
Under review as a conference paper at ICLR 2019

STRENGTH IN NUMBERS: TRADING-OFF ROBUSTNESS
AND COMPUTATION VIA ADVERSARIALLY-TRAINED
ENSEMBLES

Anonymous authors
Paper under double-blind review

ABSTRACT

While deep learning has led to remarkable results on a number of challenging
problems, researchers have discovered a vulnerability of neural networks in ad-
versarial settings, where small but carefully chosen perturbations to the input can
make the models produce extremely inaccurate outputs. This makes these models
particularly unsuitable for safety-critical application domains (e.g. self-driving cars)
where robustness is extremely important. Recent work has shown that augmenting
training with adversarially generated data provides some degree of robustness
against test-time attacks. In this paper we investigate how this approach scales
as we increase the computational budget given to the defender. We show that
increasing the number of parameters in adversarially-trained models increases their
robustness, and in particular that ensembling smaller models while adversarially
training the entire ensemble as a single model is a more efficient way of spending
said budget than simply using a larger single model. Crucially, we show that it is
the adversarial training of the ensemble, rather than the ensembling of adversarially
trained models, which provides robustness.

1 INTRODUCTION

Deep neural networks have demonstrated state-of-the-art performance in a wide range of application
domains Krizhevsky et al. (2012). However, researchers have discovered that deep networks are in
some sense ‘brittle’, in that small changes to their inputs can result in wildly different outputs (Huang
et al., 2017; Jia & Liang, 2017; Szegedy et al., 2013). For instance, practically imperceptible (to
human) modifications to images can result in misclassification of the image with high confidence.
Not only are networks susceptible to these ‘attacks’, but these attacks are also relatively easy to
compute using standard optimization techniques (Carlini & Wagner, 2017b; Goodfellow et al., 2014).
These changes are often referred to as adversarial perturbations, in the sense that an adversary could
craft a very small change to the input in order to create an undesirable outcome. This phenomenon is
not unique to image classification, nor to particular network architectures, nor to particular training
algorithms (Papernot et al., 2016; 2017).

Adversarial attacks can be broken into different categories depending on how much knowledge of the
underlying model the adversary has access to. In ‘white-box’ attacks the adversary has full access to
the model, and can perform both forward and backwards passes (though not change the weights or
logic of the network) (Carlini & Wagner, 2017a; Goodfellow et al., 2014). In the ‘black-box’ setting
the adversary has no access to the model, but perhaps knows the dataset that the model was trained
on (Papernot et al., 2016; 2017). Despite several recent papers demonstrating new defences against
adversarial attacks (Akhtar & Mian, 2018; Guo et al., 2017; Liao et al., 2017; Song et al., 2017;
Tramèr et al., 2018; Warde-Farley & Goodfellow, 2016; Xie et al., 2017; Yuan et al., 2017), recent
papers have demonstrated that most of these new defences are still susceptible to attacks and largely
just obfuscate the gradients that the attacker can follow, and that non-gradient based attacks are still
effective Uesato et al. (2018); Athalye et al. (2018).

Exploring Tradeoff of Computation and Robustness In many safety-critical application domains
(e.g. self-driving cars), robustness is extremely important even if it comes at the cost of increased

1

Under review as a conference paper at ICLR 2019

computation. This motivated the central question considered by this paper: Is it possible to increase
adversarial robustness of a classifier at the cost of increased computation?

There are a number of possibilities to employ extra computation available at runtime. We can use
a much larger model that requires more time to run, execute the original model multiple times and
aggregate the predictions, or instead of using a single model, make predictions from a portfolio or
ensemble of models. While researchers have proposed the use of portfolios and ensembles as a
mechanism to improve adversarial robustness Abbasi & Gagné (2017); Thilo Strauss (2017), our
experimental results indicate that stronger adversaries are able to attack the ensembles successfully.

