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ABSTRACT

We discuss the approximation of the value function for infinite-horizon dis-
counted Markov Reward Processes (MRP) with nonlinear functions trained with
the Temporal-Difference (TD) learning algorithm. We consider this problem under
a certain scaling of the approximating function, leading to a regime called lazy
training. In this regime the parameters of the model vary only slightly during the
learning process, a feature that has recently been observed in the training of neural
networks, where the scaling we study arises naturally, implicit in the initialization
of their parameters. Both in the under- and over-parametrized frameworks, we
prove exponential convergence to local, respectively global minimizers of the above
algorithm in the lazy training regime. We then give examples of such convergence
results in the case of models that diverge if trained with non-lazy TD learning, and
in the case of neural networks.

1 INTRODUCTION

In recent years, deep reinforcement learning has pushed the boundaries of Artificial Intelligence to an
unprecedented level, achieving what was expected to be possible only in a decade and outperforming
human intelligence in a number of highly complex tasks. Paramount examples of this potential have
appeared over the past few years, with such algorithms mastering games and tasks of increasing
complexity, from playing Atari to learning to walk and beating world grandmasters at the game
of Go (Haarnoja et al., 2018; Mnih et al.; 2013; Silver et al., 2016; 2017; 2018). Such impressive
success would be impossible without using neural networks to approximate value functions and / or
policy functions in reinforcement learning algorithms. While neural networks, in particular deep
neural networks, provide a powerful and versatile tool to approximate high dimensional functions
(Barron, 1993; Cybenko, 1989; Hornik, 1991), their intrinsic nonlinearity might also lead to trouble
in training, in particular in the context of reinforcement learning. For example, it is well known that
nonlinear approximation of the value function might cause divergence in classical temporal-difference
learning due to instability (Tsitsiklis & Van Roy, 1997). Several algorithms have been proposed
in the literature to address the issue of non-convergence (Bhatnagar et al., 2009; Maei & Sutton,
2010; Riedmiller, 2005; Sutton et al., 2009a;b; Szepesvári, 2010), while practical deep reinforcement
learning often employs and prefers basic algorithms such as temporal-difference (Sutton, 1988) and
Q-learning (Watkins, 1989) due to their simplicity. It is thus crucial to understand the convergence of
such algorithms and to bridge the gap between theory and practice.
The theoretical understanding of deep reinforcement learning is of course rather challenging, as even
for supervised learning, which can be viewed as a special case of reinforcement learning, deep neural
networks are still far from being understood despite the huge amount of research focus in recent years.
On the other hand, recent progress has led to an emerging theory for neural network learning at least
in the regime of over-parametrization, including recent works on mean-field point of view of training
dynamics (Chizat & Bach, 2018a; Mei et al., 2018; Rotskoff et al., 2019; Rotskoff & Vanden-Eijnden,
2018; Wei et al., 2018) and also the linearized training dynamics in the over-parametrized regime
(Allen-Zhu et al., 2018a;b; Chizat & Bach, 2018b; Du et al., 2018a;b; Ghorbani et al., 2019a; Jacot
et al., 2018; Lee et al., 2019; Oymak & Soltanolkotabi, 2019; Zou et al., 2018).
The main goal of this work is to analyze the dynamics of a prototypical reinforcement learning
algorithm – temporal/difference (TD) learning – based on the recent progress in deep supervised
learning. In particular, we will focus on the lazy training regime, inspired by the recent work Chizat
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& Bach (2018b), and analyze TD learning in both over-parametrized and under-parametrized regimes
with scaled value function approximations.

Related Works. This work is closely related to the recent paper Chizat & Bach (2018b), addressing
the problem of lazy training in the supervised learning framework when models are trained through
(stochastic) gradient descent. In particular, that paper introduced the scaling that we consider in
this work as an explanation, e.g., of the small relative displacement of the weights of over- and
under-parametrized neural networks for supervised learning. That work, however, leverages the
gradient structure of the underlying vector field, which we lack in the present framework when the
underlying policy is not reversible (Ollivier, 2018). The linear stability analysis is also considered
in the recent work Achiam et al. (2019) based on the neural tangent kernel (Jacot et al., 2018) for
off-policy deep Q-learning.
The groundbreaking paper Tsitsiklis & Van Roy (1997) proves convergence of TD learning for linear
value function approximation, unifying the manifold interpretations of this convergence phenomenon
that preceded it by highlighting that convergence of the algorithm is to be understood in the norm
induced by the invariant measure of the underlying Markov process. Furthermore, the paper gives an
illuminating counterexample for the extension of the linear result to the general, nonlinear setting.
Our result shows that divergence does not occur in the lazy training regime.
Concurrent work (Brandfonbrener & Bruna, 2019) has shown convergence and non-divergence of
TD learning in the over-parameterized, respectively the under-parametrized regime, provided that
the environment is sufficiently reversible. We note that working in the lazy training regime allows to
ensure convergence independently on the reversibility of the environment and quantify the error of
the fitted model in the under-parametrized regime. Finally, another concurrent work (Cai et al., 2019)
analyzes global convergence of a modified TD algorithm for two-layer neural networks with ReLu
nonlinearity when the width of the hidden layer diverges. In contrast, in the present paper we focus
on the original TD(λ) learning algorithm for general approximators.

Contributions. This paper proves that on-policy TD learning for policy evaluation (on-policy policy-
evaluation for short), a widely used algorithm for value function approximation in reinforcement
learning, is convergent (asymptotically with probability one), in the lazy training regime, when the
model is a nonlinear function of its parameters. More specifically, we prove convergence of this
algorithm in both the under- and over-parametrized regime to local and global minima, respectively, of
a natural, weighted error function (the projected TD error), and illustrate such convergence properties
through numerical examples.
To obtain the result summarized above, we adapt the contraction conditions developed in the frame-
work of linear function approximations to a nonlinear, differential geometric setting. Furthermore,
we extend some existing results on the convergence in the lazy training regime of nonlinear models
trained by gradient descent in the supervised learning framework to the world of reinforcement
learning. This requires a generalization of the techniques developed in the gradient flow setting to
non-gradient (i.e., rotational) vector fields such as the ones encountered in the TD learning framework.

2 MARKOV DECISION PROCESSES

We denote a Markov Reward Process (MRP) by the 4-tuple (S, P, r, γ), where S is the state space,
P = P (s, s′)s,s′∈S a transition kernel, r(s, s′)s,s′∈S is the real-valued, bounded immediate reward
function and γ ∈ (0, 1) is a discount factor. In this context, the value function V : S → R+ maps
each state to the infinite-horizon, expected discounted reward obtained by following the Markov
process defined by P . We assume that this Markov process satisfies the following assumption:
Assumption 1. The Markov process with transition kernel P is ergodic and its stationary measure µ
has full support in S. Furthermore we assume that S is compact.

In this note we are interested in learning the value (or cost-to-go) function V ∗(x) of a given MRP

(S, P, r, γ), which is given by

V ∗(s) := Es

[ ∞∑
t=0

γtr(st, st+1)

]
, (1)

where Es [ · ] denotes the expectation of the stochastic process st starting at s0 = s. More specifically
we would like to estimate this function through a set of predictors Vw(s) in a Hilbert space F
parametrized by a vector w ∈ W := Rp. We make the following assumption on such predictors:
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Assumption 2. The parametric model V : Rp → F mapping w 7→ Vw( · ) is differentiable with
Lipschitz continuous derivative DV : w 7→ DVw (where DVw is a linear map from Rp → F) with
Lipschitz constant LDV defined WRT the operator norm.

A popular algorithm to solve this problem is given by value function approximation with TD(λ)
updates (Sutton & Barto, 2018). Starting from an initial condition w(0) ∈ W , for any λ ∈ [0, 1), this
learning algorithm updates the parameters w of the predictor by the following rule:

w(t+ 1) := w(t) + βtδ(t)zλ(t) , (2)
for a fixed sequence of time steps {βt} to be specified later, where the temporal-difference error δ(t)
and eligibility vector zλ(t) are given by

δ(t) := r(st, st+1) + γVw(t)(st+1)− Vw(t)(st) zλ(t) :=

t∑
τ=0

(γλ)t−τ∇wVw(t)(sτ ) . (3)

This work focuses on the asymptotic regime of small constant step-sizes βt → 0. In this adiabatic
limit, the stochastic component of the dynamics is averaged out before the parameters of the model
can undergo a significant change. This allows to consider the TD update as a deterministic dynamical
system emerging from the averaging of the underlying stochastic algorithm. We focus on analysis of
this deterministic system to highlight the aspect of nonlinear function approximation. The averaged,
deterministic dynamics is given by the set of ODEs

d

dt
w(t) = Eµ

[(
r(s, s′) + γVw(t)(s

′)− Vw(t)(s)
)
zλ(t)

]
, (4)

where Eµ denotes the expectation with respect to the invariant measure of the underlying dynamics.
In the case of finite state space (|S| = d) we can represent Vw as a vector in Rd, while in general it is
a function S → R, which we will restrict to the space L2(S, µ), namely square integrable function
with respect to the measure µ.
To streamline our analysis of the TD algorithm, we define the TD operator Tλ : L2(S, µ)→ L2(S, µ):

TλV (s) := (1− λ)

∞∑
m=0

λmEs

[
m∑
t=0

γtr(st, st+1) + γm+1V (sm+1)

]
.

