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1 Introduction
While real brain networks exhibit functional modularity, we investigate whether functional mod-
ularity also exists in Deep Neural Networks (DNN) trained through back-propagation. Under the
hypothesis that DNN are also organized in task-specific modules, in this paper we seek to dissect
a hidden layer into disjoint groups of task-specific hidden neurons with the help of relatively well-
studied neuron attribution methods. By saying task-specific, we mean the hidden neurons in the
same group are functionally related for predicting a set of similar data samples, i.e. samples with
similar feature patterns.

We argue that such groups of neurons which we call Functional Modules can serve as the basic
functional unit in DNN. We propose a preliminary method to identify Functional Modules via bi-
clustering attribution scores of hidden neurons.

We find that first, unsurprisingly, the functional neurons are highly sparse, i.e., only a small subset
of neurons are important for predicting a small subset of data samples and, while we do not use any
label supervision, samples corresponding to the same group (bicluster) show surprisingly coherent
feature patterns. We also show that these Functional Modules perform a critical role in discriminat-
ing data samples through ablation experiment. Also, these modules learn rich representations and
are able to detect certain feature patterns demonstrated in a visual classification example.

2 Related Works
Modularity is generally encountered across a broad range of networks, including real brain neuronal
networks, which means that the entire population of neurons can be parcellated into internally dense
and externally sparse groups called modules or communities. And since that, researchers naturally
think artificial neural networks also exhibits modularity, for example, Hinton et al. [3] put forward
neuron co-adaption that some hidden neurons in the same layer co-adapt together as a module for
prediction. Co-adaption is only discussed in thought experiments supported by some biological in-
spirations and we do not know how to identify such co-adaptive neurons. However this phenomenon
itself inspires Dropout [3; 7] which is arguably the most robust regularization technique for DNN.

Identifying modularity in DNN remains difficult as community detection methods are generally
not directly applicable on densely-connected acyclic graphs. We turn to the relatively well-studied
neuron attribution methods and biclustering algorithm for help.

Biclustering. is a data mining technique that simultaneously clusters the rows and columns of
a matrix, and is especially popular in bioinformatics. We favor biclustering instead the standard
clustering methods, which only cluster the rows or the columns of a matrix, for two reasons: 1)
Practically, standard clustering methods can easily fail because of the curse of dimensionality. 2)
From the hypothesis we really do not expect two neurons in the same neuron group to be similar
for every stimulus (input data sample). We only expect neurons in the same group are functionally
related for predicting a subset of similar data samples. Hopefully, this subset of samples should
share similar feature patterns. That being said, there are many biclustering algorithms for different
purposes as it is a very active research field. We choose to use spectral co-clustering because it
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produces biclusters of strong connections with no overlaps, which is the simplest case for us to start
with.

Attribution methods for hidden neurons. Neuron attribution, assigning a importance score to
a neuron, is easier to do for artificial neural networks than real neural nets. Basically, the goal of
neuron attribution is to assign a score a to a hidden neuron n that represents how much important
this neuron is for predicting a sample x to a class y. In a sense, the attribution score measures the
per-sample importance of a hidden neuron. While for real neurons this can be computed as, for
example, Pearson correlation to some task, for DNN we can utilize the internal weights and the
feedforward structure of DNN to compute attribution scores.

There is a variety of neuron attribution methods. To name a few, Shrikumar et al. [5] proposed
DeepLIFT, originally designed to assign scores to input nodes and can be generalized to assign a
score of importance to a specific hidden neuron. Sundararajan et al. [8] proposed integrated gradients
for attributing input neurons and later generalized it to total conductance [6; 1] for attribution hidden
neurons. Leino et al. [4] proposed an influence-based attribution method. Such methods have been
demonstrated to be capable of identifying important hidden neurons that are relevant to a specific
prediction on a class y given a data sample x. However, these methods do not consider that hidden
neurons may be functionally related.

3 Method
At a high-level, our approach for finding Functional Modules in hidden neurons goes in two phases:
1) we first construct a neuron-sample matrix where each entry is a attribution score of a hidden
neuron (row) for a input sample (column) and then 2) based on this matrix, we apply spectral co-
clustering [2], a biclustering algorithm to simultaneously group neurons and samples that have con-
sistent high attribution values.

Given a dataset X = {x}N of data samples, a pre-trained DNN f parameterized by θ such that
ŷ = fθ(x) is the prediction of sample x, and an attribution function awhich can be any of [1; 4; 5; 6],
the attribution score a(n, x, y) measures how much a hidden neuron n contributes to the prediction
of sample x into class y.

Construct the neuron-sample attribution matrix. We first specify the neurons to be from a given
layer l and construct the neuron-sample matrix MNl∗Ndata

where N = |l| is the number of neurons
in that layer and Ndata = |X| be the size of dataset X = x1, x2, . . . , xN . Each entry in the matrix
represents eij = e(ni, xj), where e is a embedding function measuring the contribution of neuron
ni for predicting data sample xj . We compute e(ni, xj) = eij = a(ni, xj , ŷ)− 1

|C|
∑
c a(ni, xj , c)

where ŷ = fθ(xj) is the predicted class of xj and a can be any of the attritbution function among
[1; 4; 5; 6]. We choose to use DeepLIFT [5] score, and in experiments we find these attribution
methods do not differ much.