Contributions In this paper, we study and analyze the trade-off of adversarial robustness and
computation (memory and runtime). We propose the use of adversarial training of ensemble of
models and through an exhaustive ablative analysis make the following empirical findings:

• increased computation and/or model size can be used to increase robustness,

• ensembles on their own are not very robust, but can be made robust through adversarial
training where the ensemble is treated as a single model,

• adversarially trained ensembles are more robust than adversarially trained individual models
requiring the same amount of parameters/computation

Related Work Recently, Tramèr et al. (2018) investigated the use of ensembles for adversarial
robustness. However, their goal and approach was quite different from the technique we are investi-
gating. In Tramèr et al. (2018), the authors generated adversarial perturbations using an ensemble of
pre-trained models in order to transfer the example to another model during training. This procedure
decouples adversarial example generation from the current model, and consequently the model being
trained cannot simply ‘overfit’ to the procedure for generating adversarial examples, which they
generally took to be single-step attack methods. The authors demonstrated strong robustness of
the resulting trained model to black-box attacks. By contrast, in this paper we investigate using an
ensemble of models as our predictive model, and we train the models using multi-step adversarial
training. We show increased robustness to both black-box and white-box adversarial attacks using
this strategy.

2 PRELIMINARIES

Here we lay out the basics of attacking a neural network by the generation of adversarial examples.
Denote an input to the network as x ∈ Rd with correct label ŷ ∈ Y ⊂ N, and let mθ : Rd → R|Y| be
the mapping performed by the neural network which is parameterized by θ ∈ Rp. Let L : Y×R|Y| →
R denote the loss we are trying to minimize (e.g., the cross-entropy). When training a neural network
we seek to solve

minimize E(x,y)∼D L(ŷ,mθ(x)) (1)

over variable θ, where D is the data distribution. Given any fixed θ we can generate (untargeted)
adversarial inputs by perturbing the input x so as to maximize the loss. We restrict ourselves to small
perturbations around a nominal input, and we denote by B this set of allowable inputs. For example,
if we restrict ourselves to small perturbations in `∞ norm around a nominal input xnom then we could
set B = {x | ‖x− xnom‖∞ ≤ ε} where ε > 0 is the tolerance. A common approach for generating
adversarial examples is projected gradient descent Carlini & Wagner (2016), i.e., to iteratively update
the input x by

x̃k+1 = ΠB(x̃k + η∇xL(y,mθ(x̃
k))), (2)

where typically x0 = x + ε for some noise ε, η > 0 is a step-size parameter and ΠB denotes the
Euclidean projection on B. We add noise to the initial point so that the network can’t memorize
the training dataset and mask or obfuscate the gradients at that point Uesato et al. (2018); Athalye
et al. (2018), in other words the added noise encourages generalization of adversarial robustness to
the test dataset. If instead of using the gradient we just use the sign of the gradient then this is the
fast-gradient-sign method Goodfellow et al. (2014). Empirically speaking, for most networks just a
few steps of either of these procedures is sufficient to generate an x̃ that is close to xnom but has a
different label with high confidence.

2

Under review as a conference paper at ICLR 2019

In this paper we are primarily concerned with the performance of ensembles of models when trained
with adversarial training Madry et al. (2017). In adversarial training we train a network to minimize
a weighted sum of two losses (where the relative weighting is a hyper-parameter). The first loss is the
standard loss of the problem we are trying to solve on the normal training data, e.g., the cross-entropy
for a classification task. The second loss is the same function as the first loss, except evaluated
on adversarially generated data, where typically the adversarial data is generated by attacking the
network at that time-step. In other words we replace the problem in eq. (1) with

minimize E(x,y)∼D(L(ŷ,mθ(x)) + ρL(ŷ,mθ(x̃))) (3)

where ρ ≥ 0 is the weighting parameter and x̃ is an adversarial example generated from x at model
parameters θ using, for example, the update in eq. (2). This problem is usually approximated by
sampling and minimizing the empirical expectation.

3 ADVERSARIALLY-TRAINED ENSEMBLES

In this section we lay out the basic strategy of using ensembles of models to increase robustness
to adversarial attacks. The notion of ensemble used here simply involves taking k separately-
parameterized models and averaging their predictions. If the output of network i as a function of input
x and with network parameters θi is given by p(·|x, θi) = mθi(x), then the output of the ensemble is

p(y|x) =
1

k

k∑
i=1

p(y|x, θi).

Alternatively, we could consider using a ‘gating network’ to generate data-dependent weights for
each model rather than a simple average, though we found the performance to be similar.

Using ensembles to improve the performance of statistical models is a very old idea; see, e.g. Opitz &
Maclin (1999) for a survey. The basic intuition is that several weak models can be combined in such
a way that the ensemble performs better than any individual, and is sometimes explained as being
caused by the errors of the models ‘cancelling’ with one another.