Note that when λ = 0 the above operator acquires the simple form T 0V := r̄ + γPV for r̄(s) :=
Es [r(s, s′)]. Then, denoting throughout by DVw the Fréchet derivative of V at w, it can be shown
(Tsitsiklis & Van Roy, 1997, Lemma 8) (and is immediately verified in the special case λ = 0) that
the continuous dynamics (4) for general λ < 1 can be written as

d

dt
w(t) = 〈TλVw(t) − Vw(t), DVw(t)〉µ , (5)

where we define throughout the inner product induced by the invariant measure µ (acting component-
wise in expressions such as the one above) as

〈a, b〉µ :=

∫
S
a(s)b(s)µ(ds) , (6)

and denote by ‖ · ‖µ the corresponding norm. Note that in the case |S| = d, denoting by Γ the
d-dimensional diagonal matrix whose entries are the (positive) values of the invariant measure µ(s),
one has 〈a, b〉µ = a>Γb. The extension of convergence results for the limiting, average dynamics we
consider in this paper to convergence with probability one of the underlying, stochastic algorithm can
be obtained through standard stochastic approximation arguments (Borkar & Meyn, 2000; Borkar,
2009). More details on this straightforward extension are given in Remark 3.4 in Section 3 and in the
appendix.
In this work, we are interested in a certain scaling of the TD learning algorithm with function
approximation. More specifically, we consider the rescaled update

d

dt
w(t) =

1

α
〈Tλ(αVw(t))− αVw(t), DVw(t)〉µ (7)

for large values of the scaling parameter α > 1 . One of the reasons why this scaling of the model
is of practical interest is because it arises naturally when training neural networks, implicit in some
widely applied choices of initial conditions, as we explain in Section 4.2. Furthermore, as we shall see
below, under some mild assumptions for large values of α the parameters w of the model vary only
slightly during training, inducing what is called the “lazy training” regime. A visual representation of
the geometric effect of this scaling in the case where p < d <∞ is given in Fig. 1.
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Figure 1: Schematic representation of the effect of the linear scaling of the approximating function
(e.g., in (11)) in the under-parametrized setting. The space of parameters (left) is mapped to the
space of predictors (right) by the parametric model V . The scaling V → αV changes the manifold
Fw that the parameter space is mapped to (different surfaces on the right). In particular, this scaling
“widens” the reach in the space of functions of the predictors within a ball of small radius inW , but
at the same time it “flattens” that space (locally inW) bringing it closer to the tangential plane to
the initial model Vw(0). Choosing Vw(0) = 0 as in the picture above leaves the initial point of the
dynamics (in predictor space) invariant under such transformation.

3 MAIN RESULTS

3.1 OVER-PARAMETRIZED REGIME

In the over-parametrized setting we assume that DVw(0) is surjective, i.e., its singular values are
uniformly bounded away from 0. This is only possible in the finite state space setting and is
automatically the case if the number of parameters p is larger than the size of the state space S.
Admittedly, in applications such as AlphaGo (Silver et al., 2016; 2017), it is unrealistic to over-
parametrize, but we start with this regime as it parallels the study of over-parametrized supervised
learning for global convergence of the training loss. Analysis of the under-parametrized regime will
be discussed in the next subsection. In order to state our first result, we introduce the scalar product
in F defined by 〈a, b〉0 = 〈a, gw(0)b〉 where gw := (DVw ·DV >w )−1, and denote by ‖ · ‖0 the norm
it induces. Note that gw is the metric tensor associated to the pushforward metric induced by the
parametric model V : Rp → F . We note that if DVw(0) has singular values that are uniformly
bounded away from 0, the norms ‖ · ‖µ, ‖ · ‖0 are equivalent, i.e., there exists κ > 0 such that
κ−1‖f‖0 < ‖f‖µ < κ‖f‖0 for all f ∈ F .
Theorem 3.1 (Over-parametrized case). Assume that σmin > 0, where σmin is the small-
est singular value of DVw(0). Assume further that w(0) is such that ‖Vw(0)‖0 < M :=

(1− γ)2σ2
min/(192κ2LDV ‖DVw(0)‖), then for α > α0 := ‖V ∗‖0/M we have for all t ≥ 0 that

‖V ∗ − αVw(t)‖20 ≤ ‖V ∗ − αVw(0)‖20e
− 1−γ

2κ2
t . (8)

Recall that V ∗ is the exact value function given by (1). Moreover, if ‖Vw(0)‖0 ≤ Cα−1 for a constant
C > 0, then supt>0 ‖w(t)− w(0)‖ = O(α−1).

Similarly to the proof in Chizat & Bach (2018b), we first show that DVw and Vw do not change much
assuming that w stays in a small ball of radius %. Then, combining this result with the Lipschitz
continuous character of DV in w, one shows that w does indeed stay in the desired ball of radius
%. A similar computation can be done in our case. To bypass the absence of a strongly convex cost
functional in our framework, which was crucial in the analysis of Chizat & Bach (2018b), we adopt a
strategy based on the use of a local Lyapunov function

U(f) = ‖f − V ∗‖20 , (9)
where V ∗ is the sought for value function (1). The theorem is based on some preparatory lemmas,
proofs of which can be found in appendix. The first one states that for large values of the scaling
parameter α the pushforward metric gw varies in a negligible way during training. Throughout, we
denote by 1 the identity map in the corresponding space and by Bµ% (v), B0

%(v) and B%(v) the balls
with radius % around v in ‖ · ‖µ, ‖ · ‖0 and ‖ · ‖2 respectively.
Lemma 3.2 (Perturbation of the metric). Let G0 be a compact subset of a linear space G. For v(0) ∈
G0, let gv be a continuous, self-adjoint linear operator that is positive definite in a neighborhood of
v(0) when restricted on G. Then for all ε > 0 there exists δ > 0 such that, for all v ∈ Bδ(v(0)) ⊆ G0

gv(0) = (1 + g̃v)gv , (10)

4



Under review as a conference paper at ICLR 2020

for a linear operator g̃v with ‖g̃v‖ < ε . More specifically, let σmin be the smallest singular value of
DVw(0). Then if % ≤ (1− γ)σ2

min/(48LDV ), (10) holds with ‖g̃V (w)‖ < 1−γ
4 for all w ∈ B%(w(0)).

We also recall from Tsitsiklis & Van Roy (1997) the following contraction property of the TD operator
in the ‖ · ‖µ norm. For the convenience of readers, we recall the proof in the appendix.

Lemma 3.3. (Tsitsiklis & Van Roy, 1997, Lemmas 1, 3, 7) Under Assumption 1, for any V, Ṽ ∈ F
we have that ‖TλV − TλṼ ‖µ ≤ γλ‖V − Ṽ ‖µ for γλ := γ 1−λ

1−γλ ≤ γ < 1 . In particular there
exists a unique fixed point of Tλ, V ∗ ∈ F given by (1).

The proof of Theorem 3.1 relies on the above lemma to establish decay of the local Lyapunov function
U as long as w stays within a ball. The nonlinear effects become negligible when α is sufficiently
large. The control of U in turn gives the bound of the change of w, which closes the argument. The
details are given in the supplementary materials.
Remark 3.4. Our results can be extended to show stability and convergence in the stochastic
approximation setting, similarly to Bhatnagar et al. (2009); Tsitsiklis & Van Roy (1997), under the
additional assumption that the step size {βt} satisfies the Robbins-Monro condition (Robbins &
Monro, 1951). For example, one can apply (Borkar & Meyn, 2000, Thms. 2.2, 2.4) guaranteeing
almost sure convergence and exponential contraction of the expected error with probability one over
the initial condition provided that the limiting vector field (in our case (7)) has a unique fixed point
and is Lipschitz continuous. Lipschitz continuity is an immediate consequence of the linearity of
Tλ and the boundedness of closed balls in F together with the Lipschitz continuity of the models
Assumption 2. The existence of a fixed point (1) in F of the limiting vector field is trivial while its
uniqueness is shown in the proof of Theorem 3.1 in the appendix.

