation
� consisting of the composition of function to form the group of strictly increasing and continuous
maps denoted by Ginc. This formulation eases the derivation of the equivariance properties of group
transforms which can be defined for a group G by

W[ρ(g′)si, ψ](g, .) = W[si, ψ]((g′)−1 � g, .),∀g, g′ ∈ G. (8)

That is, transforming the signal with respect to the group G and computing its representation is
equal to computing the representation of the signal and then transforming the representation. If
G corresponds to the affine group, the associated group transform is the WT the transformation
which is equivariant to scalings and translations. One can already notice that since W(., .) employs
convolution, for any group G, the LGT is translation equivariant. We now focus on more specific
equivariance properties of the LGT by defining the local equivariance by

∃τ ∈ R,W[ρ(g′)si, ψ](g, τ) = W[si, ψ]((g′)−1 � g, τ),∀g, g′ ∈ G.

That is, the representation of a local transformation of a signal in a window centred at τ is equals to
the transformation of the representation at τ . The size of the window depends on the support of the
filter. As a matter of fact, assuming that the representation of Ginc is unitary, we have the following
proposition.
Proposition 1. The LGT is locally equivariant with respect to the action of the group Ginc.

Refer to Appendix E for the proof.

4 EXPERIMENTS

For all the experiments and all the settings, i.e., LGT, nLGT, cLGT, cnLGT, the increasing and
continuous piece-wise affine map is initialized randomly, and the optimization is performed with
Adam Optimizer, and the number of knots of each piece-wise affine map is 256. The mother filter
used for our setting is a Morlet wavelet filter. The code of the LGT framework will be provided on
the Github page of the first author.

4.1 ARTIFICIAL DATA: CLASSIFICATION OF CHIRP SIGNALS

We present an artificial dataset that demonstrates how a specific time-frequency tiling might not
be adapted or would require cross-validations for a given task and data. To build the dataset, we
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generate one high frequency ascending chirp and one descending high-frequency chirp of size 8192
following the chirplet formula provided in (Baraniuk & Jones (1996)). Then for both chirp signals,
we add Gaussian noise samples (100 times for each class), see Figures in Appendix (C.1). The task
aims at being able to detect whether the chirp is ascending or descending. Both the training and
test sets are composed of 50 instances of each class. For all models, set the batch size to 10, the
number of epochs to 50. Each experiment was repeated 5 times with randomly sampled train and
test set, and the accuracy was the result of the average over these 5 runs. Each GT is composed
with a non-linearity, and the inference is performed by a linear classifier. For the case of WT and
LGT, the size of the filters is 512. As we can observe in Table (2), the WT, as well as the STFT
with few numbers of filters, perform poorly on this dataset. The chirp signals to be analyzed are
localized close to the Nyquist frequency, and in the case of WT, as illustrated in Figure 1, the wavelet
filter-bank has a poor frequency resolution in high frequency while benefiting from a high time
resolution. In this experiment, we can see that this characteristic the WT time-frequency tiling
implies that through time, the small frequency variations of the chirp are not efficiently captured.

Representation + Non-Linearity + Linear Classifier Accuracy
Wavelet Transform (64 Filters) 53.01 ± 5.1
Short-Time Fourier Transform (64 Filters) 65.1 ± 11.9
Short-Time Fourier Transform (128 Filters) 86.6 ± 9.8
Short-Time Fourier Transform (512 Filters) 100 ± 0.0
LGT (64 Filters) 92.9 ± 4.0
nLGT (64 Filters) 95.7 ± 3.3
cLGT (64 Filters) 56.8 ± 1.6
cnLGT (64 Filters) 100.0 ± 0.0

Table 2: Testing Accuracy for the Chirp Signals Classification
Task

In the case of STFT, as the num-
ber of filter decreases, the fre-
quency resolution gets altered.
Thus, this frequency variation
is not captured. Using a large
window for the STFT increases
the frequency resolution of the
tiling and thus enables to capture
the difference between the two
classes. In the LGT setting, the
tiling has adapted to the task and
produces good performances ex-
cept for the cLGT model. In fact,
the domain of the piece-wise linear map is constrained to be dyadic, and thus the adaptivity of the
filter bank is reduced, which is not suitable for this specific task. For all settings, the visualization
of the filters, as well as the representations of the signals, can be found in Appendix (C.1.2,C.1.3).
This experiment shows an example of signals that are not easily classified by neither the proportional-
bandwidth nor the constant-bandwidth without considering cross-validation of hyperparameters.