In order to ensure that the models are actually producing different outputs the diversity of the models
must be maintained. This can be done in several ways, such as bootstrapping the data, whereby each
model gets a slightly different copy of the data, or using totally different model types or architectures.
In the case that the model training procedure is convex, and if all models architectures are the same
and are getting the same data, then the models in the ensemble would be expected to converge on
the same parameters. In the case of neural networks however, the model training procedure is not
convex and so our strategy for maintaining diversity is very simple—initialize each model differently.
Due to the nature of training neural networks it is likely that differently initialized networks will
converge (assuming they do, in fact, converge) to different points of the parameter space. The insight
that only different initialization is required is not new, previous papers have observed that different
initialization is sufficient for uncertainty estimation Lakshminarayanan et al. (2016); Osband et al.
(2016).

Different initialization for networks has an appealing interpretation. If we take a Bayesian approach
to the classification problem, then we have a prior over possible model parameters, p(θ), a likelihood
of the data, p(D|θ), and a probability of a label y given an input and a model, p(y|x, θ). The
‘Bayes-optimal’ classification of a new data point x is given by

y? = argmaxy

∫
θ

p(y|x, θ)p(D|θ)p(θ).

This classifier is optimal in the sense that no other classifier can outperform it on average, given the
same model class and knowledge of the prior and likelihood; however, the formulation is intractable
for all but small problems. We can consider approximating it by the following approach, sample
initial parameters from the prior p(θ) and run an iterative procedure to (approximately) maximize the
likelihood p(D|θ). Very loosely speaking, we can consider this procedure as approximately sampling
from the posterior over models p(θ|D) ∝ p(D|θ)p(θ). Consequently, we output the classification

y? = argmaxy

k∑
i=1

p(y|x, θi),

3

Under review as a conference paper at ICLR 2019

Algorithm 1 Adversarial ensemble training using PGD under `∞ norm constraint

input: k neural networks mθi , i = 1, . . . , k; attack steps N ; step sizes η, η̂; initial variance σ;
adversarial loss weighting ρ; perturbation width δ
initialize: neural network parameters θ0i randomly, i = 1, . . . , k
for time-step t = 0, 1, . . . , do

sample input minibatch (x, ŷ) ∼ D
initialize x̃0 = x+ ε where ε ∼ N (0, σ2I)
define B = {x′ | ‖x− x′‖∞ ≤ δ}
for k = 0, . . . , N − 1 do

x̃k+1 = ΠB(x̃k + η̂∇xL(ŷ,
1

k

k∑
i=1

mθi(x̃
k)))

end for
update parameters for each i = 1, . . . , k:

θt+1
i = θti − η∇θi

L(ŷ,
1

k

k∑
j=1

mθtj
(x)) + ρL(ŷ,

1

k

k∑
j=1

mθtj
(x̃N))

end for

i.e., the best guess of the ensemble. The role of initialization therefore is that of sampling from our
prior over possible model parameters.

Adversarial training of Ensembles Up to this point we have discussed the use of ensembles for
improving classification performance and approximating the Bayes optimal classifier. Typically
speaking neural networks appear to not benefit much from ensembling in terms of nominal perfor-
mance. Here, however, we make the claim that adversarially trained ensembles of networks provide a
level of robustness to adversarial attacks. When using ensembles the loss function for adversarial
training in (3) is replaced by the mean of the loss over the k models, i.e., now we want to solve

minimize E(x,y)∼D

(
L(ŷ, 1k

∑k
i=1mθi(x)) + ρL(ŷ, 1k

∑k
i=1mθi(x̃))

)
(4)

over variables θi, i = 1, . . . , k, and where x̃ is an adversarial example generating by attacking the
entire ensemble. The exact procedure is outlined in Algorithm 1. We demonstrate empirically in the
numerical results section that this procedure increases robustness to adversarial inputs. Following
these results, we offer an analysis and hypothesis why ensembles outperform single models, even
when controlling for number of parameters.

4 EXPERIMENTAL SETUP

4.1 MODELS COMPARED

Non-Adversarial Benchmarks The Baseline model for our investigation is a Wide
ResNet (Zagoruyko & Komodakis, 2016) consisting of a 3 × 3 convolution layer, followed by
three layers containing 28 ResNet blocks of width factor 10, followed by batch normalization Ioffe &
Szegedy (2015) layer, followed by a ReLU (Nair & Hinton, 2010), and by a final linear layer project-
ing into the logits of the CIFAR-10 classes. All models we experimented with here are variations on
this architecture, and where hyperparameters are not explicitly referenced, they are assumed to be
the same as this base model. Ensemble2 contains two copies of the baseline architecture. This has
twice the number of parameters of the baseline. Together with the base model, these constitute our
non-adversarially trained benchmarks.

