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ABSTRACT

We present a proof of convergence for ReLU networks trained with weight normal-
ization. In the analysis, we consider over-parameterized 2-layer ReLU networks
initialized at random and trained with batch gradient descent and a fixed step size.
The proof builds on recent theoretical works that bound the trajectory of parameters
from their initialization and monitor the network predictions via the evolution
of a “neural tangent kernel” (Jacot et al. 2018). We discover that training with
weight normalization decomposes such a kernel via the so called “length-direction
decoupling”. This in turn leads to two convergence regimes and can rigorously
explain the utility of WeightNorm. From the modified convergence we make a few
curious observations including a natural form of “lazy training” where the direction
of each weight vector remains stationary.

1 INTRODUCTION

Dynamic normalization in neural networks is a re-parametrization procedure between the layers that
improves stability during training and leads to faster convergence. This approach was popularized
with the introduction of Batch Normalization (BatchNorm) in [20] and has led to a plethora of
additional normalization methods, notably including Layer Normalization (LayerNorm) [6] and
Weight Normalization (WeightNorm) [28]. WeightNorm was proposed as a method that emulates
BatchNorm and benefits from similar stability and convergence properties. Moreover, WeightNorm
has the advantage of not requiring a batch setting, therefore considerably reducing the computational
overhead that is imposed by BatchNorm [16]. WeightNorm is widely used in training of neural
networks and is the focus of this work.

Today, normalization methods are ubiquitous in the training of neural nets since in practice they
significantly improve the convergence speed and stability in training. Despite the impressive empirical
results and massive popularity of dynamic normalization methods, explaining their utility and proving
that they converge when training with non-smooth, non-convex loss functions has remained an
unsolved problem. In this paper we provide sufficient conditions on the data, initialization, and
over-parameterization for dynamically normalized ReLU networks to converge to a global minimum
of the loss function, and rigorously illustrate the utility of normalization methods.

Consider the class of 2-layer ReLU neural networks f : Rd → R parameterized by (W, c) ∈
Rm×d × Rm as

f(x; W, c) =
1√
m

m∑
k=1

ckσ(w>k x). (1.1)

Here the activation function is the ReLU, σ(s) = max{s, 0} [26], m denotes the width of the second
layer, and f is normalized accordingly by a factor

√
m. We investigate gradient descent training with

WeightNorm for (1.1), which re-parameterizes the network in terms of (V,g, c) ∈ Rm×d×Rm×Rm
as

f(x; V,g, c) =
1√
m

m∑
k=1

ckσ

(
gk ·

v>k x

‖vk‖2

)
. (1.2)

This gives a similar parameterization to [14] that study convergence of gradient optimization of
convolutional filters on Gaussian data. We consider the regression task, optimizing with respect to the
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L2 loss with random parameter initialization and focus on the over-parametrized regime, meaning
that m > n, where n is the number of training samples.

The neural network function class (1.1) has been studied in many papers including [3, 15, 33, 36]
along with other similar over-parameterized architectures [1, 14, 23]. An exuberant series of recent
works prove that feed-forward ReLU networks converge to zero training error when trained with
gradient descent from random initialization. Nonetheless, to the best of our knowledge, there are
no proofs that ReLU networks trained with dynamic normalization on general data converge to a
global minimum. This is in part because normalization methods completely change the optimization
landscape during training. Here we show that neural networks of the form given above converge
at linear rate when trained with gradient descent and WeightNorm. The analysis is based on the
over-parameterization of the networks, which allows for guaranteed descent while the gradient is
non-zero.

For regression training, a group of papers studied the trajectory of the networks’ predictions and
showed that they evolve via a “neural tangent kernel” (NTK) as introduced by Jacot et al. [21].
The latter paper studies neural network convergence in the continuous limit of infinite width over-
parameterization, while the works of [3, 15, 27, 33, 36] analyze the finite width setting. For finite-
width over-parameterized networks, the training evolution also exhibits a kernel that takes the form of
a Gram matrix. In these works, the convergence rate is dictated by the least eigenvalue of the kernel.
We build on this fact, and also on the general ideas of the proof of [15] and the refined work of [3].

Compared with un-normalized training, we prove that normalized networks follow a modified
kernel evolution that features a “length-direction” decomposition of the NTK. This leads to two
convergence regimes in WeightNorm training and explains the utility of WeightNorm from the
perspective of the NTK. In the settings considered, WeightNorm significantly reduces the amount of
over-parameterization needed for provable convergence, as compared with un-normalized settings.
The decomposition of the NTK also connects to observations of [12] that discuss “lazy training”
which refers to a training regime where the weights of the network stay close to their initialization (see
Section 6). Further, we present a more careful analysis that leads to improved over-parameterization
bounds as compared with [15].

In this work we rigorously analyze the dynamics of weight normalization training and its convergence
from the perspective of the neural tangent kernel. We discover WeightNorm training has two regimes
with distinct behaviors. The main contributions of this work are:

• We prove the first general convergence result for dynamically normalized 2-layer ReLU networks
trained with gradient descent. Our formulation does not assume the existence of a teacher network
and has mild assumptions on the training data.

• We explain the utility of normalization methods via a decomposition of the neural tangent kernel.
In the analysis we highlight two distinct convergence regimes and give a concrete example of “lazy
training” for finite-step gradient descent.

• It is shown that finite-step gradient descent converges for all weight magnitudes at initialization
and we significantly reduce the amount of over-parameterization required for provable convergence
as compared with un-normalized training.

The paper is organized as follows. In Section 2 we provide background on WeightNorm and derive
key evolution dynamics of training in Section 3. We present and discuss our main results, alongside
with the idea of the proof, in Section 4. We discuss related work in Section 5, and offer a discussion of
our results and their implications to dynamic normalization training and “lazy training” in Section 6.
Proofs are presented in the Appendix.

2 WEIGHTNORM

Here we give an overview of the WeightNorm procedure and review some known properties of
normalization methods.

Notation We use lowercase, lowercase boldface, and uppercase boldface letters to denote scalars,
vectors and matrices resp. We denote the Rademacher distribution as U{1,−1} and write N(µ,Σ)
for a Gaussian with mean µ and covariance Σ. Training points are denoted by x1 . . .xn ∈ Rd and
parameters of the first layer by vk ∈ Rd. We use σ(x) := max{x, 0}, and write ‖ · ‖2, ‖ · ‖F for
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the spectral and Frobenius norms for matrices. λmin(A) is used to denote the minimum eigenvalue
of a matrix A and 〈·, ·〉 denotes the Euclidean inner product. For a vector v denote the `2 vector
norm as ‖v‖2 and for a positive definite matrix S define the induced vector norm ‖v‖S :=

√
v>Sv.

The projections of x onto u and u⊥ are defined as xu := uu>x
‖u‖22

, xu⊥ := x
(
I− uu>

‖u‖22

)
. Denote the

indicator function of event A as 1A and for a weight vector at time t, vk(t), and data point xi we
denote 1ik(t) := 1{vk(t)>xi≥ 0}.

WeightNorm procedure For a single neuron σ(w>x), WeightNorm re-parametrizes the weight
w ∈ Rd in terms of v ∈ Rd, g ∈ R as

w(v, g) = g · v

‖v‖2
, σ

(
g · v>x

‖v‖2

)
. (2.1)

This decouples the magnitude and direction of each weight vector (referred as the “length-direction”
decomposition). In comparison, for BatchNorm each output w>x is normalized according to
the average statistics in a batch. We can draw the following analogy between WeightNorm and
BatchNorm if the inputs xi are centered (Ex = 0) and the covariance matrix is known (Exx> = S).
In this case, batch training with BatchNorm amounts to

σ

(
γ · w>x√

Ex

(
w>xx>w

)
)

= σ

(
γ · w>x√

w>Sw

)
= σ

(
γ · w>x

‖w‖S

)
. (2.2)

From this prospective, WeightNorm is a special case of (2.2) with S = I [22, 28].

Properties of WeightNorm We start by giving an overview of known properties of WeightNorm
that will be used to derive the gradient flow dynamics of WeightNorm training.

For re-parameterization (2.1) of a network function f that is initially parameterized with a weight w,
the gradient ∇wf relates to the gradients∇vf, ∇gf by the identities

∇vf =
g

‖v‖2
(∇wf)v⊥ , ∇gf = (∇wf)v.

This implies that∇vf · v = 0 for each input x and parameter v. For gradient flow, this orthogonality
results in ‖v(0)‖2 = ‖v(t)‖2 for all t. For gradient descent (with step size η) the discretization in
conjunction with orthogonality leads to increasing parameter magnitudes during training [4, 19, 28],
as illustrated in Figure 1,

‖v(s+ 1)‖22 = ‖v(s)‖22 + η2‖∇vf‖22 ≥ ‖v(s)‖22. (2.3)

vk(0)

dvk
dt (0)

vk(t)

αα

vk(0)

−∇vkL

vk(s)

Figure 1: WeightNorm updates for gradient flow and gradient descent. For gradient flow, the norm of
the weights are preserved, i.e., ‖vk(0)‖2 = ‖vk(t)‖2 for all t > 0. For gradient descent, the norm of
the weights ‖vk(s)‖2 is increasing with s.

Problem Setup We analyze (1.1) with WeightNorm training (1.2), so that

f(x; V, c,g) =
1√
m

m∑
k=1

ckσ

(
gk ·

v>k x

‖vk‖2

)
.
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We take an initialization in the spirit of [17, 28]:

vk(0) ∼ N(0, α2I), ck ∼ U{−1, 1}, and gk(0) = ‖vk(0)‖2/α. (2.4)

Where α is the variance of vk at initialization. The initialization of gk(0) is therefore taken to be
independent of α. We remark that the initialization (2.4) gives the same initial output distribution
as in methods that study the un-normalized network class (1.1). The parameters of the network are
optimized using the training data {(x1, y1), . . . , (xn, yn)} with respect to the square loss

L(f) =
1

2

n∑
i=1

(f(xi)− yi)2 =
1

2
‖f − y‖22, (2.5)

where f = (f1, f2, . . . , fn)> = (f(x1), f(x2), . . . , f(xn))> and y = (y1, y2, . . . , yn)>.

3 EVOLUTION DYNAMICS

We present the gradient flow dynamics of training (2.5) to illuminate the modified dynamics of
WeightNorm as compared with vanilla gradient descent. In Appendix C we tackle gradient descent
training with WeightNorm where the predictions’ evolution vector df

dt is replaced by the finite
difference f(s+ 1)− f(s). For gradient flow, each parameter is updated in the negative direction of
the partial derivative of the loss with respect to that parameter. The optimization dynamics give

dvk
dt

= − ∂L

∂vk
,

dgk
dt

= − ∂L
∂gk

. (3.1)

We consider the case where we fix the top layer parameters ck during training. In the over-
parameterized regime, the dynamics of ck and gk turn out to be the same.
To quantify convergence, we monitor the time derivative of the i-th prediction, which is computed
via the chain rule as

∂fi
∂t

=

m∑
k=1

∂fi
∂vk

dvk
dt

+
∂fi
∂gk

dgk
dt

.

Substituting (3.1) into the i-th prediction evolution and grouping terms yields

∂fi
∂t

= −
m∑
k=1

∂fi
∂vk

∂L

∂vk︸ ︷︷ ︸
T i
v

−
m∑
k=1

∂fi
∂gk

∂L

∂gk︸ ︷︷ ︸
T i
g

. (3.2)

The gradients of fi and L with respect to vk are written explicitly as

∂fi
∂vk

(t) =
1√
m

ck · gk(t)

‖vk(t)‖2
· xvk(t)

⊥

i 1ik(t),
∂L

∂vk
(t) =

1√
m

n∑
i=1

(fi(t)− yi)
ck · gk(t)

‖vk(t)‖2
x

vk(t)
⊥

i 1ik(t).

Thus T iv(t) in (3.2) can be calculated as

T iv(t) =

n∑
j=1

(fj(t)− yj)
1

m

m∑
k=1

1jk(t)1ik(t)

(
ck · gk(t)

‖vk(t)‖2

)2〈
x

vk(t)
⊥

j , x
vk(t)

⊥

i

〉
.

Defining the v-orthogonal Gram matrix V(t) as

Vij(t) =
1

m

m∑
k=1

(
αck · gk(t)

‖vk(t)‖2

)2〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t), (3.3)

we can write T iv as

T iv(t) =

n∑
j=1

Vij(t)

α2
(fj(t)− yj).

Note that V(t) is the induced neural tangent kernel [21] for the parameters v of WeightNorm training.
While it resembles the Gram matrix H(t) studied in [3], here we obtain a matrix that is not piece-wise
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constant in v since the data points are projected onto the orthogonal component of v. We compute
T ig in (3.2) analogously. The associated derivatives with respect to gk are

∂fi
∂gk

(t) =
1√
m

ck
‖vk(t)‖2

σ(vk(t)>xi),
∂L

∂gk
(t) =

1√
m

n∑
j=1

(fj(t)− yj)
ck

‖vk(t)‖2
σ(vk(t)>xj),

and we obtain

T ig(t) =

m∑
k=1

1

m

n∑
j=1

(fj(t)− yj)
(

ck
‖vk(t)‖2

)2

σ(vk(t)>xj)σ(vk(t)>xi).

Given that c2k = 1, define G(t) as

Gij(t) =
1

m

m∑
k=1

σ(vk(t)>xi)σ(vk(t)>xj)

‖vk(t)‖22
(3.4)

hence we can write

T ig(t) =

n∑
j=1

Gij(t)(fj(t)− yj).