3.2 UNDER-PARAMETRIZED REGIME

We now proceed to state and prove a convergence theorem in the under-parametrized case. The
underlying assumption in this section is that the size of state space is larger than the number of
parameters, which in turn bounds the rank r of DVw(0) from above: r < p < d (where possibly
d =∞). In this regime, in general, there is no hope that TD will converge to the true value function
V ∗. In fact, the image of the operator Tλ might not even lie in the space Fw of approximating
functions. However, the derivative DV >w(t) in the TD update acts as a projection (WRT the product
〈 · , · 〉µ) onto the tangent space of Fw at Vw(t) (more specifically, DV >w(t) projects the image of Tλ

ontoW , which is then mapped back to TV (w(t))Fw by DVw(t)). We denote throughout by Π and Π0

the projection operator under (6) onto TV (w(t))Fw and TV (w(0))Fw respectively. What one can hope
for is that the TD algorithm converges to a locally “optimal” approximation Ṽ ∗ of V ∗ on the manifold
Fw, which is close to the best approximator Π0V

∗ of V ∗ on the linear tangent space TV (w(0))Fw.

Theorem 3.5 (Under-parametrized case). Assume that r := rank(DVw) is constant in a neighbor-
hood ofw(0) and Vw(0) = 0. Then there exists α0 > 0 such that for any α > α0 the dynamics (7) (and
the corresponding approximation Vw) converge exponentially fast to a locally (inW) attractive fixed
point Ṽ ∗, for which ‖Π(TλṼ ∗ − Ṽ ∗)‖µ = 0 and ‖Ṽ ∗ − V ∗‖µ < 1−λγ

1−γ ‖Π0V
∗ − V ∗‖µ +O(α−1).

Note that for random initialization the constant rank assumption is generically satisfied. Indeed, the
maximal rank property holds generically inW and thus WP1 at w(0) when the model parameters are
initialized randomly. Furthermore, by the lower semicontinuity of the rank function the Jacobian DV
will have maximal rank in an open subset ofW . The main difference of the proof of the above result
WRT the one in the over-parametrized regime is that DVw ·DV >w does not have full rank anymore.
This implies on one hand that the norms ‖ · ‖µ and ‖ · ‖0 are not equivalent in F , even though
we still have ‖ · ‖0 ≤ κ‖ · ‖µ for a κ > 0, provided that Assumption 1 holds. On the other hand,
as mentioned above, this implies that the model Vw evolves on a submanifold Fw of F , and that
Tλ does not, in general, map onto the tangential plane TV (w)Fw of Fw at Vw. The action of Tλ is
then projected back onto TV (w)Fw by the operator DVw(t). The nonlinear structure of the space Fw
slightly complicates the proof WRT the over-parametrized case, and we apply standard differential
geometric tools to map the problem back to a linear space. W0 F0

W0 F0

V

φ ψ

πr

Proof. We apply the rank theorem (Boutaib, 2015; Lee, 2003) ((Abraham et al.,
2012) for the∞-dimensional setting) to show that there exist setsW0,W0 ⊆
Rp, F0,F0 ⊆ F and diffeomorphic maps φ : W0 → W0, ψ : F0 → F0

where ψ◦V ◦φ−1 = πr, φ(w(0)) = 0, ψ(Vw(0)) = 0 and, for an appropriate choice of bases, πr maps
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the coordinates ofW0 to the first r coordinates of F0, i.e., (x1, . . . , xp) 7→ (x1, . . . , xr, 0, 0, . . . ),
where r is the rank of the operator DVw(0). We denote by Πr the hyperplane in F spanned by the
first r vectors of the basis. We recall that by Abraham et al. (2012); Boutaib (2015); Lee (2003) the
maps, ψ, φ, πr are continuous with Lipschitz derivatives Dψ,Dφ,Dπr respectively.
We consider the trajectory of V w(t) := πr ◦ φ(w(t)) = ψ(Vw(t)). Denoting by D· the Fréchet
derivative at the corresponding point of the dynamics and noting that DV = Dψ−1DπrDφ we have

d

dt
V w(t) = − 1

α
〈DψDVDV >, Tλαψ−1(V w(t))− αψ−1(V w(t))〉π

= − 1

α
〈DπrDφDφ>Dπ>r (Dψ−1)>, Tλαψ−1(V w(t))− αψ−1(V w(t))〉π , (11)

so V remains in Πr. As a consequence of the above we can naturally define a metric (the pushforward
metric) on F0 by the tensor ḡv̄ = (DπrDφDφ

>Dπ>r )−1. In fact, by choosing the metric tensor to
be constant on F0, i.e., equal to ḡ0 for all v ∈ F0, we equip the linear space F0 with a scalar product
〈 · , · 〉0. This, in turn, directly induces a norm ‖ · ‖0 on the same space. We now proceed to use such
simple metric structure to establish the existence and uniqueness of a fixed point of (11) in F0 for α
large enough.
The result of our theorem follows from (Simpson-Porco & Bullo, 2014, Proposition 4.1), which
establishes uniqueness and exponential contraction at rate ` > 0 of a dynamical system evolving
under the flow of a vector field X given by the RHS of (11) in a forward invariant set F0 provided
that for every geodesic γ(s) in F0 (12) holds. Therefore, the proof of convergence is concluded by
applying Lemma 3.6 and Lemma 3.7, whose proofs can be found in supplementary materials. The
proof of the optimality of the fixed point is postponed as Lemma A.1 in the appendix.

Lemma 3.6. There exists δ > 0 and α0 > 0 such that the ball B0
δ(0) ⊆ F0 is forward invariant and

forward complete with respect to the dynamics of (7) for all α > α0.

Lemma 3.7. There exists ` > 0, δ > 0 and α0 > 0 such that for all α > α0 and all geodesics γ(s)
contained in the ball B0

δ(0) ⊆ F0, the function

〈γ′(s), X(γ(s))〉0 − `s〈γ
′(0), γ′(0)〉0 , (12)

is strictly decreasing in s.

Remark 3.8. The proof of Theorem 3.5 can be straightforwardly generalized to the case where the
initial condition V0 is not identically 0 but within Bµ%(α)(0) for %(α) going to 0 with α →∞. This
generalization, however, requires the map V to be uniformly Lipschitz smooth for w ∈ W0. Among
other things, this extension allows to explicitly cover the training of randomly initialized, single layer
neural networks.

4 NUMERICAL EXAMPLES

4.1 A DIVERGENT NONLINEAR APPROXIMATOR

We illustrate the convergence properties of TD learning in the lazy training regime in the under-
parametrized case by applying it to the classical framework of (Tsitsiklis & Van Roy, 1997, Section
X). This reference gives an example of a family of nonlinear function approximators that diverge
when trained with the TD method. The intuition behind this counterexample is that one can construct
a manifold of approximating functions Fw in the form of a spiral, with the same orientation as the
rotation of the vector field induced by the TD update in the space of functions. By choosing the
windings of the spiral to be dense enough, the projection of the TD vector field follows the spiral in
the outward direction, leading to a divergence of the algorithm, as displayed schematically in Fig. 2a.
More specifically, consistently with Tsitsiklis & Van Roy (1997), we parametrize the manifold Fw
as Vϑ := eε̂ϑ(a cos(λ̂ϑ) − b sin(λ̂ϑ)) − V ∗ for a = (10,−7,−3), b = (2.3094,−9.815, 7.5056),
ε̂ = 0.01, λ̂ = 0.866. We choose the discount γ = 0.9 and a step-size of βt ≡ 2× 10−3, while the
underlying Markov chain is defined by the transition matrix Pij = (δj,mod(i,3)+1 +δi,j)/2, where δi,j
is the Kronecker delta function and equals 1 if i = j and 0 else. We note that the step-size does not
affect the convergence properties of the algorithm, as argued in Tsitsiklis & Van Roy (1997), where
the immediate reward was set to r̄ = (0, 0, 0). Note that, as realizing the conditions of Theorem 3.5
would start the simulation at the solution V ∗ = (0, 0, 0), we shift both the solution and the manifold
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(a) α = 1 (b) α = 102

Figure 2: Schematic representation of the manifold Fw for the example in Section 4.1 before (a)
and after (b) scaling of α. The underlying vector field represents the TD error δ(V ) from (3), whose
projection on TϑFw gives the dynamics of the TD update inFw. In (a) this projection points “outwards”
along the spiral, while (b) it has a fixed point close to 0. The scaling yields an effective “linearization”
of the manifold around 0. The red point marks the global fixed point of the vector field.

of approximating functions by the same vector in the embedding space, leaving the new solution
V ∗ = −V0 = −a at the center of the spiral, i.e., realized at ϑ = −∞. This corresponds to choosing
an average reward r̄ = (−6.85, 8.35,−1.5). We note that by the affine nature of the TD update, this
change in r̄ results in a global shift of the TD vector field in F and does not affect the update of ϑ. In
particular, this means that the TD update remains divergent for every initial condition different than
the solution V ∗.
We run the TD update in the off-centered situation both for values of α = 1 (the classical, divergent
regime) and α = 100. As explained in the previous sections, this scaling of the approximating
function makes the TD update convergent, as displayed in Fig. 3a. Indeed, under this scaling the
solution converges to a local minimum of the dynamics. The intuition behind the convergence of
the algorithm is outlined in Fig. 2: when α is large we are in an almost linear regime where the TD

update converges.