Adversarial Models When adding adversarial training to the baseline architecture, we obtain our
SingleAdv benchmark, which has the same number of parameters as the baseline. When trained with
adversarial training, whereby the whole ensemble is attacked by Iterated Fast Gradient Sign Method

4

Under review as a conference paper at ICLR 2019

|θ| = n

x

L(ŷ, y)

|θ| = n

L(ŷ, y) + L(ŷ, ỹ)
2

x x̃

|θ| = 2×n

x x̃

L(ŷ, y) + L(ŷ, ỹ)
2

Baseline SingleAdv DoubleAdv

|θ₁| = n

x

L(ŷ, y)

|θₖ| = n… |θ₁| = n |θₖ| = n…

x x̃

L(ŷ, y) + L(ŷ, ỹ)
2

|θ₁| = n |θₖ| = n…

x₁ x̃₁

L(ŷ₁, y₁) + L(ŷ₁, ỹ₁)
2

L(ŷₖ, yₖ) + L(ŷₖ, ỹₖ)
2

xₖ x̃ₖ
Ensemble{2, 4, …} Ensemble{2, 4, …}Adv SeparateEnsemble{2, 4, …}Adv

Figure 1: Schematic depiction of classes of models compared in this paper. Here, n indicates the
number of parameters in the base model, ŷ indicates the ground trouth label, x is a clean input from
the dataset, x̃ is that input after a number of steps of the chosen adversarial training attack (7 steps
of IFGSM in our experiments), y is the output distribution according to the network based on clean
input x, and ỹ is the output based on adversarial input x̃. Adversarially trained networks are shown to
have two inputs (and two losses) for compactness, but in practice two parameter-sharing copies of the
network will be instantiated, with one taking clean input, the other taking adversarial input, and their
losses will be computed separately and averaged before optimisation.

(IFGSM) (Kurakin et al., 2016) at each training step to obtain adversarial inputs, we refer to the
ensemble as Ensemble2Adv. This ensemble has as many parameters as its non-adversarially-trained
counterparts.

Comparisons to Ensemble2Adv In order to compare Ensemble2Adv to the SingleAdv bench-
mark while controlling for number of parameters, we introduce a variant DoubleAdv of this bench-
mark with ResNet blocks of width 15, which yields roughly the same number of parameters as
Ensemble2Adv. Finally, we train two separately parameterised instances of SingleAdv and ensem-
ble them at test time for the purpose of evaluating the hypothesis that it is adversarial training of
ensembles that provides and advantage, and call this test-time model SeparateEnsemble2Adv.

The model variations described here are illustrated in Figure 1, which can serve as a basis for repeating
these experiments with a different base model architecture.

4.2 TRAINING PROCEDURE

We train and evaluate our models on CIFAR-10 (Krizhevsky & Hinton, 2009). We use similar
hyperparameters to Zagoruyko & Komodakis (2016), with additional iterations to account for the
fact that minimizing the adversarial objective requires more training steps. We train all models
for 500,000 iterations using a momentum optimiser with minibatches of size 128, with an initial
learning rate of 0.1, a momentum of 0.9, and a learning rate factor (decay) of 0.2 after {30k, 60k, 90k}
steps. When doing adversarial training, we train both on “clean” versions of the minibatch images,
and on adversarial examples produced by 7 steps of IFGSM, following Madry et al. (2017). The
cross-entropy losses with regard to the ground truth labels for both the adversarial and clean images
are averaged to obtain gradients for the model (i.e. ρ = 1).

5

Under review as a conference paper at ICLR 2019

4.3 EVALUATION PROCEDURE

During training, we run an evaluation job which evaluates the accuracy of the model on the entire
CIFAR-10 test set. We consider two white-box adversaries, both with a maximum L∞ perturbation
of 8 (out of 255): IFGSM which performs the iterated fast gradient sign method update, which is
equivalent to steepest descent with respect to the Linf norm Madry et al. (2017); Kurakin et al. (2016)
and PGD which performs projected gradient descent using the Adam Kingma & Ba (2014) update
rule. During training, we evaluate using IFGSM7, the training adversary which performs 7 iterations
of the IFGSM update, also used in Madry et al. (2017), as well as PGD5 and PGD20, the 5 and
20-step versions of our PGD attack. Additionally, for the best model, we run these attacks 500 steps
in order to estimate the strongest possible attacks.