Combining Tv and Tg, the full evolution dynamics are given by

df

dt
= −

(
V(t)

α2
+ G(t)

)
(f(t)− y). (3.5)

Denote Λ(t) := V(t)
α2 + G(t) and write df

dt = −Λ(t)(f(t)− y). We note that V(0),G(0), defined
in (3.3), (3.4), are independent of α:
Observation 1 (α independence). For initialization (2.4) and α > 0 the Gram matrices V(0),G(0)
are independent of α.

This fact is proved in Appendix A. When training the neural network in (1.1) without WeightNorm
(see [3, 15, 36]) , the corresponding neural tangent kernel H(t) is defined by ∂fi

∂t =
∑m
k=1

∂fi
∂wk

dwk

dt =

−
∑m
k=1

∂fi
∂wk

∂L
∂wk

= −
∑n
j=1 Hij(t)(fj − yj) and takes the form

Hij(t) =
1

m

m∑
k=1

x>i xj1ik(t)1jk(t). (3.6)

The analysis presented above shows that vanilla and WeightNorm gradient descent are related as
follows.
Proposition 1. Define V(0), G(0), and H(0) as in (3.3), (3.4), and (3.6) respectively. then for all
α > 0,

V(0) + G(0) = H(0).

Thus, for α = 1,

∂f

∂t
= −Λ(0)(f(0)− y) = −H(0)(f(0)− y).

That is, WeightNorm decomposes the NTK in each layer into a length and a direction component.
We refer to this as the “length-direction decoupling” of the NTK, in analogy to (2.1). From the
proposition, normalized and un-normalized training kernels initially coincide if α = 1. The utility of
normalization methods can be attributed to the modified NTK Λ(t) that occurs when the WeightNorm
coefficient, α, deviates from 1. For α� 1 the kernel Λ(t) is dominated by G(t), and for α� 1 the
kernel Λ(t) is dominated by V(t). We elaborate onthe details of this in the next section. In practice,
by (2.3) as training progresses, ‖vk‖2 grow monotonically, leading to larger α and a transition from
the V-dominated to the G-dominated regime. In our analysis we will study the two regimes α > 1
and α < 1 in turn.
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4 MAIN CONVERGENCE THEORY

In this section we discuss our convergence theory and main results. From the continuous flow (3.5),
we observe that the convergence behavior is described by V(t) and G(t). The matrices V(t) and
G(t) are positive semi-definite since they can be shown to be covariance matrices. This implies that
the least eigenvalue of the evolution matrix Λ(t) = 1

α2 V(t) + G(t) is bounded below by the least
eigenvalue of each kernel matrix,

λmin(Λ(t)) ≥ max{λmin(V(t))/α2, λmin(G(t))}.

For finite-step gradient descent, a discrete analog of evolution (3.5) holds. However, the discrete case
requires additional care in ensuring dominance of the driving gradient terms. For gradient flow, it is
relatively easy to see linear convergence is attained by relating the rate of change of the loss to the
magnitude of the loss. Suppose that for all t ≥ 0,

λmin

(
Λ(t)

)
≥ ω/2, with ω > 0. (4.1)

Then the change in the regression loss is written as

d

dt
‖f(t)− y‖22 = 2(f(t)− y)>

df(t)

dt
= −2(f(t)− y)>Λ(t)(f(t)− y)

(4.1)
≤ −ω‖f(t)− y‖22.

Integrating this time derivative and using the initial conditions yields

‖f(t)− y‖22 ≤ exp(−ωt)‖f(0)− y‖22,

which gives linear convergence. The focus of our proof is therefore showing that (4.1) holds
throughout training.

By Observation 1 we have that V and G are independent of the WeightNorm coefficient α (α only
appears in the 1/α2 scaling of Λ). This suggests that the kernel Λ(t) = 1

α2 V(t) + G(t) can be split
into two regimes: When α < 1 the kernel is dominated by the first term 1

α2 V, and when α > 1 the
kernel is dominated by the second term G. We divide our convergence result based on these two
regimes.

In each regime, (4.1) holds if the corresponding dominant kernel, V(t) or G(t), maintains a positive
least eigenvalue. Having a least eigenvalue that is bounded from 0 gives a convex-like property that
allows us to prove convergence. To ensure that condition (4.1) is satisfied, for each regime we show
that the corresponding dominant kernel is “anchored” (remains close) to an auxiliary Gram matrix
which we define in the following for V and G.

Define the auxiliary v-orthogonal and v-aligned Gram matrices V∞,G∞ as

V∞ij := Ev∼N(0,α2I) 〈xv⊥

i ,xv⊥

j 〉1ik(0)1jk(0), (4.2)

G∞ij := Ev∼N(0,α2I) 〈xv
i ,x

v
j 〉1ik(0)1jk(0). (4.3)

For now, assume that V∞ and G∞ are positive definite with a least eigenvalue bounded below by ω
(we give a proof sketch below). In the convergence proof we will utilize over-parameterization to
ensure that V(t),G(t) concentrate to their auxiliary versions so that they are also positive definite
with a least eigenvalue that is greater than ω/2. The precise formulations are presented in Lemmas B.4
and B.5 that are relegated to Appendix B.

To prove our convergence results we make the assumption that the xis have bounded norm and are
not parallel.

Assumption 1 (Normalized non-parallel data). The data points (x1, y1), . . . , (xn, yn) satisfy
‖xi‖2 ≤ 1 and for each index pair i 6= j, xi 6= β · xj for all β ∈ R \ {0}.

In order to simplify the presentation of our results, we assume that the input dimension d is not too
small, whereby d ≥ 50 suffices. This is not essential for the proof. Specific details are provided in
Appendix A.

Assumption 2. For data points xi ∈ Rd assume that d ≥ 50.
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Both assumptions can be easily satisfied by pre-processing, e.g., normalizing and shifting the data,
and adding zero coordinates if needed.

Given Assumption 1, V∞,G∞ are shown to be positive definite.
Lemma 4.1. Fix training data points {(x1, y1), . . . , (xn, yn)} satisfying Assumption 1. Then the
v-orthogonal and v-aligned Gram matrices V∞ and G∞, defined as in (4.2) and (4.3), are strictly
positive definite. We denote the least eigenvalues λmin(V∞) =: λ0, λmin(G∞) =: µ0.

Proof sketch Here we sketch the proof of Lemma 4.1. The main idea, is the same as [15], is to
regard the auxiliary matrices V∞,G∞ as the covariance matrices of linearly independent operators.
For each data point xi, define φi(v) := xv⊥

i 1{x>i v≥0}. The Gram matrix V∞ is the covariance
matrix of {φi}i=1:n taken over Rd with the measure N(0, α2I). Hence showing that V∞ is strictly
positive definite is equivalent to showing that {φi}i=1,...n are linearly independent. Unlike [15],
the functionals under consideration are not piecewise constant so a different construction is used
to prove independence. Analogously, a new set of operators, θi(v) := σ(xv

i ), is constructed for
G∞. Interestingly, each φi corresponds to dθi

dv . The full proof is presented in Appendix D. As
already observed from evolution (3.5), different magnitudes of α lead to two distinct regimes that are
discussed below. We present the main results for each regime.

V-DOMINATED CONVERGENCE

For α < 1 convergence is dominated by V(t) and λmin(Λ(t)) ≥ 1
α2λmin(V(t)). We present the

convergence theorem for the V-dominated regime here.
Theorem 4.1 (V-dominated convergence). Suppose a neural network of the form (1.2) is initialized as
in (2.4) with α ≤ 1 and that Assumptions 1,2 hold. In addition, suppose the neural network is trained
via the regression loss (2.5) with targets y satisfying ‖y‖∞ = O(1). If m = Ω

(
n4 log(n/δ)/λ40

)
,

then with probability 1− δ,

1. For iterations s = 0, 1, . . . ,K, the evolution matrix Λ(s) satisfies λmin(Λ(s)) ≥ λ0

2α2 .

2. WeightNorm training with gradient descent of step-size η = O
(

α2

‖V∞‖2

)
converges linearly

as

‖f(s)− y‖22 ≤
(

1− ηλ0
2α2

)s
‖f(0)− y‖22.

The proof of Theorem 4.1 is presented in Appendix C. We will provide a sketch below. We make the
following observations about our V-dominated convergence result.

The required over-parameterization m is independent of α. Further, the dependence of m on the
failure probability is log(1/δ). This improves previous results that require polynomial dependence of
order δ3. Additionally, we reduce the dependence on the sample size from n6 (as appears in [3]) to
n4 log(n).

In Theorem 4.1, smaller α leads to faster convergence, since the convergence is dictated by λ0/α2.
Nonetheless, smaller α is also at the cost of smaller allowed step-sizes, since η = O(α2/‖V∞‖2).
The trade-off between step-size and convergence speed is typical. For example, this is implied in
Chizat et al. [12], where nonetheless the authors point out that for gradient flow training, the increased
convergence rate is not balanced by a limitation on the step-size. The works [4, 19, 32] define an
effective step-size (adaptive step-size) η′ = η/α2 to avoid the dependence of η on α.

G-DOMINATED CONVERGENCE

For α > 1 our convergence result for the class (1.2) is based on monitoring the least eigenvalue of
G(t). Unlike V-dominated convergence, α does not affect the convergence speed in this regime.
Theorem 4.2 (G-dominated convergence). Suppose a network of the form (1.2) is initialized
as in (2.4) with α ≥ 1 and that Assumptions 1, 2 hold. In addition, suppose the neural
network is trained via the regression loss (2.5) with targets y satisfying ‖y‖∞ = O(1). If
m = Ω

(
max

{
n4 log(n/δ)/α4µ4

0, n
2 log(n/δ)/µ2

0

})
, then with probability 1− δ,

1. For iterations s = 0, 1, . . . ,K, the evolution matrix Λ(s) satisfies λmin(Λ(s)) ≥ µ0

2 .
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2. WeightNorm training with gradient descent of step-size η = O
(

1
‖Λ(t)‖

)
converges linearly

as

‖f(s)− y‖22 ≤
(

1− ηµ0

2

)s
‖f(0)− y‖22.

We make the following observations about our G-dominated convergence result, and provide a proof
sketch further below.

Theorem 4.2 holds for α ≥ 1 so long as m = Ω
(

max
{
n4 log(n/δ)/µ4

0α
4, n2 log(n/δ)/µ2

0

})
.

Taking α =
√
n/µ0 gives an optimal required over-parameterization of order

m = Ω
(
n2 log(n/δ)/µ2

0

)
.

This significantly improves on previous results [15] for un-normalized training that have dependencies
of order 4 in the least eigenvalue, cubic dependence in 1/δ, and n6 dependence in the number of
samples n. In contrast to V-dominated convergence, here the rate of convergence µ0 is independent
of α but the over-parameterization m is α-dependent. We elaborate on this curious behavior in the
next sections.

Proof sketch of main results The proof of Theorems 4.1 and 4.2 is inspired by a series of works
including [3, 13, 15, 33, 36]. The proof has the following steps: (I) We show that at initialization
V(0),G(0) can be viewed as empirical estimates of averaged data-dependent kernels V∞,G∞

that are strictly positive definite under Assumption 1. (II) For each regime, we prove that the
corresponding kernel remains positive definite if vk(t) and gk(t) remain near initialization for each
1 ≤ k ≤ m. (III) Given a uniformly positive definite evolution matrix Λ(t) and sufficient over-
parameterization we show that each neuron, vk(t), gk(t) remains close to its initialization. The full
proof is presented in Appendix B for gradient flow and Appendix C for finite-step gradient descent.

While the spirit of the proof is familiar from other works, the different convergence regimes explain
the utility of WeightNorm. We elaborate further on this in the discussion.

5 RELATED WORK

Dynamic normalization theory A number of recent works attempt to explain the dynamics and
utility of dynamic normalization methods. The original works [20, 28] of BatchNorm and Weight-
Norm resp. suggest that dynamic normalization methods improve training by fixing the intermediate
layers’ output distributions. The works of Bjorck et al. [8] and Santurkar et al. [29] argue that
BatchNorm may improve optimization by improving smoothness of the Hessian of the loss, therefore
allowing for larger step-sizes with reduced instability. Hoffer et al. [18] showed that the effective
step-size in BatchNorm is divided by the magnitude of the weights, this followed the work of WNgrad
[32] that introduces an adaptive step-size algorithm based on this fact. Following the intuition
of WNGrad, Arora et al. [4] proved that for smooth loss and network functions, the diminishing
“effective step-size” of normalization methods lead to convergence with optimal convergence rate for
properly initialized step-sizes. The work of [22] explains the accelerated convergence of BatchNorm
from a “length-direction decoupling” perspective. The authors along with [9] analyze the linear least
squares regime, with [22] presenting a bisection method for finding the optimal weights. Robustness
and regularization of Batch Normalization is investigated in [25] and improved generalization is
analyzed empirically. Shortly after the original work of WeightNorm, [35] showed that for a single
precptron WeightNorm may speed-up training and emphasized the importance of the norm of the
initial weights. Additional stability properties were studied by [34] via mean-field analysis. The
authors show that gradient instability is inevitable even with BatchNorm as the number of layers
increases; this is in agreement with [7] for networks with residual connections. The work of [5]
suggests initialization strategies for WeightNorm and derives lower bounds on the width to guarantee
same order gradients across the layers.