4.2 SINGLE LAYER NEURAL NETWORKS

We show that the regime of study arises naturally in one hidden layer neural networks for a certain
family of initialization. We consider the example of ReLu activation, i.e., when the model is given by

Vw(s) =

N∑
i=1

ai max(0, bi · s− ci) , (13)

for s ∈ Rm and N distinct (m + 2)-dimensional vectors wi = (ai, (bi)1, . . . , (bi)m, ci)i∈(1,...,N).

Typical initialization of the weights of the above model is of the form ai
iid∼ N (0, 1/

√
N), (bi)j

iid∼
N (0, 1/

√
m) for all j and ci

iid∼ N (0, 1). However, by the linearity of (13) in ai, by the rescaling
property of normal distribution this is equivalent to writing

αVw(s) = α
1

N

N∑
i=1

ai max(0, bi · s− ci) , (14)

for an N -dependent α(N) =
√
N (diverging in N ), ai

iid∼ N (0, 1), (bi)j
iid∼ N (0, 1/

√
d) and

ci
iid∼ N (0, 1)1. Therefore, this common choice of initial conditions implicitly starts the training of

the above model in the lazy regime (Ghorbani et al., 2019b). We train the model (14) by TD learning
(7) with fixed step-size βt ≡ 10−3 both in the over- and under-parametrized regime. To do so, we
draw an objective function V ∗ randomly with distribution V ∗(s) iid∼ N (0, 1) for all s ∈ S on a grid

1A heuristic justification that the scaling the parameters of the neural network by α(N)/N = 1/
√
N leads

to lazy training while the scaling N−1 is natural for the model Vw and does not lead to the lazy regime can be
found in Chizat & Bach (2018b). This natural scaling is studied in depth in Chizat & Bach (2018a); Mei et al.
(2018); Rotskoff & Vanden-Eijnden (2018)
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(a) Example from Tsitsiklis & Van Roy (1997) (b) Neural networks simulation

Figure 3: Results of the training of nonlinear value function approximation with TD learning for the
examples described in Section 4.1 (a) and Section 4.2 (b). In (a), we plot the µ-norm of the projected
TD error Π(TλV −V ). This quantity measures the increments of the model parameters during training
and vanishes at a local minimum of the TD dynamics. We see that the algorithm diverges for α = 1
(blue curve), but converges to a local minimum for α = 100. In (b, above) we plot the MSE of single
layer neural network during training in the over-parametrized regime (N = 100, d = 30, α = 500 )
for different choices of γ (0.8, 0.83, 0.85, 0.87, 0.9), showing exponential convergence (at different
rates) to the global minimum claimed in Theorem 3.1. In (b, below) we again plot the norm of the the
projected TD error for a neural network in the under-parametrized regime (N = 10, d = 50, α = 100)
for different initial conditions, showing that the dynamics converge to a local fixed point.

of d equally spaced points on the interval [−1, 1]. We then compute the corresponding average reward
by solving the TD equation: r̄ = (1− γP )V ∗, and train the model (7) for λ = 0, γ = 0.9 (when not
specified otherwise) with transition matrix Pij = (δj,mod(i,d)+1 + δi,j)/2. To respect the conditions
of Theorem 3.5, we initialize half of the parameters of the neural network as explained above, while
the other half is obtained by replicating the values of bi, ci and inverting the one of ai → −ai. This
“doubling trick” introduced in Chizat & Bach (2018b) produces a neural network with Vw(0) ≡ 0 and
randomly initialized weights with the desired distribution. We consider situations where N = 10,
d = 50 (under-parametrized, taking α = 100) and N = 100, d = 30 (over-parametrized, with
α = 500), and plot the convergence to local, respectively global minima in Fig. 3b.

5 DISCUSSION AND CONCLUSION

In this work we have proven the convergence properties of the TD learning algorithm with nonlinear
value function approximation in the lazy training regime. In this regime, the algorithm behaves
essentially like a linear approximator spanning the tangential space of the approximating manifold (in
function space) at initialization. As such, the training converges exponentially fast with probability
one to the global minimum or a local fixed point depending on the codimension of the approximating
manifold in the search space. This guarantees convergence with little parametric displacement. This
phenomenon can be intuitively understood as an effect of the linearized regime in which the neural
networks are trained which reduces them, in the limit, to a randomized kernel method (more precisely
a Neural Tangent Kernel (Jacot et al., 2018)). In this sense, convergence of lazy models may come
at the expense of their expressivity. Recent works (Chizat & Bach, 2018b; Ghorbani et al., 2019b)
discuss the approximating power of lazy neural networks in the supervised setting, highlighting their
limits WRT their non-lazy counterparts and naturally comparing them with random feature models
(Yehudai & Shamir, 2019), but an exhaustive study of the expressivity of these models, in particular
in the context of reinforcement learning is still lacking. Nonetheless, the results proven in this work
emphasize the interest of this regime in the framework of deep reinforcement learning, where models
often suffer from divergent behavior especially during early stages of training.
Future directions of research include the extension of these results to more complex, nonlinear rein-
forcement learning algorithms such as Q-learning, and the development of more refined, nonasymp-
totic versions of the above theorems. Furthermore, a more thorough exploration of the relationship
between the limiting results in Chizat & Bach (2018a) and the ones presented here and in Chizat &
Bach (2018b) while transposing those to the framework of reinforcement learning would be important
for the understanding of the limiting dynamics of neural networks in this domain.
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A SUPPLEMENTARY PROOFS

To simplify the notation in the forthcoming analysis, we slightly abuse the notation used when the
state space is finite-dimensional extending it, when necessary, to the infinite-dimensional setting.
This naturally generalizes matrix multiplication to the action of linear operators. In particular the
action of Γ, which we recall in the finite-dimensional setting is a diagonal matrix with entries µ(s), is
to be intended as

(a>Γb)ij =

∫
S
ai(s)bj(s)µ(ds) .

Furthermore, we introduce the following decomposition of the TD operator:

TλV = r̄λ + γPλV ,

where

r̄λ(s) := (1−λ)

∞∑
m=0

λmEs

[
m∑
t=0

γtr(st, st+1)

]
, PλV (s) := (1−λ)

∞∑
m=0

(λγ)mEs [V (sm+1)] ,

or, in vector notation

r̄λ := (1− λ)

∞∑
m=0

λm
m∑
t=0

γtP tr , PλV (s) := (1− λ)

∞∑
m=0

(λγ)mPm+1V .

In the proofs below, we will use the above, simplified notation to obtain contraction estimates on the
dynamical system (4). These estimates will leverage the fact that Pλ is nonexpansive and γ < 1, and
from this notation contraction rates in terms of γ will arise naturally. However, by Lemma 3.3, we
know that the contraction rate of Tλ is γλ. Rewriting the proofs with γ → γλ will show the stronger
contraction.

A.1 OVER-PARAMETRIZED REGIME

Lemma 3.2 (Perturbation of the metric). Let G0 be a compact subset of a linear space G. For v(0) ∈
G0, let gv be a continuous, self-adjoint linear operator that is positive definite in a neighborhood of
v(0) when restricted on G. Then for all ε > 0 there exists δ > 0 such that, for all v ∈ Bδ(v(0)) ⊆ G0

gv(0) = (1 + g̃v)gv ,

for a linear operator g̃v : F → F with ‖g̃v‖ < ε . More specifically, let σmin be the smallest
singular value of DVw(0). Then if % ≤ (1− γ)σ2

min/(48LDV ), (10) holds with ‖g̃V (w)‖ < 1−γ
4 for

all w ∈ B%(w(0)).

Proof of Lemma 3.2. Let Bw = DVw(0)DV
>
w(0) −DVwDV

>
w . We carry out the proof for the case

σmin < 1 (else the result holds with σmin = 1 in %), in which case we have for all w ∈ B%(w(0)) that

‖Bw‖ ≤ 2LDV ‖w(0)− w‖+ (LDV ‖w(0)− w‖)2 ≤ 3LDV ‖w(0)− w‖ .

Then we can write

gw(0) = (DVw(0)DV
>
w(0))

−1 = (DVwDV
>
w +Bw)−1

= (g−1
w (1 + gwBw))−1 = (1 + gwBw)−1gw

=

∞∑
n=0

(−1)n(gwBw)ngw = gw +

∞∑
n=1

(−1)n(gwBw)ngw .

Furthermore, by the assumptions on the regularity of V and on the initial condition w(0) we have
that gw � 4/σ2

min1, provided that w ∈ B%(w(0)) for % as in Lemma 3.2. Therefore, the perturbation
g̃w :=

∑∞
n=1(−1)n(gwBw)n satisfies

‖g̃w‖ = ‖
∞∑
n=1

(−1)n(gwBw)n‖ ≤
∞∑
n=1

‖gwBw‖n ≤
∞∑
n=1

(
3LDV
σ2

min/4
‖w(0)− w‖

)n
≤ 1− γ

4
.