We further include a black-box adversary in our evaluation procedure. We use a dataset of pre-
computed adversarial examples, following the procedure in Liu et al. (2016) against an ensemble
of a Wide ResNet Zagoruyko & Komodakis (2016) and VGG-like Simonyan & Zisserman (2014)
architectures. The two models are trained with standard training procedures and achieve 96.0% and
94.5% accuracy respectively on the CIFAR-10 clean test set, and are ensembled by an arithmetic
mean of their logits. The adversary is the PGD20 adversary which fools all members of the ensemble
on 100% of the evaluation set. We note that the exact values for robustness of networks to black box
attacks can be highly contingent on the similarity between the original and attacked networks Uesato
et al. (2018), rather than the true adversarial robustness of the attacked network. However, we include
black box accuracies for best practice, as a check against models which achieve illusory robustness
through obscured gradients Goodfellow et al. (2014).

We trained and evaluated each model with three separate random seeds. Evaluation outliers, caused
by occasional crashes of evaluation jobs, are removed according to the following procedure. We
compute a smoothed version of each time series by using a centered rolling median window of width
50. We take the absolute difference of each original time series and its smoothed form, compute the
mean of the difference, and replace points in the original time series with their smoothed version only
when the absolute difference exceeds three standard deviations with this mean. This removes at most
two outlier points per model per evaluation in our runs. Evaluation time series for different seeds are
then interpolated to obtain results on the same 1000 time-steps, which are then averaged across seeds,
per model class.

5 RESULTS AND ANALYSIS

We give a numerical break down of evaluation accuracies for the metrics described above, during and
at the end training, in Table 1: in Table 1a, we report the average of the last 10 evaluation steps for all
models, and in Table 1b, we report the evaluation metrics at the time step where each model obtained
the best evaluation score on FGSM5. In Figures 2a and 2b, we show the evolution of evaluation
accuracies for selected metrics. To more thoroughly evaluate the models compared here, we show
in Figure 2c how the accuracy of our models drops as the number of PGD attack steps increases.
We report the evaluation results for 500 steps of PGD of the model snapshots used for Table 1b in
Table 1c.

Figures 2a and 2b show that adversarially trained models uniformly outperform non-adversarially
trained ones. Especially with weaker attacks, such as IFGSM5 and PGD5, non-adversarially trained
models exhibit some recovery of robustness to attacks after 2–300,000 steps of training, but this is
not stable and decays with further training. We further confirm that even such models which achieve
some robustness against weak adversaries have true adversarial robustness close to 0% when the
adversarial optimization is run for longer. In contrast, the robustness of adversarially trained models is
stable throughout training. We read, in Table 1b, that all models incorporating adversarial training do
slightly worse on the CIFAR-10 test, suffering a drop of roughly 10 points in accuracy, a phenomenon
which was also observed in other work Madry et al. (2017). On PGD20, the smallest gap between
an adversarially trained model and a baseline is 22%. Ensemble2Adv yields an improvement of
7% over a SingleAdv, of 5% over the parameterically equivalent DoubleAdv, and of 29% over the
non-adversarially trained Ensemble2Adv.

In Figure 2c, we see that while the accuracies of the Ensemble2Adv drop more readily as the number
of attack steps increases, they preserve a gap 7 accuracy points over the SingleAdv benchmark. Here,

6

Under review as a conference paper at ICLR 2019

Table 1: Evaluation Results

(a) Average of last 10 evaluation steps

clean
accuracy

IFGSM5
accuracy

PGD5
accuracy

PGD20
accuracy

black box
accuracy

Baseline 0.94 0.34 0.15 0.01 0.27
Ensemble2 0.94 0.59 0.44 0.30 0.22
Ensemble4 0.91 0.50 0.40 0.34 0.26
SingleAdv 0.82 0.55 0.44 0.43 0.80
DoubleAdv 0.83 0.57 0.46 0.44 0.82
Ensemble2Adv 0.85 0.62 0.55 0.52 0.83
Ensemble4Adv 0.87 0.66 0.58 0.53 0.85