Over-parametrized neural networks There has been a significant recent literature studying the
convergence of un-normalized over-parametrized neural networks. The analysis of the majority of the
works relies on the width of the layers. These include 2-layer networks trained with Gaussian inputs
and outputs from a teacher network [30], [24] and [14] (with WeightNorm). Assumptions on the data
distribution are relaxed in [15] and the works that followed [3, 33, 36]. Our work is inspired by the
mechanism presented in this chain of works. Wu et al. [33] extend convergence results to adaptive
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step-size methods and propose AdaLoss. Recently, the global convergence of over-parameterized
neural networks was also extended to deep architectures [2, 13, 37, 38]. In the over-parameterized
regimes, Arora et al. [3] develop generalization properties for the networks of the form (1.1). In
addition, in the context of generalization, Allen-Zhu et al. [1] illustrates good generalization for deep
neural networks trained with gradient descent. Cao and Gu [10] and [11] derive generalization error
bound of gradient descent and stochastic gradient descent for learning over-parameterization deep
ReLU neural networks.

6 DISCUSSION

In this section we interpret our main results and make a connection of the convergence theory with
“lazy training”.

Chizat et al. [12] analyze recent works of over-parameterized convergence based on the NTK and
note that re-scaling the network’s outputs during gradient flow training leads to fast convergence
while at the same time the weights remain close to their initialization. This is interpreted as a “linear
solution”, meaning that the direction of the weights does not change at training. The authors also
refer to this type of convergence as “lazy training”.

In our G-dominated convergence, we observe a new type of “lazy training” that is different from the
one presented in [12] . We refer to our G regime as “lazy training” since the directions of the weights
remain fairly stationary. Nonetheless, in G-dominated “lazy training”, the magnitudes of the weights
(gk) change. Moreover, we observe this phenomenon not only in the continuous flow setting but also
in the finite step gradient descent setting. Unlike [12] where it is argued that neural networks do not
necessarily follow the “lazy training” regime, we believe that G-dominated convergence actually is
common but that it emerges at later stages in training, after the weights have adopted their directions
in the V-dominated regime and improves stability.

Overall training with WeightNorm leads to a gradual transition from V-dominated to the G-dominated
regimes. We recall that since the weights grow (see (2.3)), the WeightNorm coefficient α increases
during training progressively. The direction of the weights changes rapidly at the earlier stages of
training when α is small, and G-dominated convergence ensues as α grows, leading to improved
stability. For α > 1 this allows us to ease the requirements made on the over-parameterization (less
is sufficient) and step size (a bigger step size is possible, of order η = O(1/‖G(t)‖2)). From this
perspective, the utility of WeightNorm is attributed to the allowed larger step-sizes and increased
stability at the later stages of training (G-dominated), all while maintaining fast convergence at the
beginning of training (V-dominated convergence).

Dynamic normalization is the most common optimization set-up of current deep learning models, yet
understanding the convergence of such optimization methods is still an open problem. In this work we
present a proof giving sufficient conditions for convergence of dynamically normalized 2-layer ReLU
networks trained with gradient descent. To the best of our knowledge this is the first proof showcasing
convergence of gradient descent training of neural networks with dynamic normalization and general
data, where the objective function is non-smooth and non-convex. The notion of “length-direction
decoupling” is clarified by the neural tangent kernel Λ(t) that naturally separates in our analysis
into “length”, G(t), and “direction”, V(t)/α2, components. For α = 1 the decomposition initially
matches un-normalized training. Yet we discover that in general, normalized training with gradient
descent leads to 2 regimes dominated by different pieces of the neural tangent kernel. We note
that training typically commences in the V-dominated regime and transitions into the G-dominated
regime as training proceeds and the magnitude of the weights grow. Our improved analysis is able to
reduce the amount of over-parameterization that was needed in previous convergence works in the
un-normalized setting and in the G-dominated regime, we prove convergence with a significantly
lower amount of over-parameterization as compared with un-normalized training.
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APPENDIX

We present the detailed proofs of the main results of the paper below. The appendix is organized
as follows. We provide proofs to the simple propositions regarding the NTK presented in the paper
in Appendix A, and prove the main results for V-dominated and G-dominated convergence in the
settings of gradient flow and gradient descent in Appendices B,C. The proofs for gradient flow and
gradient descent share the same main idea, yet the proof for gradient descent has a considerate number
of additional technicalities. In Appendices D and E we prove the lemmas used in the analysis of
Appendices B and C respectively.

A WEIGHTNORM DYNAMICS PROOFS

In this section we provide proofs for Proposition 1, which describes the relation between vanilla and
WeightNorm NTKs and Observation 1 of the paper.

Proof of Proposition 1:
We would like to show that V(0) + G(0) = H(0). For each entry, consider

(V(0) + G(0))ij =
1

m

m∑
k=1

〈
x

vk(0)
⊥

i , xj
vk(0)

⊥〉
1ik(0)1jk(0) +

1

m

m∑
k=1

〈
x

vk(0)
i , xj

vk(0)
〉
1ik(0)1jk(0).

Note that〈
xi, xj

〉
=
〈
x

vk(0)
i + x

vk(0)
⊥

i , x
vk(0)
j + x

vk(0)
⊥

j

〉
=
〈
x

vk(0)
⊥

i , xj
vk(0)

⊥〉
+
〈
x

vk(0)
i , xj

vk(0)
〉
.

This gives

(V(0) + G(0))ij =
1

m

m∑
k=1

〈
xi, xj

〉
1ik(0)1jk(0) = Hij(0)

which proves the claim.

Proof of Observation 1:
We show that the initialization of the network is independent of α. Take α, β > 0, and for each k,
initialize vαk ,v

β
k as

vαk (0) ∼ N(0, α2I), vβk (0) ∼ N(0, β2I).

Then

vαk (0)

‖vαk (0)‖2
∼

vβk (0)

‖vβk (0)‖2
∼ Unif(Sd−1) (in distribution).

Hence the distribution of each neuron σ
( vk(0)
‖vk(0)‖2

)
at initialization is independent of α. Next for

gk(0), we note that

‖vαk (0)‖2 ∼
α

β
‖vβk (0)‖2.

Initializing gαk (0), gβk (0) as in (2.4),

gαk (0) =
‖vk(0)‖2

α
, gβk (0) =

‖vk(0)‖2
β

,

gives

gαk (0), gβk (0) ∼ χd, and
gαk (0)vαk (0)

‖vαk (0)‖2
∼
gβk (0)vβk (0)

‖vβk (0)‖2
∼ N(0, I),

for all α, β. This shows that the network initialization is independent of α and is equivalent to
the initialization of the un-normalized setting. Similarly, inspecting the terms in the summands of
V(0),G(0) shows that they are also independent of α. For

Vij(0) =
1

m

m∑
k=1

1ik(0)1jk(0)

(
αck · gk(0)

‖vk(0)‖2

)2〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
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the terms 1ik(0), x
vk(0)

⊥

i are independent of scale, and the fraction in the summand is identically 1.
G(0) defined as

Gij(0) =
1

m

m∑
k=1

1ik(0)1jk(0)
〈
x

vk(0)
i , x

vk(0)
j

〉
is also invariant of scale since the projection onto a vector direction vk(0) is independent of scale.

B CONVERGENCE PROOF FOR GRADIENT FLOW

In this section we derive the convergence results for gradient flow.

The main results are analogous to Theorems 4.1, 4.2 but by considering gradient flow instead of
gradient descent the proofs are simplified. In Appendix C we prove the main results from Section 4
(Theorem 4.1, 4.2) for finite step gradient descent.

We state our convergence results for gradient flow.
Theorem B.1 (V-dominated convergence). Suppose a network from the class (1.2) is initialized as in
(2.4) with α < 1 and that assumptions 1,2 hold. In addition, suppose the neural network is trained via
the regression loss (2.5) with target y satisfying ‖y‖∞ = O(1). Then if m = Ω

(
n4 log(n/δ)/λ40

)
,

WeightNorm training with gradient flow converges at a linear rate, with probability 1− δ, as

‖f(t)− y‖22 ≤ exp(−λ0t/α2)‖f(0)− y‖22.

This theorem is analogous to Theorem 4.1 but since here, the settings are of gradient flow there is no
mention of the step-size. It is worth noting that smaller α leads to faster convergence and appears to
not affect the other hypotheses of the flow theorem. This “un-interuptted” fast convergence behavior
does not extend to finite-step gradient descent where the increased convergence rate is balanced by
decreasing the allowed step-size.

The second main result for gradient flow is for G-dominated convergence.
Theorem B.2 (G-dominated convergence). Suppose a network from the class (1.2) is initialized
as in (2.4) with α > 1 and that assumptions 1, 2 hold. In addition, suppose the neural net-
work is trained on the regression loss (2.5) with target y satisfying ‖y‖∞ = O(1). Then if
m = Ω

(
max

{
n4 log(n/δ)/α4µ4

0, n
2 log(n/δ)/µ2

0

})
, WeightNorm training with gradient flow con-

verges at a linear rate, with probability 1− δ, as

‖f(t)− y‖22 ≤ exp(−µ0t)‖f(0)− y‖22.

B.1 PROOF SKETCH

To prove the results above we follow the steps introduced in the proof sketch of Section 4. The main
idea of the proofs for V and G dominated convergence are analogous and a lot of the proofs are
based of Du et al. [15]. We show that in each regime, we attain linear convergence by proving that
the least eigenvalue of the evolution matrix Λ(t) is strictly positive. For the V-dominated regime we
lower bound the least eigenvalue of Λ(t) as λmin(Λ(t)) ≥ λmin(V(t))/α2 and in the G-dominated
regime we lower bound the least eigenvalue as λmin(Λ(t)) ≥ λmin(G(t)).

The main part of the proof is showing that λmin(V(t)), λmin(G(t)) stay uniformly positive. We use
several lemmas to show this claim.

In each regime, we first show that at initialization the kernel under consideration, V(0) or G(0), has
a positive least eigenvalue. This is shown via concentration to an an auxiliary kernel (Lemmas B.1,
B.2), and showing that the auxiliary kernel is also strictly positive definite (Lemma 4.1).
Lemma B.1. Let V(0) and V∞ be defined as in (3.3) and (4.2), assume the network width m
satisfies m = Ω

(n2 log(n/δ)
λ2
0

)
. Then with probability 1− δ,

‖V(0)−V∞‖2 ≤
λ0
4
.

13



Under review as a conference paper at ICLR 2020

Lemma B.2. Let G(0) and G∞ be defined as in (3.4) and (4.3), assume m satisfies m =

Ω
(n2 log(n/δ)

µ2
0

)
. Then with probability 1− δ,

‖G(0)−G∞‖2 ≤
µ0

4
.

After showing that V(0),G(0) have a positive least-eigenvalue we show that V(t),G(t) maintain this
positive least eigenvalue during training. This part of the proof depends on the over-parameterization
of the networks. The main idea is showing that if the individual parameters vk(t), gk(t) do not
change too much during training, then V(t),G(t) remain close enough to V(0),G(0) so that they
are still uniformly strictly positive definite. We prove the results for V(t) and G(t) separately since
each regime imposes different restrictions on the trajectory of the parameters.

For now, in Lemmas B.3, B.4, B.5, we make assumptions on the parameters of the network not
changing “too much”; later we show that this holds and is the result of over-parameterization.
Specifically, over-parameterization ensures that the parameters stay at a small maximum distance
from their initialization.

V-dominated convergence To prove the least eigenvalue condition on V(t), we introduce the
surrogate Gram matrix V̂(t) defined entry-wise as

V̂ij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t). (B.1)

This definition aligns with V(t) if we replace the scaling term
(αckgk(t)
‖vk(t)‖2

)2
in each term in the sum

Vij(t) by 1.

To monitor V(t) − V(0) we consider V̂(t) − V(0) and V(t) − V̂(t) in Lemmas B.3 and B.4
respectively:
Lemma B.3 (Rectifier sign-changes). Suppose v1(0), . . . ,vk(0) are sampled i.i.d. as (2.4). In

addition assume we have m = Ω
( (m/δ)1/dn log(n/δ)

αλ0

)
and ‖vk(t)− vk(0)‖2 ≤ αλ0

96n(m/δ)1/d
=: Rv.

Then with probability 1− δ,

‖V̂(t)−V(0)‖2 ≤
λ0
8
.

Lemma B.4. Define

Rg =
λ0

48n(m/δ)1/d
, Rv =

αλ0
96n(m/δ)1/d

. (B.2)

Suppose the conditions of Lemma B.3 hold, and that ‖vk(t)−vk(0)‖2 ≤ Rv , ‖gk(t)−gk(0)‖2 ≤ Rg
for all 1 ≤ k ≤ m. Then with probability 1− δ,

‖V(t)−V(0)‖2 ≤
λ0
4
.

G-dominated convergence We ensure that G(t) stays uniformly positive definite if the following
hold.
Lemma B.5. Given v1(0), . . . ,vk(0) generated i.i.d. as in (2.4), suppose that for each k, ‖vk(t)−
vk(0)‖2 ≤

√
2παµ0

8n(m/δ)1/d
=: R̃v , then with probability 1− δ,

‖G(t)−G(0)‖2 ≤
µ0

4
.

After deriving sufficient conditions to maintain a positive least eigenvalue at training, we restate the
discussion of linear convergence from Section 4 formally.
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Lemma B.6. Consider the linear evolution df
dt = −

(
G(t) + V(t)

α2

)
(f(t)− y) from (3.5). Suppose

that λmin

(
G(t) + V(t)

α2

)
≥ ω

2 for all times 0 ≤ t ≤ T . Then

‖f(t)− y‖22 ≤ exp(−ωt)‖f(0)− y‖22
for all times 0 ≤ t ≤ T .

Using the linear convergence result of Lemma B.6, we can now bound the trajectory of the parameters
from their initialization.