The same proof applies in the general case with different, implicit constants.
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Lemma 3.3. (Tsitsiklis & Van Roy, 1997, Lemmas 1, 3, 7) Under Assumption 1, for any V, Ṽ ∈ F
we have that

‖TλV − TλṼ ‖µ ≤ γλ‖V − Ṽ ‖µ for γλ := γ
1− λ

1− γλ
≤ γ < 1 . (A.1)

In particular there exists a unique fixed point of Tλ, V ∗ ∈ F given by (1).

Proof of Lemma 3.3. We first prove that ‖PV ‖µ ≤ ‖V ‖µ. This follows by Jensen inequality and by
the invariance of µ:

‖PV ‖2µ = V >P>ΓPV =

∫
S
µ(ds)(

∫
S
P (s,ds′)V (s′))2

≤
∫
S2

µ(ds)P (s,ds′)V (s′)2 =

∫
S
µ(ds)V (s)2 = ‖V ‖2µ . (A.2)

Then, writing

TλV (s) = (1− λ)

∞∑
m=0

λmEs

[
m∑
t=0

γtr(st, st+1) + γm+1V (sm+1)

]

= (1− λ)

∞∑
m=0

λm

(
m∑
t=0

γtEs [r̄(st)] + γm+1Es [V (sm+1)]

)

= (1− λ)

∞∑
m=0

λm

(
m∑
t=0

γtP tr̄(s) + (γP )m+1V (s)

)
,

where st is the process on S induced by P with initial condition s0, we have contraction of the
operator Tλ in L2(S, µ) by

‖Tλ(V − Ṽ )‖µ =

∥∥∥∥∥(1− λ)

∞∑
m=0

λm(γP )m+1
(
V (s)− Ṽ (s)

)∥∥∥∥∥
µ

≤ (1− λ)

∞∑
m=0

λmγm+1
∥∥∥V (s)− Ṽ (s)

∥∥∥
µ

=
γ(1− λ)

1− γλ

∥∥∥V (s)− Ṽ (s)
∥∥∥
µ
,

where in the inequality above we have used (A.2). This proves that Tλ is a contraction in F , and
as such it must have a unique fixed point. That this fixed point corresponds to (1) is immediately
checked by direct computation.

Theorem 3.1 (Over-parametrized case). Assume that σmin > 0, where σmin is the small-
est singular value of DVw(0). Assume further that w(0) is such that ‖Vw(0)‖0 < M :=

(1− γ)2σ2
min/(192κ2LDV ‖DVw(0)‖), then for α > α0 := ‖V ∗‖0/M we have for all t ≥ 0 that

‖V ∗ − αVw(t)‖20 ≤ ‖V ∗ − αVw(0)‖20e
− 1−γ

2κ2
t . (A.3)

Recall that V ∗ is the exact value function given by (1). Moreover, if ‖Vw(0)‖0 ≤ Cα−1 for a constant
C > 0, then supt>0 ‖w(t)− w(0)‖ = O(α−1).

Proof of Theorem 3.1. By setting % := (1− γ)σ2
min/(48LDV ) and by the assumed Lipschitz smooth-

ness of V , DVw · DV >w � σ2
min/4 as long as w ∈ B%(w(0)). We would like to check a local

exponential contraction condition, i.e., that for all w(t) ∈ B%(w(0)) we have

d

d t
U(αVw(t)) ≤

γ − 1

2κ2
U(αVw(t)) , for t > 0 . (A.4)

To obtain the above result we apply the chain rule:

d

d t
U(αVw(t)) = 〈∂fU(αVw(t)) ,

d

d t
αVw(t)〉0
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= α〈αVw(t) − V ∗ , DVw(t) ·
d

d t
w(t)〉0

= 〈αVw(t) − V ∗ , DVw(t) ·DV >w(t)Γ(TλαVw(t) − αVw(t))〉0 . (A.5)

Throughout, we define τ% := inf{t < 0 : w(t) 6∈ B%(w(0))}, gw := (DVw ·DV >w )−1 (recalling
that the DVw ·DV >w has full rank in B%(w(0))) and write g0 = (1 + g̃w)gw, where g̃w is defined in
Lemma 3.2. Then, as long as t < τ% we have, for every a, b ∈ F

〈a,DVw(t) ·DV >w(t)Γb〉0 = 〈a, (1 + g̃w(t))Γb〉 ≤ 〈a, b〉µ + ‖g̃w(t)‖‖a‖µ‖b‖µ .

By the above result we can bound from above the RHS of (A.5) by

d

d t
U(αVw(t)) ≤ 〈αVw(t)−V ∗, TλαVw(t)−αVw(t)〉µ+‖g̃w(t)‖‖αVw(t)−V ∗‖µ‖TλαVw(t)−αVw(t)‖µ .

(A.6)
Recalling that by Lemma 3.3 we have

‖TλαVw(t) − αVw(t)‖µ = ‖TλαVw(t) − V ∗‖µ + ‖αVw(t) − V ∗‖µ ≤ 2‖αVw(t) − V ∗‖µ , (A.7)

and applying Lemma 3.2, we can bound the second term of (A.6) from above as

‖g̃w(t)‖‖αVw(t) − V ∗‖µ‖TλαVw(t) − αVw(t)‖µ ≤
1− γ

2
‖αVw(t) − V ∗‖2µ . (A.8)

On the other hand, for the first term we have by Cauchy-Schwartz inequality and (A.1) that

〈αVw(t) − V ∗, TλαVw(t) − αVw(t)〉µ = 〈αVw(t) − V ∗ , (TλαVw(t) − V ∗)− (αVw(t) − V ∗)〉µ ,

≤ ‖αVw(t) − V ∗‖µ‖TλαVw(t) − V ∗‖µ − ‖αVw(t) − V ∗‖2µ
≤ (γ − 1)‖αVw(t) − V ∗‖2µ , (A.9)

where γ is the contraction rate of the TD difference in F , see (A.1). Finally, combining (A.8) and
(A.9) we obtain

d

d t
U(αVw(t)) ≤

γ − 1

2
‖αVw(t) − V ∗‖2µ ≤

γ − 1

2κ2
‖αVw(t) − V ∗‖20 , (A.10)

and the last inequality results from the equivalence of norms ‖ · ‖0 and ‖ · ‖µ (both have full support
on a finite set). The desired result (A.3) follows directly from the above by Grönwall’s inequality for
all t < τ%.
It now only remains to show that under the given choice of α, we have τ% =∞. By the contraction
of Tλ Lemma 3.3 and our choice of % < σmin/(2LDV ) we write∥∥∥∥ d

d t
w(t)

∥∥∥∥
2

≤ 1

α
‖DVw(t)‖‖TλαVw(t) − αVw(t)‖µ ≤

2

α
‖DVw(0)‖‖αVw(t) − V ∗‖µ .

Integrating the above and combining with the result from (A.10) in the previous paragraph we have

‖w(t)− w(0)‖2 ≤
2

α
‖DVw(0)‖‖αVw(0) − V ∗‖0

∫ t

0

exp

[
γ − 1

2κ2
s

]
ds

≤ 4κ2

α(1− γ)
‖DVw(0)‖‖αVw(0) − V ∗‖0 . (A.11)

Given that ‖αVw(0) − V ∗‖0 ≤ 2αM , the above quantity is bounded by % and therefore τ% =∞, as
desired.
Finally, from (A.11) we see that if ‖Vw(0)‖0 ≤ Cα−1 then ‖w(t)−w(0)‖2 ≤ 4κ2

α(1−γ)‖DVw(0)‖(C+

Mα0) = O(α−1) for all t > 0.

A.2 UNDER-PARAMETRIZED REGIME

Lemma 3.6. There exists δ > 0 and α0 > 0 such that the ball B0
δ(0) ⊆ F0 is forward invariant and

forward complete with respect to the dynamics of (7) for all α > α0.
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Proof of Lemma 3.6. We define the Lyapunov function Ū(f) := 1
2‖f‖

2
0, whose sublevel sets are

B0
δ(0). We prove forward invariance of such sets by showing that, on their boundary (i.e., on the

sphere Sr−1
δ ⊂ F̄0 of radius δ), Ū(f) decreases along trajectories of (7) for α large enough.