4.2 SUPERVISED BIRD DETECTION

Representation + Non-Linearity + Deep Network AUC
MFSC (80 Filters) 77.83 ± 1.34
Conv. Filter init. random (80 Filters) 66.77 ± 1.04
Conv. Filter init. Gabor (80 Filters) 67.67 ± 0.98
Spline Conv. init. random (80 Filters) (Balestriero et al. (2018)) 78.17 ± 1.48
Spline Conv. init. Gabor (80 Filters) (Balestriero et al. (2018)) 79.32 ± 1.52
LGT (80 Filters) 78.41 ± 1.38
nLGT (80 Filters) 75.50 ± 1.39
cLGT (80 Filters) 79.14 ± 0.83
cnLGT (80 Filters) 79.68 ± 1.35

Table 3: Testing AUC for the Bird Detection Task

We now propose a large scale dataset to validate the suitability of our model in a noisy and realistic
setting. The dataset is extracted from the Freesound audio archive Stowell & Plumbley (2013). This
dataset contains about 7, 000 field recording signals of 10 seconds sampled at 44 kHz, representing
slightly less than 20 hours of audio signals. The content of these recordings varies from water
sounds to city noises. Among these signals, some contain bird songs that are mixed with different
background sounds having more energy than the bird song, see Appendix (C.2.1). The given task is a
binary classification where one should predict the presence or absence of a bird song. As the dataset
is unbalanced, we use the Area Under Curve (AUC) metric. The results we propose for both the
benchmarks and our models are evaluated on a test set consisting of 33% of the total dataset. In order
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to compare with previously used methods, we use the same seeds to sample the train and test set,
the batch size, i.e., 10, and the learning rate cross-validation grid as in Balestriero et al. (2018). For
each model, the best hyperparameters are selected, and we train and evaluated randomly 10-times the
models with early stopping, the results are shown in Table (3). While the first layer of the architecture
has a model-dependent representation (i.e., MFSC, LGT, Conv. filters,...), we use the state-of-the-art
architecture (Grill & Schlüter (2017)) for the DNN architecture, described in Appendix (B.2). Notice
that this specific DNN architecture has been designed and optimized for MFSC representation. As we
can see in Table 3, the case without constraints (LGT) reaches better accuracy than the domain expert
benchmark (MFSC), showing the ability of such transformation to tile the time-frequency plane
according to the task and data at hand. Besides, including more constraints on the model (cnLGT)
reduces overfitting and further improve results to outperform the other benchmarks.

Figure 4: Learnable Group Transform - Visualisation of a sample containing a bird song (cLGT),
where (left) at the initialization and (right) after learning. For each subfigure, the x-axis corresponds
to time and the y-axis to the different filters. Notice that the y-axis usually corresponds to the scale
or the center-frequency of the filters. Other representations are displayed in Appendix (C.2.3). We
can observe that compared to the initialization, the learned representation is sparser and the SNR is
increased. Besides, the representation is less redundant in the frequency axis.

Figure 5: Learnable Group Transform Filters for the Bird Detection Data - Each row displays two
selected filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT,
cLGT. For each subfigure, the left part corresponds to the filter before training and the right part to
the filter after training. The blue and red denote respectively the real and imaginary part of the filters.

One can notice that all the learned filters in Figure 5 contain either an increasing chirp or a decreasing
chirp, corresponding respectively to the convexity or concavity of the instantaneous phase of the filter
and thus of the piece-wise linear map. Such a feature is being used and is crucial in the detection and
analysis of bird song (Stowell & Plumbley, 2012).

4.3 HAPTICS DATASET CLASSIFICATION

The Haptics dataset is a classification problem with five classes and 155 training
and 308 testing samples from the UCR Time Series Repository Chen et al. (2015),
where each time-series has 1092 time samples. As opposed to the bird dataset
where features of interests are known, and competitive methods have been established,
there is no expert knowledge regarding the specific signal features (see Table 4).
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Representation + Classifier Accuracy
DTW (Al-Naymat et al. (2009)) 37.7
BOSS (Schäfer (2015)) 46.4
Residual NN (Wang et al. (2017)) 50.5
COTE (Bagnall et al. (2015)) 51.2
Fully Convolutional NN (Wang et al. (2017)) 55.1
WD + Convolutional NN (Khan & Yener (2018)) 57.5