Lemma B.7. Suppose that for all 0 ≤ t ≤ T , λmin

(
G(t) + 1

α2 V(t)

)
≥ ω

2 and |gk(t)− gk(0)| ≤

Rg ≤ 1/(m/δ)1/d. Then with probability 1− δ over the initialization

‖vk(t)− vk(0)‖2 ≤
4
√
n‖f(0)− y‖2
αω
√
m

=: R′v (B.3)

for each k and all times 0 ≤ t ≤ T .

Lemma B.8. Suppose that for all 0 ≤ t ≤ T , λmin

(
G(t) + 1

α2 V(t)

)
≥ ω

2 . Then with probability

1− δ over the initialization

|gk(t)− gk(0)| ≤ 4
√
n‖f(0)− y‖2√

mω
=: R′g

for each k and all times 0 ≤ t ≤ T.

The distance of the parameters from initialization depends on the convergence rate (which depends
on λmin(Λ(t))) and the width of the network m. We therefore are able to find sufficiently large m for
which the maximum parameter trajectories are not too large so that we have that the least eigenvalue
of Λ(t) is bounded from 0; this proves the main claim.

Before proving the main results in the case of gradient flow, we use two more technical lemmas.
Lemma B.9. Suppose that the network is initialized as (2.4) and that y ∈ Rn has bounded entries
|yi| ≤M . Then ‖f(0)− y‖2 ≤ C

√
n log(n/δ) for some absolute constant C > 0.

Lemma B.10 (Failure over initialization). Suppose v1(0), . . . ,vk(0) are initialized i.i.d. as in (2.4)
with input dimension d. Then with probability 1− δ,

max
k∈[m]

1

‖vk(0)‖2
≤ (m/δ)

α

1/d

.

In addition by (2.3), for all t ≥ 0, with probability 1− δ,

max
k∈[m]

1

‖vk(t)‖2
≤ (m/δ)

α

1/d

.

Remark (Assumption 2). Predominately, machine learning applications reside in the high dimen-
sional regime with d ≥ 50. Typically d � 50. This therefore leads to an expression (m/δ)1/d

that is essentially constant. For example, if d = 50, for maxk∈[m]
1

‖vk(0)‖2 ≥ 10, one would need

m/δ ≥ 1080 (the tail of χ2
d also has a factor of (d/2)! · 2d/2 which makes the assumption even

milder). The term (m/δ)1/d therefore may be taken as a constant for practicality,

max
k∈[m]

1

‖vk(0)‖2
≤ C

α
.

While we make Assumption 2 when presenting our final bounds, for transparency we do not use
Assumption 2 during our analysis and apply it only when we present the final over-parameterization
results to avoid the overly messy bound. Without the assumption the theory still holds yet the
over-parameterization bound worsens by a power 1 + 1/(d− 1). This is since the existing bounds
can be modified, replacing m with m1− 1

d .
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Proof of Theorem B.1:
Note that m = Ω

(
n4 log(n/δ)/λ40

)
implies that Lemma B.1 holds. Further since the gradient flow

updates are continous (since the time derivative with respect to each parameter may be bounded),
there exist a small time T for which the parameters are bounded from initialization for 0 ≤ t ≤ T
and for all 1 ≤ k ≤ m,

‖vk(t)− vk(0)‖2 ≤ Rv, |gk(t)− gk(0)| ≤ Rg.

The bounded trajectory above, along with the over-parameterization, ensures that with probability
1− δ over the initialization that Lemma B.4 holds and that

λmin

(
G(t) +

1

α2
V(t)

)
≥ λmin(V(t))/α2 ≥ λ0

2α2

for times 0 ≤ t ≤ T . The condition on the eigenvalue of the evolution matrix along with the bounded
trajectory of gk implies that Lemmas B.7, B.8 hold for at least times 0 ≤ t < T . Define T0 to be
the first failure point of either Lemmas B.8, B.7, we have that T0 ≥ T > 0. For 0 ≤ t < T0, by
substituting m = Ω

(
n4 log(n/δ)/λ40

)
and using the bound on ‖f(0)− y‖2 of Lemma B.9, a direct

calculation utilizing Lemma B.7 shows that

‖vk(t)− vk(0)‖2
B.7
≤ α
√
n‖f(0)− y‖2√

mλ0
≤ Rv.

Similarly by Lemma B.8 m ensures that

|gk(t)− gk(0)|
B.8
≤ α2

√
n‖f(0)− y‖2√

mλ0
≤ Rg.

The over-parameterization of m implies that the parameter trajectories stay close enough to initializa-
tion to satisfy the hypotheses of Lemmas B.3, B.4 and that λmin(Λ(t)) ≥ λmin(V(t))/α2 ≥ λ0

2α2 at
time T0. This implies that Lemmas B.7, B.8 both hold at time T0 which contradicts the definition
of T0. Therefore we conclude that Lemmas B.7, B.8 hold for t > 0 which implies that Lemma B.4
holds for t > 0 hence Lemma B.6 guarantees linear convergence.

Here we consider the case where the convergence is dominated by G. This occurs when α > 1.
Proof of Theorem B.2:
Similarly to Theorem B.1, we note that m = Ω

(
max

{
n4 log(n/δ)/α4µ4

0, n
2 log(n/δ)/µ2

0

})
im-

plies that Lemma B.2 holds. Further since the gradient flow updates are continous (since the time
derivative with respect to each parameter may be bounded), there exist small time T for which the
parameters are bounded from initialization for 0 ≤ t ≤ T and for all 1 ≤ k ≤ m

‖vk(t)− vk(0)‖2 ≤ R̃v.

The bounded trajectory above, along with the over-parameterization, ensures that with probability
1− δ over the initialization that Lemma B.5 holds and that

λmin

(
G(t) +

1

α2
V(t)

)
≥ λmin(G(t))/α2 ≥ µ0

2

for times 0 ≤ t ≤ T . The condition on the eigenvalue of the evolution matrix along with the
bounded trajectory of gk implies that Lemmas B.7, B.8 hold for at least times 0 ≤ t < T . Define
T0 to be the first failure point of either Lemmas B.8, B.7, we have that T0 ≥ T > 0. For 0 ≤ t <
T0, by substituting m = Ω

(
max

{
n4 log(n/δ)/α4µ4

0, n
2 log(n/δ)/µ2

0

})
and using the bound on

‖f(0)− y‖2 of Lemma B.9, a direct calculation utilizing Lemma B.7 shows that

‖vk(t)− vk(0)‖2
B.7
≤ 4
√
n‖f(0)− y‖2
αµ0
√
m

B.9
≤
Cn
√

log(n/δ)

αµ0
√
m

≤ R̃v.

Similarly by Lemma B.8 m ensures that

|gk(t)− gk(0)|
B.8
≤
√
n‖f(0)− y‖2√

mµ0
≤ Rg.
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The over-parameterization of m implies that the parameter trajectories stay close enough to initial-
ization to satisfy the hypotheses of Lemmas B.5 and that λmin(Λ(t)) ≥ λmin(G(t))/α2 ≥ µ0/2 at
time T0. This implies that Lemmas B.7, B.8 both hold at time T0 which contradicts the definition
of T0. Therefore we conclude that Lemmas B.7, B.8 hold for t > 0 which implies that Lemma B.5
holds for t > 0 hence Lemma B.6 guarantees linear convergence with rate µ0/2.

Note that if α is large, the required complexity on m is reduced. Taking α = Ω(
√
n/µ0) gives the

improved bound

m = Ω

(
n2 log (n/δ)

µ2
0

)
.

C FINITE STEP-SIZE TRAINING

The general technique of proof for gradient flow extends to finite-step gradient descent. Nonethless,
proving convergence for WeightNorm gradient descent exhibits additional complexities arising from
the discrete updates and joint training with the new parameterization (1.2). We first introduce some
needed notation.

Define Si(R) as the set of indices k ∈ [m] corresponding to neurons that are close to the activity
boundary of ReLU at initialization for a data point xi,

Si(R) := {k ∈ [m] : ∃ v with ‖v − vk(0)‖2 ≤ R and 1ik(0) 6= 1{v>xi ≥ 0}}.

We upper bound the cardinality of |Si(R)| with high probability.
Lemma C.1. With probability 1− δ, we have that for all i

|Si(R)| ≤
√

2mR√
πα

+
16 log(n/δ)

3
.

Next we review some additional lemmas needed for the proof of Theorems 4.1, 4.2. Analogous to
Lemmas B.7, B.8, we bound the finite-step parameter trajectories in Lemmas C.2, C.3.
Lemma C.2. Suppose the norm of ‖f(s) − y‖22 decreases linearly for some convergence rate
ω during gradient descent training for all iteration steps s = 0, 1, . . . ,K with step-size η as
‖f(s)− y‖22 ≤ (1− ηω

2 )s‖f(0)− y‖22 . Then for each k we have

|gk(s)− gk(0)| ≤ 4
√
n‖f(0)− y‖2√

mω

for iterations s = 0, 1, . . . ,K + 1.

Lemma C.3. Under the assumptions of Lemma C.2, suppose in addition that |gk(s) − gk(0)| ≤
1/(m/δ)1/d for all iterations steps s = 0, 1, . . .K . Then for each k,

‖vk(s)− vk(0)‖2 ≤
8
√
n‖f(0)− y‖2
α
√
mω

for s = 0, 1, . . . ,K + 1.

To prove linear rate of convergence we analyze the s+ 1 iterate error ‖f(s+ 1)− y‖2 relative to that
of the s iterate, ‖f(s)− y‖2. Consider the network’s coordinate-wise difference in output between
iterations, fi(s+ 1)− fi(s), writing this explicitly based on gradient descent updates yields

fi(s+ 1)− fi(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
σ(vk(s+ 1)>xi)−

ckgk(s)

‖vk(s)‖2
σ(vk(s)>xi). (C.1)
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We now decompose the summand in (C.1) looking at the updates in each layer, fi(s+ 1)− fi(s) =
ai(s) + bi(s) with

ai(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
σ(vk(s)>xi)−

ckgk(s)

‖vk(s)‖2
σ(vk(s)>xi),

bi(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)
.

Further, each layer summand is then subdivided into a primary term and a residual. ai(s), correspond-

ing to the difference in the first layer
(

ckgk(s+1)
‖vk(s+1)‖2 −

ckgk(s)
‖vk(s)‖2

)
, is subdivided into aIi (s) and aIIi (s)

as follows:

aIi (s) =
1√
m

m∑
k=1

(
ckgk(s+ 1)

‖vk(s)‖2
− ckgk(s)

‖vk(s)‖2

)
σ(vk(s)>xi), (C.2)

aIIi (s) =
1√
m

m∑
k=1

(
ckgk(s+ 1)

‖vk(s+ 1)‖2
− ckgk(s+ 1)

‖vk(s)‖2

)
σ(vk(s)>xi). (C.3)

bi(s) is sub-divided based on the indices in the set Si that monitor the changes of the rectifiers. For
now, Si = Si(R) with R to be set later in the proof. bi(s) is partitioned to summands in the set Si
and the complement set,

bIi (s) =
1√
m

∑
k 6∈Si

ckgk(s+ 1)

‖vk(s+ 1)‖2
(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)
,

bIIi (s) =
1√
m

∑
k∈Si

ckgk(s+ 1)

‖vk(s+ 1)‖2
(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)
.

With this sub-division in mind, the terms corresponding to convergence are aI(s),bI(s) whereas
aII(s),bII(s) are residuals that are the result of discretization. We define the primary and residual
vectors p(s), r(s) as

p(s) =
aI(s) + bI(s)

η
, r(s) =

aII + bII(s)

η
. (C.4)

If the residual r(s) is sufficiently small and p(s) may be written as p(s) = −Λ(s)(f(s) − y) for
some iteration dependent evolution matrix Λ(s) that has

λmin(Λ(s)) = ω/2 (C.5)

for ω > 0 then the neural network (1.2) converges linearly when trained with WeightNorm gradient
descent of step size η. We formalize the condition on r(s) below and later derive the conditions on
the over-parameterization (m) ensuring that r(s) is sufficiently small.
Property 1. Given a network from the class (1.2) initialized as in (2.4) and trained with gradient
descent of step-size η, define the residual r(s) as in (C.4) and take ω as in (C.5). We specify the

“residual condition” at iteration s as

‖r(s)‖2 ≤ cω‖f(s)− y‖2
for a sufficiently small constant c > 0 independent of the data or initialization.