Noting that Sr−1
δ ⊂ F0 upon taking δ small enough, we differentiate Ū(V w(t)) WRT time for w(t)

obeying (7) at points V := V w(t) ∈ Sr−1
δ :

d

dt
Ū(V ) =

1

α
〈V , ḡ−1

w(t)Dψ
−1

V
Γ(Tλαψ−1(V )− αψ−1(V ))〉0

=
1

α
〈V , (Dψ−1

V
)>Γ(Tλαψ−1(V )− αψ−1(V ))〉+Rg(V )

=
1

α
〈Dψ−1

V
V , r̄λ + α(γPλ − 1)ψ−1(V )〉µ +Rg(V )

≤ 〈Dψ−1

V
V , (γPλ − 1)ψ−1(V )〉µ +

1

α
‖Dψ−1

V
V ‖µ‖r̄λ‖µ + |Rg(V )| . (A.12)

where we have defined Rg(V ) := 1
α 〈V , g̃w(t)(Dψ

−1

V
)>Γ(Tλαψ−1(V )− αψ−1(V ))〉 for g̃w from

Lemma 3.2. We now proceed to bound the last two terms on the RHS from above. The second term
is of order α−1 and therefore goes to 0 for α → ∞ while for the last one we have that, by the
equivalence of the norms ‖ · ‖µ and ‖ · ‖2,

|Rg(V )| ≤ 1

α
‖V ‖2‖g̃w(t)‖‖(Dψ−1

V
)>Γ

[
r̄λ + (γPλ − 1)αψ−1(V )

]
‖2

≤ 1

α
‖V ‖2‖g̃w(t)‖‖(Dψ−1

V
)>Γr̄λ‖+ ‖V ‖2‖g̃w(t)‖‖(Dψ−1

V
)>Γ(γPλ − 1)ψ−1(V )‖2

≤ α−1C + εR(δ)‖V ‖2µ . (A.13)

for a constant C bounded by the norm of all operators and, by Lemma 3.2 a positive function εR(δ)
with limδ→0 εR(δ) = 0. By the bounds established above and the fact that ‖V ‖µ ≥ κ−1δ for
V ∈ Sr−1

δ ⊂ F0 it is sufficient to show that the first term in (A.12) satisfies

〈Dψ−1

V
V , (γPλ − 1)ψ−1(V )〉µ ≤ −ε‖V ‖

2
µ , (A.14)

for δ small enough and a constant ε > 0 independent of δ. We Taylor-expand ψ−1 around the origin,
denoting the second order remainder of that expansion by R2( · , · ), and since ψ−1(V 0) = 0 we
have,

〈Dψ−1

V
V , (γPλ − 1)ψ−1(V )〉µ = 〈Dψ−1

V
V , (γPλ − 1)Dψ−1

0 V 〉µ
+ 〈Dψ−1

V
V , (γPλ − 1)R2(V , V )〉µ , (A.15)

where we have introduced the short hand notation Dψ−1
0 = Dψ−1

V 0
. By the Lipschitz smoothness of

ψ−1( · ) (Lee, 2003) we can bound the norm of the second term from above as

〈Dψ−1

V
V , (γPλ − 1)R2(V , V )〉µ ≤ 2‖Dψ−1

V
V ‖µ‖R2(V , V )‖µ ≤ 2LDψ−1‖Dψ−1

V
‖‖V ‖3µ .

(A.16)
For the first term in (A.15) we can also expand Dψ−1

V
= Dψ−1

0 + R̃2(V , · ) , and by applying a
similar bound as (A.16) we obtain that

〈Dψ−1

V
V , (γPλ − 1)Dψ−1

0 V 〉µ ≤ 〈Dψ
−1
0 V , (γPλ − 1)Dψ−1

0 V 〉µ + 2LDψ−1‖Dψ−1
0 ‖‖V ‖3µ .

(A.17)
The second term of the above equation being O(‖V ‖3), we now consider the first one. By the
nonexpansion of P in ‖ · ‖µ proven in Lemma 3.3 we have

〈Dψ−1
0 V , (γPλ − 1)Dψ−1

0 V 〉µ ≤ γ‖Dψ
−1
0 V ‖µ‖PλDψ−1

0 V ‖µ − ‖Dψ−1
0 V ‖2µ

≤ (γ − 1)‖Dψ−1
0 V ‖2µ ≤ (γ − 1)(σDψ

−1

min )2‖V ‖2µ , (A.18)

where σDψ
−1

min denotes the smallest singular value of Dψ−1 in B0
δ(0). Combining (A.16), (A.17) and

(A.18) we finally obtain

〈Dψ−1

V
V , (γPλ − 1)ψ−1(V )〉µ ≤ ‖V ‖

2
µ((γ − 1)(σDψ

−1

min )2 + C ′κ−1‖V ‖0) , (A.19)

15
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for C ′ = 2LDψ−1(‖Dψ−1
0 ‖+ ‖Dψ−1

V
‖) and recalling that κ is the equivalence constant between the

norms ‖ · ‖µ and ‖ · ‖0 in F0. 2 Therefore, choosing δ small enough we obtain (A.14) and conclude
the proof of forward invariance.
By boundedness of B0

δ(0) in F0, forward completeness follows directly from forward invariance.

Lemma 3.7. There exists ` > 0, δ > 0 and α0 > 0 such that for all α > α0 and all geodesics γ(s)
contained in the ball B0

δ(0) ⊆ F0, the function

〈γ′(s), X(γ(s))〉0 − `s〈γ
′(0), γ′(0)〉0 ,

is strictly decreasing in s.

Proof of Lemma 3.7. To simplify the notation and the forthcoming computation, we prove the differ-
ential version of the desired result, i.e., we show that there exists ` > 0 such that

d

d s
[〈γ′(s), X(γ(s))〉0 − `s〈γ

′(0), γ′(0)〉0] < 0 . (A.20)

The above expression exists almost everywhere by Lipschitz continuity of the terms to be differenti-
ated. When this is not the case, we must interpret this derivative in the sense of distributions. We will
highlight the steps where this could be necessary as we go along the proof.
In our case, X is the RHS of (11) mapped through ψ onto F0, i.e.,

X(γ(s)) = − 1

α
ḡ−1
γ(s)(Dψ

−1
γ(s))

>Γ(Tλαψ−1(γ(s))− αψ−1(γ(s))) .

We are going to consider the ”flattened” manifold obtained by the maps φ and ψ equipped with
the metric ḡ0. In this space, geodesics have the form γ(s) = v1 + s∆v where ∆v := v2 − v1 for
v1, v2 ∈ F0 and their derivative is γ′(s) = ∆v. Consequently (A.20) reads

〈∆v, d

ds
X(γ(s))〉0 < `‖∆v‖20 , (A.21)

where defining g̃γ(s) := ḡ0ḡ
−1
γ(s) − 1 as in Lemma 3.2 we have

d

ds
X(γ(s)) =

d

ds
ḡ0ḡ
−1
γ(s)(Dψ

−1
γ(s))

>Γ(Tλ(αψ−1(γ(s)))− αψ−1(γ(s)))

=
d

ds
X̄(γ(s)) + g̃γ(s)

d

ds
X̄(γ(s)) +Dg̃γ(s)(X̄(γ(s)), γ′(s)) . (A.22)

for
X̄(γ(s)) := (Dψ−1

γ(s))
>Γ(Tλ(αψ−1(γ(s)))− αψ−1(γ(s))) .

We proceed by analyzing the first term in the above equation and leave the task of bounding the last
two for later. Using ∂sαψ−1(γ(s)) = αDψ−1

γ(s)γ
′(s) = αDψ−1

γ(s)∆v we have that

d

ds
X̄(γ(s)) =

1

α
(D2ψ−1

γ(s))
>(Γ(Tλαψ−1(γ(s))− αψ−1(γ(s))),∆v) (A.23)

+ (Dψ−1
γ(s))

>Γ
[
DTλDψ−1

γ(s)∆v −Dψ
−1
γ(s)∆v

]
,

where (D2ψ−1
γ(s))

> denotes the inversion of the last two indices of the Hessian. We now proceed
to consider the two terms in the sum above separately (multiplied by the scalar product of (A.21)),
defining throughout (TD)s := Γ(Tλαψ−1(γ(s))− αψ−1(γ(s))). For the first term we have:

1

α
〈∆v,D2ψ−1

γ(s)(TDs,∆v)〉0 ≤ ‖∆v‖
2
0‖D2ψ−1

γ(s)

(
α−1r̄λ + (γPλ − 1)ψ−1γ(s)

)
‖ ≤ ε′‖∆v‖20 ,

(A.24)

2We recall that by the construction of the mappsings ψ, φ, πr and by our assumption in Theorem 3.5 the
metric tensor ḡt has full rank on F0 and being the latter set compact its eigenvalues are uniformly bounded
from below. At the same time, we can equip F0 with the metric induced by Γ by restricting it to its first r
elements, which are uniformly bounded from below. Hence, the two metrics are equivalent on this space for
some equivalence constant κ.
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for any ε′ > 0 by using the linearity of the Hessian and bounding its operator norm of ψ−1 on
a compact space in F0 while choosing α large enough and δ small enough, since γ(s) ∈ B0

δ(0).
Note that if Dψ−1 is not differentiable, the above computation is to be understood in the sense of
distributions.
We now focus on the second term of (A.23). In this case we incorporate the operator Γ in the inner
product and write this term as

〈Dψ−1
γ(s)∆v,DT

λDψ−1
γ(s)∆v〉µ − ‖Dψ

−1
γ(s)∆v‖

2
µ .