LGT (96 Filters)+ Non-Linearity + Linear Classifier 53.5
nLGT (96 Filters)+ Non-Linearity + Linear Classifier 50.4
cLGT (96 Filters)+ Non-Linearity + Linear Classifier 58.2
cnLGT (96 Filters)+ Non-Linearity + Linear Classifier 54.3

Table 4: Testing Accuracy for the Haptics Classification Task

One can see that our method
outperforms other approaches in
the cLGT setting while perform-
ing the classification with a lin-
ear classifier as opposed to other
methods using DNN algorithms.
This demonstrates the capability
of our method to transform the
data efficiently while not requir-
ing a further change of basis. Be-
sides, even in a small dataset set-
ting, our approach is capable of
learning an efficient transforma-
tion of the data. We provide in
Figure 6 the visualization of some sampled filters for each setting of the LGT model. As opposed to
the supervised bird dataset, we can see that the filters do not coincide with well-known filters that
are commonly used in signal processing. This is an example of an application where the features of
interest in the signals are unknown, and one requires a learnable representation.

Figure 6: Learnable Group Transform Filters for the Haptics Data - Each row displays two selected
filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT, cLGT, cnLGT.
For each subfigure, the left part corresponds to the filter before training and the right part to the filter
after training. The blue and red denote respectively the real and imaginary part of the filters.

5 CONCLUSION

We proposed to extend the WT by introducing a GT based on non-linear transformations of the
mother filter. We restrain the transformation to be in the space of strictly increasing and continuous
functions enabling its connection with well known time-frequency filters as well as the derivation
of equivariance properties. We also shown a tractable way to learn to sample these transformations.
From bird detection to haptics classification, our approach competes with state-of-the-art methods
without a priori knowledge on the signal power spectrum and outperform classical hand-crafted
time-frequency representations. Interestingly, in the bird detection experiment, we recover chirplet
filters that are known to be crucial to their detection, while in the case of the haptic dataset where
important features to be captured to perform the classification of the signals accurately are unknown,
the filters learned are very dissimilar to classical time-frequency filters.
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A GROUP TRANSFORM: A GROUP REPRESENTATION APPROACH

A.1 BACKGROUND

For further details on the group theoretical aspects described in this section, the reader should refer to
Vilenkin (1978).
Definition 1. A group is a set G with a multiplicative operation � that respects enclosure, identity
element, inverse element, and associativity.

The representation of the group determines its action on a function space and bridges the gap between
group theory and linear algebra, allowing to compute the transformation of a function following the
rules induced by the specific group at hand. The representation of a group can be thought as a far-
reaching generalization of the exponential function property, exp(x+ y) = exp(x) exp(y),∀x, y ∈
R (Baraniuk, 1993). In fact, it is defined as,
Definition 2. A linear continuous representation ρ of a group G on the linear space H is defined as

ρ : G→ GL(H), (9)

where GL(H) is the the group of linear map in H such that ∀g, g′ ∈ G
ρ(g � g′) = ρ(g)ρ(g′). (10)

For instance, let H be a vector space such as R3, the representation of the group is induced by 3× 3
matrices. In this case, the operation on the right of (10) is a matrix multiplication, where each matrix
depends on the group elements g and g′. This concept extends to linear operators acting on functional
spaces.

As such, multiple transformations of a function by different elements of the group is equal to the
representation of the combination of the group elements applied to the function.

This structure-preserving map defines the action of a group on elements of function spaces. Group
transforms such as STFT and CWT can be expressed in such a way by selecting a mother filter space
and a group. The representation of the group in the mother filter space provides an operator that
takes as input an element of the group and acts on the filter to transform it. A filter-bank can thus be
created by iterating this process with different group elements. Therefore, the selected group carries
the characteristics of the filter-bank and consequently, the group transform and its time-frequency
tiling. The building blocks of the WT through representation theory is provided in Appendix A.2.
Notice that further properties such as the invariant measure of the group and the resolution of the
identity can be develop using the representation of the group.