Here we present Theorem C.1 which is the backbone of Theorems 4.1 and 4.2.
Theorem C.1. Suppose a network from the class (1.2) is trained via WeightNorm gradient descent
with an evolution matrix Λ(s) as in (C.5) satisfying λmin(Λ(s)) ≥ ω/2 for s = 0, 1, . . .K. In
addition if the data meets assumptions 1, 2, the step-size η of gradient descent satisfies η ≤ 1

3‖Λ(s)‖2
and that the residual r(s) defined in (C.4) satisfies Property 1 for s = 0, 1, . . . ,K then we have that

‖f(s)− y‖22 ≤
(

1− ηω

2

)s
‖f(0)− y‖22

for s = 0, 1, . . . ,K.
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Proof of Theorem C.1:
This proof provides the foundation for the main theorems. In the proof we also derive key bounds to
be used in Theorems 4.1, 4.2. We use the decomposition we described above and consider again the
difference between consecutive terms f(s+ 1)− f(s),

fi(s+ 1)− fi(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
σ(vk(s+ 1)>xi)−

ckgk(s)

‖vk(s)‖2
σ(vk(s)>xi). (C.6)

Following the decompostion introduced in (C.2), aIi (s) is re-written in terms of G(s),

aIi (s) =
1√
m

m∑
k=1

ck
‖vk(s)‖2

(
− η ∂L(s)

∂gk

)
σ(vk(s)>xi)

= − η

m

m∑
k=1

ck
‖vk(s)‖2

n∑
j=1

(fj(s)− yj)
ck

‖vk(s)‖2
σ(v>k (s)xj)σ(v>k (s)xi)

= −η
n∑
j=1

(fj(s)− yj)
1

m

m∑
k=1

(ck)2σ

(
vk(s)>xi
‖vk(s)‖2

)
σ

(
vk(s)>xj
‖vk(s)‖2

)

= −η
n∑
j=1

(fj(s)− yj)Gij(s),

where the first equality holds by the gradient update rule gk(s + 1) = gk(s) − η∇gkL(s). In this
proof we also derive bounds on the residual terms of the decomposition which we will aid us in the
proofs of Theorems 4.1, 4.2. aIi (s) is the primary term of ai(s), now we bound the residual term
aIIi (s). Recall aIIi (s) is written as

aIIi (s) =
1√
m

m∑
k=1

(
ckgk(s+ 1)

‖vk(s+ 1)‖2
− ckgk(s+ 1)

‖vk(s)‖2

)
σ(vk(s)>xi),

which corresponds to the difference in the normalization in the second layer. Since ∇vk
L(s) is

orthogonal to vk(s) we have that

ckgk(s+ 1)

(
1

‖vk(s+ 1)‖2
− 1

‖vk(s)‖2

)
σ(vk(s)>xi)

= ckgk(s+ 1)

(
1√

‖vk(s)‖22 + η2‖∇vk
L(s)‖22

− 1

‖vk(s)‖2

)
σ(vk(s)>xi)

=
−ckgk(s+ 1)η2‖∇vk

L(s)‖22
‖vk(s+ 1)‖2‖vk(s)‖2(‖vk(s)‖2 + ‖vk(s+ 1)‖2)

σ(vk(s)>xi)

≤ −ckgk(s+ 1)η2‖∇vk
L(s)‖22

2‖vk(s)‖2‖vk(s+ 1)‖2
σ

(
vk(s)>xi
‖vk(s)‖2

)
,

where the first equality above is by completing the square, and the inequality is due to the increasing
magnitudes of ‖vk(s)‖2.

Since 0 ≤ σ
(

vk(s)
>xi

‖vk(s)‖2

)
≤ 1, the above can be bounded as

|aIIi (s)| ≤ 1√
m

m∑
k=1

∣∣∣∣gk(s+ 1)η2‖∇vk
L(s)‖22

2‖vk(s)‖2‖vk(s+ 1)‖2

∣∣∣∣
≤ 1√

m

m∑
k=1

η2
(
1 +Rg(m/δ)

1/d
)3
n‖f(s)− y‖22(m/δ)1/d

α4m

=
η2n
(
1 +Rg(m/δ)

1/d
)3‖f(s)− y‖22(m/δ)1/d

α4
√
m

. (C.7)
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The second inequality is the result of applying the bound in equation (E.1) on the gradient norm
‖∇vk

L(s)‖2 and using Lemma B.10.

Next we analyze bi(s) and sub-divide it based on the sign changes of the rectifiers. Define the set
Si := Si(R) as in Lemma C.1 with R taken to be such that ‖vk(s + 1) − vk(0)‖2 ≤ R for all k.
Take bIIi (s) as the sub-sum of bi(s) with indices k from the set Si.

bIi (s) corresponds to the sub-sum with the remaining indices. By the definition of Si, for k 6∈ Si we
have that 1ik(s+ 1) = 1ik(s). This enables us to factor 1ik(s) and represent bIi (s) as a Gram matrix
similar to V(s) with a correction term from the missing indices in Si.

bIi (s) = − 1√
m

∑
k 6∈Si

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)(
η
〈
∇vk

L(s), xi
〉)
1ik(s)

= − η

m

∑
k 6∈Si

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)(
ckgk(s)

‖vk(s)‖2

) n∑
j=1

(fj(s)− yj)1ik(s)1jk(s)
〈
x

vk(s)
⊥

j , xi
〉
.

Note that
〈
x

vk(s)
⊥

j , xi
〉

=
〈
x

vk(s)
⊥

j , x
vk(s)

⊥

i

〉
therefore,

bIi (s) = − η

m

∑
k 6∈Si

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)(
ckgk(s)

‖vk(s)‖2

) n∑
j=1

(fj(s)− yj)1ik(s)1jk(s)
〈
x

vk(s)
⊥

j , x
vk(s)

⊥

i

〉
.

Define Ṽ(s) as

Ṽij(s) =
1

m

m∑
k=1

(
αckgk(s+ 1)

‖vk(s+ 1)‖2

)(
αckgk(s)

‖vk(s)‖2

)
1jk(s)1ik(s)

〈
x

vk(s)
⊥

i , x
vk(s)

⊥

j

〉
.

This matrix is identical to V(s) except for a modified scaling term
( c2kgk(s+1)gk(s)
‖vk(s)‖2‖vk(s+1)‖2

)
. We note

however that

min

((
ckgk(s)

‖vk(s)‖2

)2

,

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)2
)
≤
(
ckgk(s)

‖vk(s)‖2

)(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)

≤ max

((
ckgk(s)

‖vk(s)‖2

)2

,

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)2
)

because gk(s), c2k are positive. Hence the matrix Ṽ(s) satisfies the hypothesis of Lemma B.4 entirely.
We write bIi (s) as

bIi (s) = −η/α2
n∑
j=1

(fj(s)− yj)(Ṽij(s)− Ṽ⊥ij(s)),

where we have defined

Ṽ⊥ij(s) =
1

m

∑
k∈Si

(
αckgk(s)

‖vk(s)‖2

)(
αckgk(s+ 1)

‖vk(s+ 1)‖2

)
1ik(s)1jk(s)

〈
x

vk(s)
⊥

i , x
vk(s)

⊥

j

〉
. (C.8)

We then bound the magnitude of each entry Ṽ⊥ij(s):

Ṽ⊥ij(s) =
1

m

∑
k∈Si

(
αckgk(s)

‖vk(s)‖2

)(
αckgk(s+ 1)

‖vk(s+ 1)‖2

)
1ik(s)1jk(s)

〈
x

vk(s)
⊥

i , x
vk(s)

⊥

j

〉
≤ (1 +Rg(m/δ)

1/d)2|Si|
m

. (C.9)
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Lastly we bound the size of the residual term bIIi (s),

|bIIi (s)| =
∣∣∣∣− 1√

m

∑
k∈Si

ckgk(s+ 1)

‖vk(s+ 1)‖2

(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)∣∣∣∣
≤ gk(s+ 1)η|Si| · ‖∇vk

L(s)‖2√
m‖vk(s+ 1)‖2

≤ η|Si|(1 + (m/δ)1/dRg)‖∇vk
L(s)‖2

α
√
m

.

Where we used the Lipschitz continuity of σ in the first bound, and took Rg > 0 that satisfies
|gk(s+ 1)− gk(0)| ≤ Rg in the second inequality. Applying the bound (E.1),

|bIIi (s)| ≤ η|Si|
√
n(1 +Rg(m/δ)

1/d)2‖f(s)− y‖2
α2m

. (C.10)

The sum f(s + 1) − f(s) = aI(s) + aII(s) + bI(s) + bII(s) is separated into the primary term
ηp(s) = aI(s) + bI(s) and the residual term ηr(s) = aII(s) + bII(s) which is a result of the
discretization. With this, the evolution matrix Λ(s) in (C.5) is re-defined as

Λ(s) := G(s) +
Ṽ(s)− Ṽ⊥(s)

α2

and

f(s+ 1)− f(s) = −ηΛ(s)(f(s)− y) + ηr(s).

Now we compare ‖f(s+ 1)− y‖22 with ‖f(s)− y‖22,

‖f(s+ 1)− y‖22 =‖f(s+ 1)− f(s) + f(s)− y‖22
=‖f(s)− y‖22 + 2

〈
f(s+ 1)− f(s), f(s)− y

〉
+
〈
f(s+ 1)− f(s), f(s+ 1)− f(s)

〉
.

Substituting

f(s+ 1)− f(s) = aI(s) + bI(s) + aII(s) + bII(s) = −ηΛ(s)(f(s)− y) + ηr(s)

we obtain

‖f(s+ 1)− y‖22 =‖f(s)− y‖22 + 2(−ηΛ(s)(f(s)− y) + ηr(s))>(f(s)− y)

+ η2(Λ(s)(f(s)− y)− r(s))>(Λ(s)(f(s)− y)− r(s))

≤‖f(s)− y‖22 + (f(s)− y)>(−ηΛ(s) + η2Λ2(s))(f(s)− y)

+ ηr(s)>(I− ηΛ(s))(f(s)− y) + η2‖r(s)‖22.

Now as λmin(Λ(s)) ≥ ω/2 and η = 1
3‖Λ(s)‖2 , we have that

(f(s)− y)>(−ηΛ(s) + η2Λ2(s))(f(s)− y) = −η(f(s)− y)>(I− ηΛ(s))Λ(s)(f(s)− y) ≤ −3ηω

8
‖f(s)− y‖22.

Next we analyze the rest of the terms and group them as q(s),

q(s) := ηr(s)>(I− ηΛ(s))(f(s)− y) + η2‖r(s)‖22
≤ η‖r(s)‖2‖f(s)− y‖2 + η2‖r(s)‖22.

By Property 1 we have

q(s) ≤ ηcω‖f(s)− y‖22(1 + ηcω) ≤ 2cηω‖f(s)− y‖22,
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so that

q(s) ≤ c′ηω‖f(s)− y‖22,

for c′ sufficiently small. Substituting, the difference f(s+ 1)− y is bounded as

‖f(s+ 1)− y‖22 ≤ ‖f(s)− y‖22 − ηω(1− η‖Λ(s)‖2)‖f(s)− y‖22 + c′ηω‖f(s)− y‖22
≤ (1− ηω(1− η‖Λ(s)‖2) + c′ηω)‖f(s)− y‖22
≤ (1− ηω/2)‖f(s)− y‖22,

for well chosen absolute constant c. Hence for each s = 0, 1, . . . ,K,

‖f(s+ 1)− y‖22 ≤ (1− ηω/2)‖f(s)− y‖22
so the prediction error converges linearly.

In what comes next we prove the necessary conditions for Property 1, and define the appropriate ω
for the V and G dominated regimes, in order to show λmin(Λ(s)) ≥ ω/2.

Proof of Theorem 4.1:
To prove convergence we would like to apply Theorem C.1 with ω/2 = λ0

2α2 . To do so we need to
show thatm = Ω

(
n4 log(n/δ)/λ40

)
guarantees that Property 1 holds and that λmin(Λ(s)) ≥ λ0/2α2.

For finite-step gradient training, take

Rv =
αλ0

192n(m/δ)1/d
, Rg =

λ0
96n(m/δ)1/d

. (C.11)

Note the residual r(s) and the other terms bI(s),bII(s) depend on the sets Si that we define here
using Rv . We make the assumption that ‖vk(s)−vk(0)‖2 ≤ Rv and |gk(s)− gk(0)| ≤ Rg for all k
and that s = 0, 1, . . .K+ 1, this guarantees that bI(s) and Λ(s) are well defined. Applying Lemmas
B.1, B.4 with Rv, Rg defined above, we have that λmin(Ṽ(s)) ≥ 5λ0

8 . Then the least eigenvalue of
the evolution matrix Λ(s) is bounded below

λmin(Λ(s)) = λmin

(
G(s) +

Ṽ(s)− Ṽ⊥(s)

α2

)
≥ λmin

(
Ṽ(s)− Ṽ⊥(s)

α2

)
=
λmin(Ṽ(s)− Ṽ⊥(s))

α2

≥ 5λ0
8α2
− ‖Ṽ

⊥(s)‖2
α2

.

The first inequality holds since G(s) � 0 and the last inequality is since λmin(Ṽ(s)) ≥ 5λ0

8 .

To show λmin(Λ(s)) ≥ λ0

2α2 we bound ‖Ṽ⊥(s)‖2 ≤ λ0

8 . By (C.9), we have

|Ṽ⊥ij(s)| ≤
(1 +Rg(m/δ)

1/d)|Si|
m

≤ (1 +Rg(m/δ)
1/d)

(√
2R̃v√
πα

+
16 log(n/δ)

3m

)
.

Substituting Rv, Rg and m, a direct calculation shows that

|Ṽ⊥ij(s)| ≤
λ0
8n
,

which yields

‖Ṽ⊥(s)‖2 ≤ ‖Ṽ⊥(s)‖F ≤
λ0
8
.

Hence λmin(Λ(s)) ≥ λ0

2α2 for iterations s = 0, 1, . . .K.
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We proceed by showing the residual r(s) satisfies property 1. Recall r(s) is written as

r(s) =
aII(s)

η
+

bII(s)

η
.

and Property 1 states that ‖r(s)‖2 ≤ cηλ0

α2 ‖f(s)− y‖2 for sufficiently small absolute constant c < 1.
This is equivalent to showing that both aII(s), bII(s) satisfy

‖aII(s)‖2 ≤
cηλ0
α2
‖f(s)− y‖2, (C.12)

‖bII(s)‖2 ≤
cηλ0
α2
‖f(s)− y‖2. (C.13)

We consider each term at turn. By (C.10),

‖bII(s)‖2 ≤
√
nmax

i
bIIi (s)

≤ max
i

ηn(1 +Rg(m/δ)
1/d)2|Si|‖f(s)− y‖2
α2m

≤ CmRvηn‖f(s)− y‖2
α2m

≤ λ0η‖f(s)− y‖2
α2

· nCRv.