Now, by the contraction property of Tλ onto the tangential space Tψ−1
γ(s)
F in the norm ‖ · ‖µ we can

write

〈Dψ−1
γ(s)∆v,DT

λDψ−1
γ(s)∆v〉µ ≤ ‖Dψ

−1
γ(s)∆v‖µ‖P

λDψ−1
γ(s)∆v‖µ ≤ γ‖Dψ

−1
γ(s)∆v‖

2
µ ,

so that

〈Dψ−1
γ(s)∆v,DT

λDψ−1
γ(s)∆v〉µ − ‖Dψ

−1
γ(s)∆v‖

2
µ ≤ (γ − 1)‖Dψ−1

γ(s)∆v‖
2
µ . (A.25)

Denoting by σDψ
−1

max , σDψ
−1

min the largest and smallest, respectively, singular values of the map Dψ−1

in B0
δ(0) (which are bounded away from 0 upon possibly making this set smaller), by nondegeneracy

of Dψ−1 and by the equivalence of the ‖ · ‖µ and ‖ · ‖0 norms on F0 we have that

κ−1σDψ
−1

min ‖∆v‖0 ≤ ‖∆v‖µσDψ
−1

min ≤ ‖Dψ−1
γ(s)∆v‖µ ≤ ‖∆v‖µσ

Dψ−1

max ≤ κ‖∆v‖0σDψ
−1

max .

Thus we have
‖Dψ−1

γ(s)∆v‖
2
µ ≥ κ−2

(
σDψ

−1

min

)2

‖∆v‖20 . (A.26)

Getting back to the last two terms in (A.12), we immediately see from Lemma 3.2 that g̃γ(s) is a
small, Lipschitz continuous perturbation. Hence, the product

〈γ′(s), g̃γ(s)X̄
′(γ(s))〉

can be bounded from above similarly to (A.13), while the second order derivative in the third term of
(A.22) can be dealt with analogously to what is done in (A.24), giving terms ε′′‖∆v‖20 and ε(3)‖∆v‖20
respectively, both going to 0 as δ → 0.
Therefore, combining the above with (A.24), (A.25) and (A.26) we have

〈∆v, d

dt
X̄(γ(s))〉0 ≤

γ − 1

κ2

(
σDψ

−1

min

)2

‖∆v‖20 +

(
3∑
i

ε(i)(δ)

)
‖∆v‖20

≤ γ − 1

2κ2

(
σDψ

−1

min

)2

‖∆v‖20 .

This directly gives (A.21) by choosing ` large enough.

The next lemma estimates the distance between the fixed point Ṽ ∗ of the dynamics (7) and V ∗ given
by (1), showing that it is close, for large values of α to the best linear model in the tangent space of
Fw at Vw(0), given by Π0V

∗. We recall that the projection operator Π0 onto the linear space spanned
by the columns of DV is given by (Tsitsiklis & Van Roy, 1997, Eq. (1))

Π0W := arg min
{DVw(0)∆w : ∆w∈Rp}

‖DVw(0)∆w −W‖µ = DVw(0)(DV
>
w(0)ΓDVw(0))

−1DV >w(0)ΓW ,

for all W ∈ F where, if necessary, we interpret (DV >w(0)ΓDVw(0))
−1 as a pseudo-inverse.

Lemma A.1. Let Ṽ ∗ be the fixed point of (7) and V ∗ be the global fixed point of the TD operator,
given by (1). Then under the assumptions of Theorem 3.5 there exists constants α0 > 0 and C∗ > 0
(independent of α0), such that

‖Ṽ ∗ − V ∗‖µ <
1− λγ
1− γ

‖Π0V
∗ − V ∗‖µ + C∗α−1 , (A.27)

where Π0 is the projection operator onto TV (w(0))Fw.
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To prove the above result we compare the dynamics (7) to the dynamics of the model V when
linearized at w(0). In this case, the dynamics of the parameters is given by

d

d t
w̄(t) = DV >w(0)Γ(TλVw̄(t) − Vw̄(t)) , (A.28)

where V ∈ F is the linear, tangent model of V at w(0) defined as

Vw := Vw(0) +DVw(0)(w − w(0)) . (A.29)

We can also write the dynamics of the linear model as

d

d t
Vw̄(t) := DVw(0) ·DV >w(0)Γ(TλVw̄(t) − Vw̄(t)) . (A.30)

Scaling the model as V → αV and t→ α−1t we obtain the analogue of (7):

d

d t
w̄(t) :=

1

α
DV >w(0)Γ(TλαVw̄(t) − αVw̄(t)) . (A.31)

which in F reads
d

d t
αVw̄(t) := DVw(0) ·DV >w(0)Γ(TλαVw̄(t) − αVw̄(t)) .

Proof of Lemma A.1. Recall from (Tsitsiklis & Van Roy, 1997, Lemma 6) that for the linear value
function approximation one has

‖V∗ − V ∗‖µ <
1− λγ
1− γ

‖Π0V
∗ − V ∗‖µ , (A.32)

where Π0 is the projection on TV (w(0))Fw and V∗ is the unique fixed point of the dynamics (A.30)
on that space. In light of this result, our task reduces to bounding the distance between the trajectories
of the original (i.e., dynamics (7)) and the linearized model (i.e., dynamics (A.31)) by Cα−1 for C
large enough. We do so in 3 main steps. First of all, we bound the maximal excursion of the models
V and V . Mapping both dynamics onto a common coordinate space, we then bound from above the
distance between the two trajectories in this space by O(α−1). Finally, we map the dynamics back to
the embedding space and show that the correction is again of the same order O(α−1).

Bounding the maximal excursion. To compare the dynamics of αVw(t) and αVw̄(t) we map them
to a common space. Recalling the definition of the maps φ, πr, ψ from the proof of Theorem 3.5 we
note that the first order expansion of ψ, maps TV (w(0))Fw to F0. Explicitly, for V ∈ F0 and for
∆V ∈ TV (w(0))Fw with ‖∆V‖0 small enough we have

ψ̄(Vw(0) + ∆V) := Dψ0∆V and ψ̄−1(V ) = Vw(0) +Dψ−1
0 V ∈ TV (w(0))Fw . (A.33)

Now, we proceed to show that the dynamics of (7) and (A.31), mapped to F0, do not exit a ball B0
δ(0),

when choosing δ = C/α for C large enough. We show this with the same strategy used for the proof
of Lemma 3.6, i.e., we show that Ū(f) := 1

2‖f‖
2
0 decreases on Sr−1

δ (0) along the trajectories of
interest (note that δ is now much smaller than that used in Lemma 3.6). We will start with the curved
dynamics (7) and will then show that the same result follows, in a simpler setting, for (A.31). For
V := V w(t) ∈ Sr−1

δ (0) we start by bounding, as in (A.12), the derivative

d

d t
Ū(V ) ≤ 〈Dψ−1

V
V , (γPλ − 1)ψ−1(V )〉µ +

1

α
‖Dψ−1

V
V ‖µ‖r̄λ‖µ + |Rg(V )| . (A.34)

Before bounding the above terms we recall that by Lipschitz smoothness of ψ we have that

‖ψ−1(V )‖ < ‖Vw(0)‖+ ‖Dψ−1
0 V ‖+ LDψ−1‖V ‖2 . (A.35)

Then, since Vw(0) = 0, similarly to (A.12) we have for the last term in (A.34) that, for α large enough,

|Rg(V )| ≤ ‖g̃w‖‖V ‖2
(
‖V ‖2‖(Dψ−1

V
)>Γ(γPλ − 1)‖(‖Dψ−1

0 ‖+ LDV ‖V ‖2)

+
1

α
‖(Dψ−1

V
)>Γr̄λ‖2

)
.
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By the equivalence of the norms ‖ · ‖µ, ‖ · ‖2 and ‖ · ‖0 on Πr and since δ = C/α we have that

|Rg(V )| ≤ ‖g̃w‖‖V ‖20(K + 1) +O(α−3) , (A.36)

upon increasing C if necessary and defining K = κ2
2‖(Dψ−1

V
)>Γ(γPλ − 1)‖‖Dψ−1

0 ‖ for κ2 the
equivalence constant between ‖ · ‖2 and ‖ · ‖0 on Πr. The second term in (A.34) can be bounded
similarly to the above by the equivalence of norms:

1

α
‖Dψ−1

V
V ‖µ‖r̄λ‖µ ≤ ‖V ‖20

κ2‖Dψ−1

V
‖‖r̄λ‖µ

C
. (A.37)

The first term in (A.34) can be treated identically to the proof of Lemma 3.6 to obtain (A.19).
Changing the norm in (A.19) and combining it with (A.36) and (A.37) gives

d

d t
Ū(V ) ≤ ‖V ‖20

(
γ − 1

2κ2
(σDψ

−1

min )2 +
κ2‖Dψ−1

V
‖‖r̄λ‖µ

C
+ ‖g̃w‖(K + 1)

)
+O(α−3) .