A.2 EXAMPLE: THE WAVELET TRANSFORM

As an introductory example, we consider the creation of a wavelet filter-bank utilizing transformation
group. Let’s denote by Gaff the affine group, the so called ”ax + b” group, where the elements
(λ, τ) ∈ R?+×R, where R?+ = (0,+∞), where the multiplicative operation of the group� is defined
by

(λ, τ)� (λ′, τ ′) = (λλ′, τ + λτ ′) (11)
Let’s define by ρaff the representation of the affine group in L2(R), i.e., ρaff : Gaff → GL(L2(R)),
such that ρaff is a homomorphism as per Definition 2. Its action on square integrable function ψ is
defined as

[ρaff(g)ψ] (t) =
1√
λ
ψ(
t− τ
λ

), t ∈ R, (12)

where (a, b) are respectively the dilation and translation parameters. The wavelet filter-bank is built
by transforming a mother filter, ψ by the representation ρaff for specific elements of the group. A
visualization of this approach for a Morlet wavelet filter can be seen in Figure (3). The wavelet
transform of a signal si ∈ L2(R) is achieved by

W(si, ψ)(g(λ,τ)) =
〈
si, ρaff(g(λ,τ))ψ

〉
,∀g(λ,τ) ∈ Gaff, (13)

= (si ? ρaff(g(λ,0))ψ̄),∀g(λ,0) ∈ Gaff, (14)
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where ψ̄(t) = ψ(−t), 〈., .〉 denotes the inner product, ? the convolution, and ρaff(g(λ,τ))ψ the action
of the operator ρaff, evaluated at the group element g(λ,τ), on the mother filter ψ as per (12). In
practice, the filter-bank is generated by sampling a few elements of the group. For instance, in the
case of the dyadic wavelet transform, the dilation parameters follow a geometric progression of
common ratio equals to 2. In general, the translation parameter is sampled according to the scaling
one (Daubechies, 1992). Notice that in the convolution expression (14), the translation parameter
τ = 0, in fact the convolution operator ? acts as the translation one. In the case where the translation
parameter depends on the scaling one, a specific stride is used to perform the discrete convolution.

Note that the STFT can be constructed similarly utilizing the Weyl-Heisenberg group (Feichtinger
et al., 2009), whose representation on L2(R) consists of frequency modulations and translations.
More intricated group representations can be built as in Torrésani (1991) where the combination of
the affine group and Weyl-Heisenberg group is considered.

B ARCHITECTURE DETAILS

B.1 ARTIFICIAL DATA

Group Transform + Complex Modulus + Log
Dense Layer (1 sigmoid)

After the Group Transform, a batch-normalization is applied.

B.2 SUPERVISED BIRD DETECTION

Group Transform + Complex Modulus + Log + Average-Pooling (stride:(1, 512) size:(1, 1024))
Conv2D. layer (16 filters 3× 3) and Max-Pooling (3× 3) and ReLU
Conv2D. layer (16 filters 3× 3) and Max-Pooling (3× 3) and ReLU
Conv2D. layer (16 filters 3× 1) and Max-Pooling (3× 1) and ReLU
Conv2D. layer (16 filters 3× 1) and Max-Pooling (3× 1) and ReLU

Dense layer (256) and ReLU
Dense layer (32) and ReLU

Dense layer (1 sigmoid)

At each layer a batch-normalization is applied and for the last three layers a 50% dropout is applied
as in (Grill & Schlüter (2017)). The dimension of the input of the DNN presented is the same for the
different benchmarks.

B.3 HAPTICS DATA

Group Transform + Complex Modulus + Log + Average-Pooling (stride:(1, 64) size:(1, 128))
Dense Layer (5 softmax)

After the Group Transform, a batch-normalization is applied.
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C ADDITIONAL FIGURES

C.1 ARTIFICIAL DATA

C.1.1 DATA

Figure 7: Artificial Dataset: (Top Left) Ascending Chirp, (Top Right) Descending Chirp, i.e. class 0,
(Bottom Left) Ascending Chirp plus Gaussian noise, (Bottom Right) Descending Chirp plus Gaussian
noise, i.e., class 1. The samples contained in the training and testing set are higher in frequency and
close to the Nyquist frequency.

C.1.2 FILTERS

Figure 8: Learnable Group Transform Filters for the Artificial Data - Each row displays two
selected filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT,
cLGT, cnLGT. For each subfigure, the left part corresponds to the filter before training and the right
part to the filter after training. The blue and red denote respectively the real and imaginary part of the
filters.
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C.1.3 GROUP TRANSFORM

Figure 9: Learnable Group Transform - Visualisation of an ascending chirp sample, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 10: Learnable Group Transform - Visualisation of a descending chirp sample, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.