In the above we used the values of Rv, Rg defined in (C.11) and applied Lemma C.1 in the third
inequality. Taking m = Ω

(
n4 log(n/δ)/λ40

)
with large enough constant yields

‖bII(s)‖2 ≤
cλ0η‖f(s)− y‖2

α2
.

Next we analogously bound ‖aII(s)‖ via the bound (C.7),

‖aII(s)‖2 ≤
√
nmax

i
aIIi (s)

≤
η2n3/2

(
1 +Rg(m/δ)

1/d
)3‖f(s)− y‖22(m/δ)1/d

α4
√
m

≤ ηλ0‖f(s)− y‖2
α2

·
η
(
1 +Rg(m/δ)

1/d
)3
n3/2‖f(s)− y‖2(m/δ)1/d

λ0α2
√
m

≤ ηλ0‖f(s)− y‖2
α2

· η
α2
·
Cn2

√
log(n/δ)

λ0
√
m

≤ cηω‖f(s)− y‖2.

In the above we applied Lemma B.9 once again. The last inequality holds since m =

Ω(n4 log(n/δ)/λ40) and η = O

(
α2

‖V(s)‖2

)
, hence r(s) satisfies Property 1. Now since Theo-

rem C.1 holds with ω = λ0/α
2 we have that the maximum parameter trajectories are bounded as

‖vk(s)−vk(0)‖2 ≤ Rv and ‖gk(s)− gk(0)‖ ≤ Rg for all k and every iteration s = 0, 1, . . . ,K+ 1
via Lemmas C.2, C.3.

To finish the proof, we apply the same contradiction argument as in Theorems B.1, B.2, taking the
first iteration s = K0 where one of Lemmas C.2, C.3 does not hold. We note that K0 > 0 and by
the definition of K0, for s = 0, 1, . . . ,K0 − 1 the Lemmas C.2, C.3 hold which implies that by the
argument above we reach linear convergence in iteration s = K0. This contradicts one of Lemmas
C.2, C.3 which gives the desired contradiction, so we conclude that we have linear convergence with
rate λ0/2α2 for all iterations.

Proof of Theorem 4.2:
For G-dominated convergence, we follow the same steps as in the proof of Theorem 4.1. We redefine
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the trajectory constants for the finite step case

R̃v :=

√
2παµ0

64n(m/δ)1/d
, Rg :=

µ0

48n(m/δ)1/d
.

To use Theorem C.1 we need to show that m = Ω
(
n4 log(n/δ)/α4µ4

0

)
guarantees Property 1, and

that λmin(Λ(s)) ≥ µ0/2. We again note that the residual r(s) and bI(s),bII(s) depend on the sets
Si that we define here using R̃v above as Si := Si(R̃v).

We start by showing the property on the least eigenvalue. We make the assumption that we have
linear convergence with ω/2 = µ0/2 and step-size η for iterations s = 0, . . .K so that Lemmas C.2,
C.3 hold. Via an analogous analysis of the continous case we reach that m = Ω

(
n4 log(n/δ)/µ4

0α
4
)

implies

‖vk(s)− vk(0)‖2 ≤
16α
√
n‖f(0)− y‖2
α
√
mµ0

≤ R̃v, |gk(s)− gk(0)| ≤ 8
√
n‖f(0)− y‖2√

mµ0
≤ Rg.

for s = 0, . . .K + 1 by Lemmas C.2, C.3 and that Λ(s),bI(s) are well defined. Using the bounds
on the parameter trajectories, Lemma B.5 and R̃v defined above yield λmin(G(s)) ≥ 5µ0

8 . The least
eigenvalue of the evolution matrix Λ(s) is bounded below as

λmin(Λ(s)) = λmin

(
G(s) +

Ṽ(s)− Ṽ⊥(s)

α2

)
≥ λmin(G(s))− ‖Ṽ⊥(s)‖2

since Ṽ(s) � 0 and α ≥ 1. We bound the spectral norm of ‖Ṽ⊥(s)‖2, for each entry i, j we have by
(C.9) that

|Ṽ⊥ij(s)| ≤
(1 +Rg(m/δ)

1/d)|Si|
m

≤ (1 +Rg(m/δ)
1/d)

(√
2R̃v√
πα

+
16 log(n/δ)

3m

)
≤ 8R̃v√

2πα

≤ µ0

8n
.

where in the above inequalities we used our bounds on R̃v, Rg and m. Then the spectral norm is
bounded as

‖Ṽ⊥(s)‖2 ≤ ‖Ṽ⊥(s)‖F ≤ µ0/8.

Hence we have that λmin(Λ(s)) ≥ µ0/2 for s = 0, 1, . . .K.

Next we show the residual r(s) satisfies Property 1. Recall r(s) is written as

r(s) =
aII(s)

η
+

bII(s)

η
.

Property 1 states the condition ‖r(s)‖2 ≤ cωη‖f(s)− y‖2 for sufficiently small c < 1 with ω = µ0.
This is equivalent to showing that both aII(s), bII(s) satisfy that

‖aII(s)‖2 ≤ cηµ0‖f(s)− y‖2, (C.14)

‖bII(s)‖2 ≤ cηµ0‖f(s)− y‖2, (C.15)

for sufficiently small absolute constant c. For bII(s) we have that (C.10) gives

‖bII(s)‖2 ≤
√
nmax

i
bIIi (s)

≤ max
i

η(1 +Rg(m/δ)
1/d)2|Si|n‖f(s)− y‖2
α2m

.
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Next applying Lemmas C.1 and B.9 in turn yields

≤ CmR̃vηn‖f(s)− y‖2
α2m

≤ ηµ0‖f(s)− y‖2
R̃v
nα2

Substituting m = Ω
(
n4 log(n/δ)/µ4

0α
4
)

for a large enough constant and Rv we get

‖bII(s)‖2 ≤ cηµ0‖f(s)− y‖2.

Analogously we bound ‖aII(s)‖2 using (C.7),

‖aII(s)‖2 ≤
√
nmax

i
aIIi (s)

≤
η2n3/2

(
1 +Rg(m/δ)

1/d
)3‖f(s)− y‖22(m/δ)1/d

α4
√
m

≤ ηµ0‖f(s)− y‖2 ·
η
(
1 +Rg(m/δ)

1/d
)3
n3/2‖f(s)− y‖2(m/δ)1/d

µ0α4
√
m

≤ ηµ0‖f(s)− y‖2 ·
η

α2
·
Cn2

√
log(n/δ)

α2µ2
0

√
m

≤ cηµ0‖f(s)− y‖2.

Where we have used Lemma B.9 in the third inequality and substituted m = Ω(n4 log(n/δ)/α4µ4
0)

noting that η = O
(

1
‖Λ(s)‖2

)
and that α ≥ 1 in the last inequality. Therefore we have that r(s)

satisfies Property 1 so that Theorem C.1 holds. By the same contradiction argument as in Theorem
4.1 we have that this holds for all iterations.

D ADDITIONAL TECHNICAL LEMMAS AND PROOFS OF LEMMAS FROM
APPENDIX B

Proof of Lemma 4.1:
We prove Lemma 4.1 for V∞, G∞ separately. V∞ can be viewed as the covariance matrix of the
functionals φi defined as

φi(v) = xi

(
I− vv>

‖v‖22

)
1{v>xi ≥ 0} (D.1)

over the Hilbert space V of L2(N(0, α2I)) of functionals. Under this formulation, if φ1, φ2, . . . , φn
are linearly independent, then V∞ is strictly positive definite. Thus, to show that V∞ is strictly
positive definite is equivalent to showing that

c1φ1 + c2φ2 + · · ·+ cnφn = 0 in V (D.2)

implies ci = 0 for each i. The φis are piece-wise continuous functionals, and equality in V is
equivalent to

c1φ1 + c2φ2 + · · ·+ cnφn = 0 almost everywhere.

For the sake of contradiction, assume that there exist c1, . . . , cn that are not identically 0, satisfying
(D.2). As ci are not identically 0, there exists an i such that ci 6= 0. We show this leads to a
contradiction by constructing a non-zero measure region such that the linear combination

∑
i ciφi is

non-zero.

Denote the orthogonal subspace to xi as Di := {v ∈ Rd : v>xi = 0}. By Assumption 1,

Di 6⊆
⋃
j 6=i

Dj
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This holds sinceDi is a (d−1)-dimensional space which may not be written as the finite union of sub-
spaces Di ∩Dj of dimension d− 2 (since xi and xj are not parallel). Thus, take z ∈ Di\

⋃
j 6=iDj .

Since
⋃
j 6=iDj is closed in Rd, there exists an R > 0 such that

B(z, 4R) ∩
⋃
j 6=i

Dj = ∅.

Next take y ∈ ∂B(z, 3R) ∩Di (where ∂ denotes the boundary) on the smaller disk of radius 3R so
that it satisfies ‖y‖2 = maxy′∈∂B(z,3R)∩Di

‖y′‖2. Now for any r ≤ R, the ball B(y, r) is such that
for all points v ∈ B(y, r) we have ‖vx⊥i ‖2 ≥ 2R and ‖vxi‖2 ≤ R. Then for any r ≤ R, the points
v ∈ B(y, r) ⊂ B(z, 4R) satisfy that

‖xv⊥

i ‖2 ≥ ‖xi‖2 −
xi · v
‖v‖2

≥ ‖xi‖2
(

1− R

2R

)
≥ ‖xi‖2

2
.

Next we decompose the chosen ball B(y, r) = B+(r)∨B−(r) to the areas where the ReLU function
at the point xi is active and inactive

B+(r) = B(y, r) ∩ {x>i v ≥ 0}, B−(r) = B(y, r) ∩ {x>i v < 0}.

Note that φi has a discontinuity on Di and is continuous within each region B+(r) and B−(r).
Moreover, for j 6= i, φj is continuous on the entire region of B(y, r) since B(y, r) ⊂ B(z, 4R) ⊂ Dc

j .
Since we have that φj is continuous in the region, the Lebesgue differentiation theorem implies that
for r → 0, φi satisfies on B+(r), B−(r):

lim
r→0

1

µ(B+(r))

∫
B+(r)

φi = xy⊥

i 6= 0, lim
r→0

1

µ(B−(r))

∫
B−(r)

φi = 0.

For j 6= i φj is continuous on the entire ball B(y, r) hence the Lebesgue differentiation theorem also
gives

lim
r→0

1

µ(B+(r))

∫
B+(r)

φi = φj(y), lim
r→0

1

µ(B−(r))

∫
B−(r)

φi = φj(y).

We integrate c1φ1 + . . . cnφn over B−(r) and B+(r) separately and subtract the integrals. By the
assumption, c1φ1 + · · · + cnφn = 0 almost everywhere so each integral evaluates to 0 and the
difference is also 0,

0 =
1

µ(B+(r))

∫
B+(r)

c1φ1 + · · ·+ cnφn −
1

µ(B−(r))

∫
B−(r)

c1φ1 + · · ·+ cnφn. (D.3)

By the continuity of φj for j 6= i taking r → 0 we have that

1

µ(B+(r))
lim
r→0

∫
B+(r)

φj −
1

µ(B−(r))

∫
B−(r)

φj = φj(y)− φj(y) = 0.

For φi the functionals evaluate differently. For B−(r) we have that

1

µ(B−(r))
lim
r→0

∫
B−(r)

φi =
1

µ(B−(r))
lim
r→0

∫
B−(r)

0 = 0,

while the integral over the positive side, B+(r) is equal to

1

µ(B+(r))

∫
B+(r)

φi(z)dz =
1

µ(B+(r))

∫
B+(r)

xz⊥

i dz = xy⊥

i .

By construction, ‖xy⊥

i ‖2 > R and is non-zero so we conclude that for (D.3) to hold we must have
ci = 0. This gives the desired contradiction and implies that φ1, . . . φn are independent and V∞ is
positive definite with λmin(V∞) = λ0.
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Next we consider G∞ and again frame the problem in the context of the covariance matrix of
functionals. Define

θi(v) := σ

(
v>xi
‖v‖2

)
for v 6= 0. Now the statement of the theorem is equivalent to showing that the covariance matrix of
{θi} does not have zero-eigenvalues, that is, the functionals θis are linearly independent. For the sake
of contradiction assume ∃ c1, . . . , cn such that

c1θ1 + c2θ2 + · · ·+ cnθn = 0 in V (equivalent to a.e).

Via the same contradiction argument we show that ci = 0 for all i. Unlike φi defined in (D.1), each
θi is continuous and non-negative so equality “a.e” is strengthened to “for all v”,

c1θ1 + c2θ2 + · · ·+ cnθn = 0.

Equality everywhere requires that the derivatives of the function are equal to 0 almost everywhere.
Computing derivatives with respect to v yields

c1x
v⊥

1 1{v>x1 ≥ 0}+ c2x
v⊥

2 1{v>x2 ≥ 0}+ · · ·+ cnxv⊥

n 1{v>xn ≥ 0} = 0.

Which coincide with

c1φ1 + · · ·+ cnφn

By the first part of the proof, the linear combination c1φ1 + · · · + cnφn is non-zero around a ball
of positive measure unless ci = 0 for all i. This contradicts the assumption that the derivative is 0
almost everywhere; therefore G∞ is strictly positive definite with λmin(G∞) =: µ0 > 0.