Spectral Co-clustering. Given the constructed matrix, we use spectral co-clustering to find biclus-
ters with values higher than those in the corresponding other rows and columns. Given a predefined
number k of biclusters, spectral coclustering algorithm treats the input data matrix as a bipartite
graph and approximates the normalized cut of this graph to find heavy subgraphs. In the resulted
biclusters, each row (neuron) and each column (sample) belongs to exactly one bicluster with no
overlaps.

4 Experiments
We first inspect DNNs for visual classification on MNIST. We fetch a pre-trained model that is
used and evaluated in the DeepLIFT paper [5]. The architecture is a 4 layer feedforward rectified
model where the first two layers are convolutional layer followed by two fully-connected layer. (We
also test on other DNN models with rectified neurons trained such as multilayer perceptron which
has no convolutional layer, and the results are very similar.) We use 10000 data samples from the
test set and choose l to be the second convolutional layer of shape (5, 5, 64). The total number of
hidden neurons in l is 1600. The choice of layer is rather arbitray, we choose it to be the second
convolutional layer because we want the rows and columns to be roughly of the same magnitude, so
that the neuron-sample matrix would have a good visualization, and that the biclustering algorithm
can work properly. We compute the DeepLIFT score [5] and construct the neuron-sample matrix.
We set k = 10 in spectral co-clustering as is the number of classes for MNIST. Different attribution
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methods do not differ much in the qualitive observations, so we only present the comparision of
different attribution methods on the ablation study in Figure 5b.

The neuron-sample matrix is highly sparse. The constructed neuron-sample matrix is very
sparse, as only a few entries have attribution score above zero (see Figure 1a). Rearranging the
display of the matrix by bicluster label, we can observe a checkerboard pattern in Figure 1b, indi-
cating that certain groups of hidden neurons are indeed highly-correlated for predicting certain data
samples.

(a) raw neuron-sample matrix

(b) neuron-sample matrix rearranged with bicluster labels

Figure 1: Visualization of the neuron-sample matrix (Better see in digital version) Each row cor-
responds to one of the 1600 neurons in the second convolutional layer (5 ∗ 5 ∗ 64). Each column
represents one of 10000 data samples.

We further report the distribution of attribution scores in Figures 2a and 2b, where the x-axis repre-
sents the attribute score and the y-axis represents the frequency. The overal distribution is centered
around zero but inside one bicluster, the mass is concentrated on the positive side. This indicates
that the spectral coclustering algorithm does find good subgraphs that a subset of hidden neurons
typically have higher attribution scores on a subset of samples.

(a) overall distribution of attribution score in the raw
neuron-sample matrix

(b) distribution of attribution score in the 0-th biclus-
ter

Figure 2: Distribution of attribution score.

Samples corresponding to the same bicluster show coherent feature patterns. We find that the
samples in one bicluster, i.e., samples corresponding to the same Functional Module , show coherent
and similar feature patterns. We pick a bicluster and randomly gather samples from that bicluster and
find these samples show very similar patterns (Figures 3a and 3b) and belong to the same class. We
also show the distribution of true labels in the total k = 10 biclusters (Section 4). Note that despite
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(a) samples from the 0-th bicluster (b) samples from the 9-th bicluster

Figure 3: samples from biclusters

Figure 4: Ground-truth label distribution in biclusters

not using any label supervision in our approach, we can achieve a very good job of unsupervised
discriminating.

Spatial relationship of the neurons in a module: Is this modularity a result of convolution?.
Surprisingly, the neurons in a bicluster do not seem to have any spatial relationships, such as being
in the same channel or centered in some position. We also test on multilayer perceptrons where there
is no convolutional layers and the above phenomenon can still be observed.

Ablation Study: Functional Modules are critical for discriminating samples. We check the
performance of DNN by removing those hidden neurons by bicluster. In this experiment, we split
the 10000 images X further into two sets where the first 5000 samples as validation set are pro-
cessed by our approach and the rest 5000 samples are held-out for testing. We compare the accuracy
when hidden neurons in layer l are gradually ablated on the test set with several baselines for ab-
lating neurons, such as ablation of random neurons, ablation of top-important neurons greedily, and
ablation of neurons by module (bicluster) (ours). Ablation of a neuron is implemented by setting the
activation value of this neuron to zero, as convention in previous studies [1; 6]. Note that we set k
larger in order to get a smoother curve. As shown in Figure 5a, ablation by module achieves the most
significant accuracy drop compared with greedy ablation of top-k neurons (all use DeepLIFT score)
and random ablation. It demonstrates that these Functional Module s found by spectral coclustering
do play an important role in discriminating data samples.

We also compare the effect of abaltion with different attribution methods in Figure 5b and observe
no significant difference among different choices of attributions methods.
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(a) ablated using DeepLIFT by different ways (b) ablated with different attribution methods by
modules (40 biclusters)

Figure 5: Accuracy decreases when neurons are ablated.

5 Conclusion
We develop an approach to parcellate a hidden layer into functionally related groups which we call
Functional Modules , by applying spectral coclustering on the attribution scores of hidden neurons.
We find the Functional Modules identifies functionally-related neurons in a layer and play an impor-
tant role in discriminating data samples.

One major limitation of this short paper is that we have not tested on more general cases, such as
different layers, different activation function, different models trained on more diverse datasets, etc.
In order to gain generalizable insights, such a massive investigation is neccessary.
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