C.2 SUPERVISED BIRD DETECTION

C.2.1 DATA

Figure 11: Bird Detection Dataset - Sample containing a bird song. The red boxes are the locations
of the bird song.

Each data sample, normalized, centered and subsampled by two before experiment.
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C.2.2 FILTERS

Figure 12: Learnable Group Transform Filters for the Bird Detection Data - Each row displays
two selected filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT,
cLGT. For each subfigure, the left part corresponds to the filter before training and the right part to
the filter after training.

C.2.3 GROUP TRANSFORM

Figure 13: Learnable Group Transform - Visualisation of a sample containing a bird song, where
for each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT.
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Figure 14: Learnable Group Transform - Visualisation of a sample without a bird song, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT.

C.3 HAPTICS DATA

C.3.1 DATA

Figure 15: Haptic Dataset - Sample of each class of the Haptic dataset.

Each data is centered and normalized. For the experiments, the number of epochs is set to 1000
and we perform early-stopping and obtain the testing accuracy at this specific epoch as in Khan
& Yener (2018), the batch size was set to 64. In order to avoid overfitting, we perform different
asymmetric zeros-paddings on the training samples. For the testing samples, we perform a symmetric
zeros-padding (512 zeros on each side of the signals).
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C.3.2 FILTERS

Figure 16: Learnable Group Transform Filters for the Haptics Data - Each row displays two
selected filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT,
cLGT, cnLGT. For each subfigure, the left part corresponds to the filter before training and the right
part to the filter after training. The blue and red denote respectively the real and imaginary part of the
filters.
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C.3.3 GROUP TRANSFORM

Figure 17: Learnable Group Transform - Visualisation of a sample belonging to class 1, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 18: Learnable Group Transform - Visualisation of sample belonging to class 2, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 19: Learnable Group Transform - Visualisation of sample belonging to class 3, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 20: Learnable Group Transform - Visualisation of a sample belonging to class 4, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 21: Learnable Group Transform - Visualisation of a sample belonging to class 5, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.

D GROUP PARAMETER OPTIMIZATION

In order to learn the group transform module, we can use the back-propagation algorithm and a
gradient-based optimization technique such that the parameters of the group transform module,
denoted by g, can be learned jointly with the parameters of the DNN, or any other differentiable algo-
rithm taking as input the learnable time-frequency representation. Using the notations of Section 3.3
where L denotes a loss function and F a DNN, the learnability of the optimal group transform leading
to the most suitable time-frequency representation is performed by the chain rule,

∂L

∂gk
=

∂L

∂[F (Wψ(gk, si))]
× ∂[F (Wψ(gk, si))]

∂gk
,∀i ∈ {1, . . . , N} , ∀k ∈ {1, . . . ,K} , gk ∈ Ginc,

where [Wψ(gk, si)] is the convolution of the signals si with the transformed filter ρinc(gk)ψ as defined
in (14).
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E PROOFS

Proposition 2. ρinc is a group representation of Ginc on L2(R).

E.1 PROOF THEOREM 2

Proof. Let g, g′ ∈ Ginc, then

[ρinc(g
′ ~ g)ψ](t) = ψ((g′ ~ g)(t))

= ψ(g′(g(t)))

and,

[ρinc(g
′)ρinc(g)ψ](t) = [ρinc(g

′)ψ](g(t))

= ψ(g′(g(t)))

which verifies the homogeneity property. The linearity is implied by,

[ρinc(g)(κψ1 + ψ2)](t) = (κψ1 + ψ2)(g(t)) = κψ1(g(t)) + ψ2(g(t)),∀t ∈ R.

where ψ1, ψ2 ∈ L2(R) and κ ∈ R. It is in fact a Koopman operator Korda & Mezić (2018).

E.2 PROOF THEOREM 1

Proof. Let τ ∈ R and g, g′ ∈ Ginc,

W[ρinc(g
′)si, ψ](g, τ) = 〈ρinc(g

′)si, ρinc(g)ψτ 〉
=
〈
si, ρinc(g

′)−1ρinc(g)ψτ
〉

=
〈
si, ρinc(g

′−1)ρinc(g)ψτ
〉

=
〈
si, ρinc(g

′−1 � g)ψτ
〉

= W[si, ψ](g′−1 � g, τ),

where ψτ denotes the filter ψ centered at position τ . Then, there is not guarantee that this can be
extrapolated to all τ ∈ R, i.e., in the convolution case, except in the affine case where the global
transformation matches the iteration of a local one.
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