We briefly derive an inequality for the sum of indicator functions for events that are bounded by
the sum of indicator functions of independent events. This enables us to develop more refined
concentration than in Du et al. [15] for monitoring the orthogonal and aligned Gram matrices during
training.
Lemma D.1. Let A1, . . . , Am be a sequence of events and suppose that Ak ⊆ Bk with B1, . . . , Bm
mutually independent. Further assume that for each k, P(Bk) ≤ p, and define S = 1

m

∑m
k=1 1Ak

.
Then with probability 1− δ, S satisfies

S ≤ p
(

2 +
8 log(1/δ)

3mp

)
.

Proof of Lemma D.1:
Bound S as

S =
1

m

m∑
k=1

1Ak
≤ 1

m

m∑
k=1

1Bk
.

We apply Bernstein’s concentration inequality to reach the bound. Denote Xk =
1Bk

m and S̃ =∑m
k=1Xk. Then

Var(Xk) ≤ EX2
k = (1/m)2P(Xk) + 0 ≤ p

m2
, ES̃ = E

m∑
k=1

Xk ≤ p.

Applying Bernstein’s inequality yields

P(S̃ − ES̃ ≥ t) ≤ exp

(
−t2/2∑m

k=1 EX2
k + t

3m

)
.

Fix δ and take the smallest t such that P(S̃ − ES̃ ≥ t) ≤ δ. Denote t = r · ES̃, either P(S̃ − ES̃ ≥
ES̃) ≤ δ, or t = rES̃ corresponds to r ≥ 1. Note that t = rES̃ ≤ rp. In the latter case, the bound is
written as

P(S̃ − ES̃ ≥ rp) ≤ exp

(
−(pr)2/2

p/m+ pr
3m

)
≤ exp

(
−(pr)2/2
p
m (1 + r

3 )

)
≤ exp

(
−(pr)2/2
p
m ( 4r

3 )

)
= exp

(
−3prm

8

)
.
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Solving for δ gives

rp ≤ 8 log(1/δ)

3m
.

Hence with probability 1− δ,

S ≤ S̃ ≤ max

{
p

(
1 +

8 log(1/δ)

3mp

)
, 2p

}
≤ p
(

2 +
8 log(1/δ)

3mp

)
.

Proof of Lemma B.1:
We prove the claim by applying concentration on each entry of the difference matrix. Each entry
Vij(0) is written as

Vij(0) =
1

m

m∑
k=1

〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉(αck · gk
‖vk‖2

)2

1ik(0)1jk(0).

At initialization gk(0) = ‖vk(0)‖2/α, c2k = 1 so Vij(0) simplifies to

Vij(0) =
1

m

m∑
k=1

〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
1ik(0)1jk(0).

Since the weights vk(0) are initialized independently for each entry we have EvVij(0) =
V∞ij . We measure the deviation V(0) − V∞ via concentration. Each term in the sum
1
m

∑m
j=1

〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
1ik(0)1jk(0) is independent and bounded,

−1 ≤
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
1ik(0)1jk(0) ≤ 1.

Applying Hoeffding’s inequality to each entry yields that with probability 1− δ/n2, for all i, j,

|Vij(0)−V∞ij | ≤
2
√

log(n2/δ)√
m

.

Taking a union bound over all entries, with probability 1− δ,

|Vij(0)−V∞ij | ≤
4
√

log(n/δ)√
m

.

Bounding the spectral norm, with probability 1− δ,

‖V(0)−V∞‖22 ≤ ‖V(0)−V∞‖2F ≤
∑
i,j

|Vij(0)−V∞ij |2

≤ 16n2 log(n/δ)

m
.

Taking m = Ω
(n2 log(n/δ)

λ2
0

)
therefore guarantees

‖V(0)−V∞‖2 ≤
λ0
4
.

Proof of Lemma B.2:
This is completely analogous to B.1. Recall G(0) is defined as,

Gij(0) =
1

m

m∑
k=1

〈
x

vk(0)
i , x

vk(0)
j

〉
c2k1ik(0)1jk(0)
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with c2k = 1 and vk(0) ∼ N(0, α2I) are initialized i.i.d. Since each term is bounded like B.1 the
same analysis gives

‖Gij(0)−G∞ij ‖22 ≤
16n2 log(n/δ)

m
.

Taking m = Ω
(
n2 log(n/δ)

µ2
0

)
therefore guarantees,

‖G(0)−G∞‖2 ≤
µ0

4
.

Proof of Lemma B.3:
For a given R, define the event of a possible sign change of neuron k at point xi as

Ai,k(R) = {∃v : ‖v − vk(0)‖2 ≤ R, and 1{vk(0)>xi ≥ 0} 6= 1{v>xi ≥ 0}}

Ai,k(R) occurs exactly when |vk(0)>xi| ≤ R, since ‖xi‖2 = 1 and the perturbation may be taken
in the direction of −xi. To bound the probability Ai,k(R) we consider the probability of the event

P(Ai,k(R)) = P(|vk(0)>xi| < R) = P(|z| < R).

Here, z ∼ N(0, α2) since the product vk(0)>xi follows a centered normal distribution. The norm
of ‖xi‖2 = 1 which implies that z computes to a standard deviation α. Via estimates on the normal
distribution, the probability on the event is bounded like

P(Ai,k(R)) ≤ 2R

α
√

2π
.

We use the estimate for P(Ai,k(R)) to bound the difference between the surrogate Gram matrix and
the Gram matrix at initialization V(0).
Recall the surrogate V̂(t) is defined as,

V̂ij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

k

〉
1ik(t)1jk(t).

Thus for entry i, j we have

|V̂ij(t)−Vij(0)| =
∣∣∣∣ 1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t)− 〈xvk(0)

⊥

i , x
vk(0)

⊥

j 〉1ik(0)1jk(0)

∣∣∣∣
This sum is decomposed into the difference between the inner product and the difference in the
rectifier patterns terms respectively:(〈

x
vk(t)

⊥

i ,x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i ,x
vk(0)

⊥

j

〉)
,

(
1ik(t)1jk(t)− 1ik(0)1jk(0)

)
.

Define

Y kij =

(〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉)(
1ik(t)1jk(t)

)
,

Zkij =

(〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉)(
1ik(t)1jk(t)− 1ik(0)1jk(0)

)
.

Then

|V̂ij(t)−Vij(0)| =
∣∣∣∣ 1

m

m∑
k=1

Y kij + Zkij

∣∣∣∣ ≤ ∣∣∣∣ 1

m

m∑
k=1

Y kij

∣∣∣∣+

∣∣∣∣ 1

m

m∑
k=1

Zkij

∣∣∣∣.
To bound | 1m

∑m
k=1 Y

k
ij | we bound each |Y kij | as follows.
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|Y kij | =

∣∣∣∣∣
(〈

x
vk(t)

⊥

i , x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉)(
1ik(t)1jk(t)

)∣∣∣∣∣
≤
∣∣∣∣〈xvk(t)

⊥

i , x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉∣∣∣∣
=

∣∣∣∣〈xi,xj〉 − 〈xvk(t)
i , x

vk(t)
j

〉
+
〈
x

vk(0)
i , x

vk(0)
j

〉
− 〈xi,xj〉

∣∣∣∣
=

∣∣∣∣∣
〈

x>i vk(t)

‖vk(t)‖2
· vk(t)

‖vk(t)‖2
,

x>j vk(t)

‖vk(t)‖2
· vk(t)

‖vk(t)‖2

〉
−
〈
x

vk(0)
i , x

vk(0)
j

〉∣∣∣∣∣
=

∣∣∣∣∣ x>i vk(t)

‖vk(t)‖2
·

x>j vk(t)

‖vk(t)‖2
−
〈
x

vk(0)
i , x

vk(0)
j

〉∣∣∣∣∣
=

∣∣∣∣∣ x>i vk(0)

‖vk(0)‖2
·

x>j vk(0)

‖vk(0)‖2
+ x>i

(
vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
·

x>j vk(t)

‖vk(t)‖2

+ x>j

(
vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
· x>i vk(0)

‖vk(0)‖2
−
〈
x

vk(0)
i , x

vk(0)
j

〉∣∣∣∣∣
≤

∣∣∣∣∣x>i
(

vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
·

x>j vk(t)

‖vk(t)‖2

∣∣∣∣∣+

∣∣∣∣∣x>i
(

vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
·

x>j vk(t)

‖vk(t)‖2

∣∣∣∣∣
≤ 2

∥∥∥∥ vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

∥∥∥∥
2

.

Therefore, we have ∣∣∣∣ 1

m

m∑
k=1

Y kij

∣∣∣∣ ≤ 2

m

m∑
k=1

∥∥∥∥ vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

∥∥∥∥
2

≤ 4Rv(2m/δ)1/d

α

≤ 8Rv(m/δ)1/d

α
,

where the first inequality follows from Lemma B.10. Note that the inequality holds with high
probability 1− δ/2 for all i, j.

For the second sum, | 1m
∑m
k=1 Z

k
ij | ≤ 1

m

∑m
k=1 1Aik(R) + 1

m

∑m
k=1 1Ajk(R) so we apply Lemma

D.1 to get, with probability 1− δ/2n2∣∣∣∣ 1

m

m∑
k=1

Zkij

∣∣∣∣ ≤ 2Rv

α
√

2π

(
2 +

2
√

2πα log (2n2/δ)

3mRv

)
≤ 8Rv

α
√

2π

since m satisfies m = Ω
( (m/δ)1/dn2 log(n/δ)

αλ0

)
. Combining the two sums for Y kij and Zkij , with

probability 1− δ
2n2 ,

|V̂ij(t)−Vij(0)| ≤ 8Rv

α
√

2π
+

8Rv(m/δ)
1/d

α
≤ 12Rv(m/δ)

1/d

α
.

Taking a union bound, with probability 1− δ/2,

‖V̂(t)−V(0)‖F =

√∑
i,j

|V̂ij(t)−Vij(0)|2 ≤ 12nRv(m/δ)
1/d

α
.
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Bounding the spectral norm by the Frobenous norm,

‖V̂(t)−V(0)‖2 ≤
12nRv(m/δ)

1/d

α
.

Taking Rv = αλ0

96n(m/δ)1/d
gives the desired bound.

‖V̂(t)−V(0)‖2 ≤
λ0
8
.

Proof of Lemma B.4:
To bound ‖V(t)−V(0)‖2 we now consider ‖V(t)− V̂(t)‖2. The entries of Vij(t) are given as

Vij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t)

(
αck · gk
‖vk(0)‖2

)2

.

The surrogate V̂(t) is defined as

V̂ij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t).

The only difference is in the second layer terms. The difference between each entry is written as

|Vij(t)− V̂ij(t)| =
∣∣∣∣ 1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t)

((
αck · gk
‖vk(t)‖2

)2

− 1

)∣∣∣∣∣
≤ max

1≤k≤m

(
α2gk(t)2

‖vk(t)‖22
− 1

)
.

Write 1 =
α2g2k(0)

‖vk(0)‖22
, since ‖vk(t)‖2 is increasing in t according to (2.3)

α2gk(t)2

‖vk(t)‖22
− 1 =

α2gk(t)2

‖vk(t)‖22
− α2gk(0)2

‖vk(0)‖22
≤ 3Rg(m/δ)

1/d + 3Rv(m/δ)
1/d/α.

The above inequality is shown by considering different cases for the sign of the difference gk(t)−
gk(0). Now∣∣∣∣∣α2gk(t)2

‖vk(t)‖22
− α2gk(0)2

‖vk(0)‖22

∣∣∣∣∣ =

∣∣∣∣∣
(

αgk(t)

‖vk(t)‖2
+

αgk(0)

‖vk(0)‖2

)(
αgk(t)

‖vk(t)‖2
− αgk(0)

‖vk(0)‖2

)∣∣∣∣∣
≤

∣∣∣∣∣
(
αgk(0) + αRg
‖vk(0)‖2

+
αgk(0)

‖vk(0)‖2

)(
αgk(t)

‖vk(t)‖2
− αgk(0)

‖vk(0)‖2

)∣∣∣∣∣
≤ (2 +Rg(m/δ)

1/d)

∣∣∣∣∣
(

αgk(t)

‖vk(t)‖2
− αgk(0)

‖vk(0)‖2

)∣∣∣∣∣
≤ (2 +Rg(m/δ)

1/d) max

(∣∣∣∣α(gk(0) +Rg)

‖vk(0)‖2
− αgk(0)

‖vk(0)‖2

∣∣∣∣, ∣∣∣∣ α(gk(0)−Rg)
‖vk(0)‖2 +Rv

− αgk(0)

‖vk(0)‖2

∣∣∣∣
)

≤ (2 +Rg(m/δ)
1/d) max

(
Rg(m/δ)

1/d, Rg(m/δ)
1/d +Rv(m/δ)

1/d/α
)

≤ 3Rg(m/δ)
1/d + 3Rv(m/δ)

1/d/α,

where the second inequality holds due to Lemma B.10 with probability 1− δ over the initialization.

Hence:

‖V̂(t)−V(t)‖2 ≤ ‖V̂(t)−V(t)‖F =

√∑
i,j

|V̂ij(t)−Vij(t)|2 ≤ 3nRg(m/δ)
1/d + 3nRv(m/δ)

1/d/α.
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Substituting Rv, Rg gives

‖V̂(t)−V(t)‖2 ≤
λ0
8
.

Now we use Lemma B.3 to get that with probability 1− δ

‖V̂(t)−V(0)‖2 ≤
λ0
8

combining we get with probability 1− δ

‖V(t)−V(0)‖2 ≤
λ0
4
.

We note that the source for all the high probability uncertainty 1− δ all arise from initialization and
the application of Lemma B.10.