Since γ − 1 < 0, we can choose C large enough to make the second term in brackets smaller than
(γ − 1)/12κ2(σDψ

−1

min )2. The same holds for the third term in brackets by (10), and for the higher
order term by taking α large enough, showing that

d

d t
Ū(V ) ≤ γ − 1

4κ2
(σDψ

−1

min )2‖V ‖20 < 0 ,

as desired. We note that the same reasoning with LDV = 0 and Dψ−1

V
≡ Dψ−1

0 yields an identical
conclusion for the dynamics of V in a ball of radius δ = C/α for C,α large enough. Also, we note
that combining the above computation with (A.16) yields

‖Dψ−1

V
Γ(Tλαψ−1(V )− αψ−1(V ))‖ ≤ ‖Dψ−1

V
Γ‖(‖r̄λ‖+ α(γ + 1)‖Dψ−1

0 V ‖+ αLDψ−1

V

‖V ‖2)

≤ (γ + 1)‖Dψ−1

V
Γ‖(‖Dψ−1

0 ‖C + ‖r̄λ‖+O(α−1))

≤ C0 , (A.38)

for C0 large enough, where Dψ−1

V
Γ is considered as an operator mapping F0 → F̄0.

Bounding the distance of trajectories. The distance between two trajectories with the same initial
condition can be bounded by O(α−2) using a similar argument as in (Chizat & Bach, 2018b, Lemma
B2) for the present framework. We include the proof of this lemma here as the assumptions are not
identical and to make the paper self-contained, while we do not claim any improvement on that result.
To enounce this result, we recall that σDψ

−1

min denotes the smallest singular eigenvalue of Dψ−1 in a
ball B0

δ(0), which is bounded away from 0 for δ small enough. Similarly, we recall that ḡ−1
t � σgmin1

for σgmin > 0 in B0
δ(0) for δ small enough.

Lemma A.2. Let V t, Vt in F0 be solutions of

d

d t
V t = ḡ−1

t (Dψ−1

V t
)>Γ(Tλαψ−1(V t)− αψ−1(V t)) ,

d

d t
Vt = ḡ−1

0 (Dψ−1
0 )>Γ(Tλαψ̄−1(Vt)− αψ̄−1(Vt)) .

Then defining K := supt>0 ‖(ḡ−1
t − ḡ−1

0 )(Dψ−1

V t
)>Γ(Tλαψ−1(V t) − αψ−1(V t))‖ and β :=

1−γ
κ2 (σDψ

−1

min )2 we have that

sup
t>0
‖V t − Vt‖0 ≤

1

α

2K

β
.

Proof of Lemma A.2. We define the function h(t) := 1
2‖V t − Vt‖

2
0, take its time derivative

h′(t) = 〈V ′t − V
′
t, V t − Vt〉0 ,

and defining

(TD)t := Tλαψ−1(V t)− αψ−1(V t) ,
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(T D)t := Tλαψ̄−1(Vt)− αψ̄−1(Vt) ,

we evaluate (for simplicity of notation, we introduce the short hand Dψ−1
t := Dψ−1

V t
for the rest of

the proof)

V
′
t − V

′
t =

1

α
ḡ−1
t (Dψt

−1
)>Γ(TD)t −

1

α
ḡ−1

0 (Dψ−1
0 )>Γ(T D)t

≤ 1

α

[
ḡ−1

0 (Dψ−1
t )>Γ(TD)t − ḡ−1

0 (Dψ−1
0 )>Γ(T D)t

]
(A.39)

+
1

α

[
ḡ−1
t (Dψ−1

t )>Γ(TD)t − ḡ−1
0 (Dψ−1

t )>Γ(TD)t
]
. (A.40)

We look at the two terms on the RHS separately and obtain, for (A.39)

1

α
〈ḡ−1

0 (Dψ−1
t )>Γ(TD)t − ḡ−1

0 (Dψ−1
0 )>Γ(T D)t, V t − Vt〉0 (A.41)

=
1

α
〈(Dψ−1

t )>Γ(TD)t − (Dψ−1
0 )>Γ(T D)t, V t − Vt〉

=
1

α
〈(TD)t − (T D)t, Dψ

−1
0 (V t − Vt)〉µ (A.42)

+
1

α
〈(Dψ−1

t −Dψ−1
0 )>Γ(TD)t, V t − Vt〉 . (A.43)

We immediately see that by Lipschitz smoothness of ψ−1 and the equivalence of ‖ · ‖2 and ‖ · ‖0
norms on Πr and (A.38), for (A.43) we have

1

α
〈(Dψ−1

t −Dψ−1
0 )>Γ(TD)t, V t−Vt〉 ≤

1

α
LDψ−1‖V t‖2‖Γ(TD)t‖‖V t−Vt‖2 ≤

C1

α2

√
2h(t) ,

(A.44)
by choosing C1 large enough. For (A.42) by the definition of ψ we have

(TD)t − (T D)t = Tλαψ−1(V t)− Tλαψ̄−1(Vt)− α(ψ−1(V t)− ψ̄−1(Vt))
= α(Pλ − 1)(ψ−1(V t)− ψ̄−1(Vt)) ,

and hence, by (A.35) we have

1

α
〈(TD)t − (T D)t, Dψ

−1
0 (V t − Vt)〉µ ≤ 〈(P

λ − 1)(ψ−1(V t)− ψ̄−1(Vt)), Dψ−1
0 (V t − Vt)〉µ

≤ 〈(Pλ − 1)Dψ−1
0 (V t − Vt), Dψ−1

0 (V t − Vt)〉µ
+ LDψ−1‖V t‖2µ‖Dψ−1

0 ‖‖V t − Vt‖µ .

Defining β := 1−γ
κ2 (σDψ

−1

min )2, the first term from above can be bounded as in (A.18) to obtain

〈(Pλ − 1)Dψ−1
0 (V t − Vt), Dψ−1

0 (V t − Vt)〉µ ≤ −βh(t) , (A.45)

while for the second by our choice of δ = C/α we have

LDψ−1‖V t‖2µ‖Dψ−1
0 ‖‖V t − Vt‖µ ≤

C2

α2
κLDψ−1‖Dψ−1

0 ‖
√

2h(t) . (A.46)

Finally, combining (A.44), (A.45) and (A.46) we have

(A.41) ≤ −βh(t) +
C2

α2

√
2h(t) , (A.47)

where C2 := C1 + C2κLDψ−1‖Dψ−1
0 ‖.

We now consider (A.40). Here by the definition of K we have

1

α
〈(ḡ−1

t − ḡ−1
0 )Dψ−1

t Γ(TD)t, V t − Vt〉0 ≤
K

α
‖V t − Vt‖0 =

K

α

√
2h(t) .

Combining the above with (A.47) we finally obtain

h′(t) ≤ −βh(t) +
K

α

√
2h(t) +

C2

α2

√
2h(t) ≤ −βh(t) +

2K

α

√
h(t) ,
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for α large enough. The above expression is negative as soon as h(t) > 4K2/(αβ)2. Therefore,
because h(0) = 0, we must have that h(t) ≤ 4K2/(αβ)2 for all t > 0, i.e.,

‖V t − Vt‖0 <
1

α

2K

β
for all t > 0 ,

as claimed.

To achieve the claimed O(α−2) bound, we observe that K in the above Lemma can be chosen
O(α−1) by the Lipschitz continuity of ḡ−1

t . Indeed, since we chose ‖V ‖0 = C/α, by (A.38) we
have that

K ≤ sup
t>0
‖Γ(TD)t‖‖Dψ−1

V t
‖Lḡ−1

0
‖V ‖0 ≤ C0σ

Dψ−1

max Lḡ−1
0

C

α
≤ β

2

K ′

α
,

for K ′ large enough, and therefore

‖V t − Vt‖0 <
K ′

α2
for all t > 0 . (A.48)

Mapping to the embedding space. We conclude the proof by mapping back to the original space,
where we have

sup
t>0
‖Vt − Vt‖µ = sup

t
‖αψ−1(V t)− αψ̄−1(Vt)‖µ

≤ sup
t
α
(
‖Dψ−1

0 (V t − Vt)‖µ + LDψ−1‖V t‖2µ
)

≤ α
(
κ‖Dψ−1

0 ‖ sup
t
‖V t − Vt‖0 + κ2LDψ−1 sup

t
‖V t‖20

)
.

Then, letting V∗ be the fixed point of (A.30) (unique and attracting by Tsitsiklis & Van Roy (1997)),
by our choice of δ = C/α, (A.32) and (A.48) we have that

‖Ṽ ∗ − V ∗‖µ ≤ ‖V∗ − V ∗‖µ + sup
t>0
‖Vt − Vt‖µ

≤ 1− γλ
1− γ

‖Π0V
∗ − V ∗‖µ +

1

α
(κ‖Dψ−1

0 ‖K ′ + κ2LDψ−1C2) ,

as claimed.
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