Proof of Lemma B.5:
To prove the claim we consider each entry i, j of G(t)−G(0). We have,

|Gij(t)−Gij(0)| =

∣∣∣∣∣ 1

m

m∑
k=1

σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(t)>xj
‖vk(t)‖2

)
− σ

(
vk(0)>xi
‖vk(0)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)∣∣∣∣∣
≤ 1

m

∣∣∣∣∣
m∑
k=1

σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(t)>xj
‖vk(t)‖2

)
− σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)∣∣∣∣∣
+

1

m

∣∣∣∣∣
m∑
k=1

σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)
− σ

(
vk(0)>xi
‖vk(0)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)∣∣∣∣∣
≤ 2

∥∥∥∥ vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

∥∥∥∥
2

≤ 2R̃v(m/δ)
1/d

α
.

In the last inequality we used the fact,∥∥∥∥ vk(0)

‖vk(0)‖2
− vk(t)

‖vk(t)‖2

∥∥∥∥
2

≤ ‖vk(t)− vk(0)‖2
‖vk(0)‖2

≤ (m/δ)1/d

α
‖vk(t)− vk(0)‖2,

where the first inequality uses that ‖vk(0)‖2 ≤ ‖vk(t)‖2 and is intuitive from a geometrical stand-
point. Hence,

‖G(t)−G(0)‖2 ≤ ‖G(t)−G(0)‖F =

√∑
i,j

|Gij(t)−Gij(0)|2 ≤ 2nR̃v(m/δ)
1/d

α
√

2π
.

Taking R̃v =
√
2παµ0

8n(m/δ)1/d
gives the desired bound. Therefore, with probability 1− δ,

‖G(t)−G(0)‖2 ≤
µ0

4
.

Now that we have established bounds on V(t),G(t) given that the parameters stay near initialization,
we show that the evolution converges in that case:

Proof of Lemma B.6:
Consider the squared norm of the predictions ‖f(t) − y‖22. Taking the derivative of the loss with
respect to time,

d

dt
‖f(t)− y‖22 = −2(f(t)− y)>

(
G(t) +

V(t)

α2

)
(f(t)− y).
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Since we assume that λmin

(
G(t) + V(t)

α2

)
≥ ω

2 , the derivative of the squared norm is bounded as

d

dt
‖f(t)− y‖22 ≤ −ω‖f(t)− y‖22.

Applying an integrating factor yields

‖f(t)− y‖22 exp(ωt) ≤ C.

Substituting the initial conditions, we get

‖f(t)− y‖22 ≤ exp(−ωt)‖f(0)− y‖22.

For now, assuming the linear convergence derived in Lemma B.6, we bound the distance of the
parameters from initialization. Later we combine the bound on the parameters and Lemmas B.4,
B.5 bounding the least eigenvalue of Λ(t), to derive a condition on the over-parameterization m and
ensure convergence from random initialization.

Proof of Lemma B.7:
Denote f(xi) at time t as fi(t). Since ‖xvk(t)

⊥

i ‖2 ≤ ‖xi‖2 = 1, we have that∥∥∥∥dvk(t)

dt

∥∥∥∥
2

=

∥∥∥∥ n∑
i=1

(yi − fi(t))
1√
m
ckgk(t)

1

‖vk(t)‖2
xv⊥

i 1ik(t)

∥∥∥∥
2

≤ 1√
m

n∑
i=1

|yi − fi(t)|
ckgk(t)

‖vk(t)‖2
.

Now using (2.3) and the initialization ‖vk(0)‖ = αgk(0), we bound
∣∣∣∣ ckgk(t)‖vk(t)‖2

∣∣∣∣,∣∣∣∣ ckgk(t)

‖vk(t)‖2

∣∣∣∣ ≤ ∣∣∣∣ck(gk(0) +Rg
‖vk(0)‖2

)∣∣∣∣ ≤ 1

α

(
1 + αRg/‖vk(0)‖2

)
.

By Lemma B.10, we have that with probability 1− δ over the initialization,

α/‖vk(0)‖2 ≤ C(m/δ)1/d.

Hence αRg/‖vk(0)‖2 ≤ 1. This fact bounds
∣∣∣∣ ckgk(t)‖vk(t)‖2

∣∣∣∣ with probability 1− δ for each k,∣∣∣∣ ckgk(t)

‖vk(t)‖2

∣∣∣∣ ≤ 2/α.

Substituting the bound, ∥∥∥∥ ddtvk(t)

∥∥∥∥
2

≤ 2

α
√
m

n∑
i=1

|fi(t)− yi|

≤ 2
√
n

α
√
m
‖f(t)− y‖2

≤ 2
√
n

α
√
m

exp(−ωt/2)‖f(0)− y‖2.

Thus, integrating and applying Jensen’s inequality,

‖vk(t)− vk(0)‖2 ≤
∫ s

0

∥∥∥∥dvk(s)

dt

∥∥∥∥
2

ds ≤ 4
√
n‖f(0)− y‖2
αω
√
m

.

Note that the condition |gk(t) − gk(0)| ≤ Rg is stronger than needed and merely assuring that
|gk(t)− gk(0)| ≤ 1/(m/δ)1/d suffices.
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Analogously we derive bounds for the distance of gk from initialization.

Proof of Lemma B.8:
Consider the magnitude of the derivative dgk

dt ,∣∣∣∣dgkdt
∣∣∣∣ =

∣∣∣∣ 1√
m

n∑
j=1

(fj − yj)
ck
‖vk‖2

σ(v>k xj)

∣∣∣∣.
Note ∣∣∣∣ ck

‖vk‖2
σ(v>k xj)

∣∣∣∣ =

∣∣∣∣σ( v>k xj
‖vk‖2

)∣∣∣∣ ≤ 1

Thus applying Cauchy Schwartz∣∣∣∣dgk(t)

dt

∣∣∣∣ ≤ 2
√
n√
m
‖f(t)− y‖2 ≤

2
√
n√
m

exp(−ωt/2)‖f(0)− y‖2,

and integrating from 0 to t yields

|gk(t)− gk(0)| ≤
∫ t

0

∣∣∣∣dgkdt (s)

∣∣∣∣ds ≤ ∫ t

0

2
√
n√
m

exp(−ωs/2)‖f(0)− y‖2ds ≤
4
√
n‖y − f(0)‖2√

mω
.

Proof of Lemma B.9:
Consider the ith entry of the network at initialization,

fi(0) =
1√
m

m∑
k=1

ckσ

(
gkv
>
k xi

‖vk‖2

)
.

Since the network is initialized randomly and m is taken to be large we apply concentration to bound

fi(0) for each i. Define zk = ckσ

(
gk(0)vk(0)

>xi

‖vk(0)‖2

)
. Note that zk are independent sub-Gaussian

random variables with

‖zk‖ψ ≤ ‖N(0, 1)‖ψ = C.

Here ‖·‖ψ denotes the 2-sub-Gaussian norm, (see [31] for example). Applying Hoeffding’s inequality
bounds fi(0) as

P(|
√
mfi(0)| > t) ≤ 2 exp

(
− t2/2∑m

k=1 ‖zk‖ψ2

)
= 2 exp

(
−t2

2mC

)
.

Which gives with probability 1− δ/n that

|fi(0)| ≤ C̃
√

log (n/δ).

Now with probability 1− δ we have that, for each i,

|fi(0)− yi| ≤ |yi|+ C̃
√

log(n/δ) ≤ C2

√
log(n/δ).

Since yi = O(1). Hence, with probability 1− δ,

‖f(0)− y‖2 ≤ C
√
n log(n/δ).

Proof of Lemma B.10:
At initialization vk ∼ N(0, α2I) so the norm behaves like ‖vk(0)‖22 ∼ α2χd. The cumulative
density of a chi-squared distribution with d degrees of freedom behaves like F (x) = Θ(xd/2) for
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small x so we have that with probability 1 − δ
m , that ‖vk(0)‖2 ≥ α(m/δ)

1
d where d is the input

dimension. Applying a union bound, with probability 1− δ, for all 1 ≤ k ≤ m,

1

‖vk(0)‖2
≤
(
m/δ

)
α

1/d

.

Now by (2.3) for t ≥ 0, ‖vk(t)‖2 ≥ ‖vk(0)‖2 so

1

‖vk(t)‖2
≤ 1

‖vk(0)‖2
≤
(
m/δ

)
α

1/d

.

E PROOFS OF LEMMAS FROM APPENDIX C

Proof of Lemma C.1:
Fix R, without the loss of generality we write Si for Si(R). For each k, vk(0) is initialized
independently via ∼ N(0, α2I), and for a given k, the event 1ik(0) 6= 1{v>xi ≥ 0} corresponds to
|vk(0)>xi| ≤ R. Since ‖xi‖2 = 1, vk(0)>xi ∼ N(0, α2). Denoting the event that an index k ∈ Si
as Ai,k, we have

P(Ai,k) ≤ 2R

α
√

2π
.

Next the cardinality of Si is written as

|Si| =
m∑
k=1

1Ai,k
.

Applying Lemma D.1, with probability 1− δ/n,

|Si| ≤
2mR

α
√

2π
+

16 log(n/δ)

3
.

Taking a union bound, with probability 1− δ, for all i we have that

|Si| ≤
2mR

α
√

2π
+

16 log(n/δ)

3
.

Proof of Lemma C.2:
To show this we bound the difference gk(s)− gk(0) as the sum of the iteration updates. Each update
is written as ∣∣∣∣∂L(s)

∂gk

∣∣∣∣ =

∣∣∣∣ 1√
m

n∑
i=1

(fi(s)− yi)
ck

‖vk(s)‖2
σ(vk(s)>xi)

∣∣∣∣.
As
∣∣∣∣ckσ(vk(s)

>xi

‖vk(s)‖2

)∣∣∣∣ ≤ 1,

∣∣∣∣∂L(s)

∂gk

∣∣∣∣ ≤ 1√
m

n∑
i

|fi(s)− yi| ≤
√
n√
m
‖f(s)− y‖2.

By the assumption in the statement of the lemma,∣∣∣∣∂L(s)

∂gk

∣∣∣∣ ≤ √n(1− ηω
2 )s/2‖f(0)− y‖2√

m
.
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Hence bounding the difference by the sum of the gradient updates:

|gk(K + 1)− gk(0)| ≤ η
K∑
s=0

∣∣∣∣∂L(s)

∂gk

∣∣∣∣ ≤ 4η
√
n‖f(0)− y‖2√

m

K∑
s=0

(1− ηω

2
)s/2.

The last term yields a geometric series that is bounded as

1

1−
√

1− ηω
2

≤ 4

ηω
,

Hence

|gk(K + 1)− gk(0)| ≤ 4
√
n‖f(0)− y‖2
ω
√
m

.

Proof of Lemma C.3:

To show this we write vk(s) as the sum of gradient updates and the initial weight vk(0). Consider
the norm of the gradient of the loss with respect to vk,

‖∇vk
L(s)‖2 =

∥∥∥∥ 1√
m

n∑
i=1

(fi(s)− yi)
ckgk(s)

‖vk(s)‖2
1ik(s)x

vk(s)
⊥

i

∥∥∥∥
2

.

Since ‖vk(s)‖2 ≥ ‖vk(0)‖2 ≥ α(δ/m)1/d with probability 1− δ over the initialization, applying
Cauchy Schwartz’s inequality gives

‖∇vk
L(s)‖2 ≤

(1 +Rg(m/δ)
1/d)
√
n‖f(s)− y‖2

α
√
m

. (E.1)

By the assumption on ‖f(s)− y‖2 this gives

‖∇vk
L(s)‖2 ≤

2
√
n(1− ηω

2 )s/2‖f(0)− y‖2
α
√
m

.

Hence bounding the parameter trajectory by the sum of the gradient updates:

‖vk(K + 1)− vk(0)‖2 ≤ η
K∑
s=0

‖∇vk
L(s)‖2 ≤

2
√
n‖f(0)− y‖2
α
√
m

K∑
s=1

(
1− ηω

2

)s/2
yields a geometric series. Now the series is bounded as

1

1−
√

1− ηω
2

≤ 4

ηω
,

which gives

‖vk(K + 1)− vk(0)‖2 ≤
8
√
n‖f(0)− y‖2
α
√
mω

.
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Figure 2: Training dynamics of networks from class (1.2) on digits 4,9 of MNIST

F NUMERICAL ILLUSTRATION

Below we provide preliminary numerical illustrations demonstrating the phase transition between
V-dominated to G-dominated convergence. We follow the settings introduced in Section 2. In the
experiments we run WeightNorm gradient descent for K = 10000 gradient iterations and learning
rate η = 3× 10−3. We train the neural network from class (1.2), with m = 10000, n = 1000, d =
784, α = 10−3 and use the first 1000 images of the digits 4 and 9 of the MNIST dataset. We restrict
to the digits of 4 and 9 since we focus on the scalar output network with two classes.

To compute α for the network during training we calculate the ratio,

α(s) =

∑m
k=1 ‖vk(s)‖2∑m
k=1 gk(s)

.

During training we note that α grows, as the training loss decreases and the convergence rate slows
down (emergence of the G-dominated regime). To measure the change in the direction of vk(t)
during training we compute the angle variation of the parameter, this is computed for each neuron for
each gradient update as,

∆θk(s) = arccos

( ∣∣〈vk(s),vk(s+ 1)〉
∣∣

‖vk(s)‖2‖vk(s+ 1)‖2

)
.

To visualize the angle change of the network during training, we compute the mean angle change for
each iteration, ∆ave(s) = 1

m

∑m
k=1 ∆θk(s). We plot a moving sum of ∆ave(s) window of size 100,

∆θwindow(s) =
∑s+100
r=s ∆ave(r) to measure the change of the angle throughout training.
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