(b) Evaluation results for model at best IFGSM5 training step

clean
accuracy

FGSM5
accuracy

PGD5
accuracy

PGD20
accuracy

black box
accuracy

Baseline 0.95 0.57 0.29 0.09 0.26
Ensemble2 0.95 0.65 0.52 0.38 0.22
Ensemble4 0.93 0.60 0.48 0.43 0.24
SingleAdv 0.84 0.57 0.46 0.45 0.81
DoubleAdv 0.85 0.60 0.48 0.47 0.84
Ensemble2Adv 0.87 0.64 0.56 0.52 0.85
Ensemble4Adv 0.88 0.67 0.58 0.52 0.86

(c) Model accuracy after 500 attack steps.

Ensemble
Baseline SingleAdv DoubleAdv -2 -2Adv Separate2Adv

IFGSM 0.16 0.46 0.47 0.13 0.55 0.49
PGD 0.04 0.44 0.47 0.02 0.52 0.47

we also compare to an ensemble, Separate2Adv, where the individual models in the ensemble were
separately adversarially trained. We observe that this ensemble produces a robustness to adversarial
attacks which is closer to the SingleAdv results than to Ensemble2Adv, despite having the exact
same structure and number of parameters. We present the evaluation accuracies after 500 steps of
PGD in Table 1c, which maintains the relative ordering and rough gaps between models seen in
Table 1b, thereby helping validate our results.

6 DISCUSSION

In this section we briefly discuss the possible reasons for the behaviours observed. As we saw, an
ensemble of models trained adversarially outperforms the other setups at test time. We suspect, that
this might be happening due to a mechanism described below.

When the model is being trained, it is exposed to pairs of images, both “clean” and adversarially
modified. The adversarial training exploits the fact that the original image is close to the decision
boundary of the model. The model then, when provided with both clean and adversarial image would
attempt to modify the decision boundary in order to engulf them both. It is relatively easy to imagine
why SingleAdv would be weaker then the other models—it simply has less parameters than the
competition. In order to accommodate the adversarial example it has to compromise the decision
boundary somewhere else, pulling it close to other clean images, making it vulnerable to subsequent
attack. This is illustrated in Figure 3a.

The possible reason why Ensemble2Adv outperforms DoubleAdv is more elusive. Both models
have the same number of parameters, so one could expect them to display a similar performance.
As Ensemble2Adv is more robust to white box attack during test time we argue, that this might be
due to the fact that in abundance of flexibility DoubleAdv tends often to spread out thin “tentacles”

7

Under review as a conference paper at ICLR 2019

Baseline DoubleAdv Ensemble2 Ensemble2Adv SingleAdv

0 100000 200000 300000 400000 500000

training steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6
FG

S
M

5
 a

cc
u
ra

cy

(a) Evaluation scores over training steps, 5 steps of
IFGSM per evaluation.

0 100000 200000 300000 400000 500000

training steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
G

D
2
0
 a

cc
u
ra

cy

(b) Evaluation scores over training steps, 20 steps of
PGD per evaluation.

(c) Accuracy under PGD attack as a function of the number of attack steps.

Figure 2: Evaluation Curves

(a) SingleAdv (b) DoubleAdv (c) Ensemble2Adv (d) Separate2Adv

Figure 3: Different responses of various architectures to adversarial training. Solid lines represent
decision boundary of the models that see only “clean” images. Dashed lines are the boundaries
modified due to the presence of adversarial training. The black dot is a clean image, the red dot is its
adversarial modification. In the presence of two models Model1 is blue and Model2 is green. In case
it needs to be specified with respect to which model the adversarial example is constructed the red
dot has a circle in an appropriate color around it.

(Figure 3b) which do not cover up too much of a space. On the other hand, given that Ensemble2Adv
is comprised of two separate models they are both subject to lesser ability to overfit following from the
smaller number of parameters available in them. Thus we argue, that in most cases the modification
of the model with adversarial training covers the adversarial example by modifying one model more
than the other. This way the decision boundary of the model modified to a lesser degree still “provides
protection” for “clean” images, while at the same time the “tentacle” generated by the model modified
more is thicker than the one DoubleAdv creates. We illustrate that with Figure 3c.

Finally, it was shown that SeparateEnsemble2Adv is outperformed by a Ensemble2Adv trained
“jointly”. We think that this is due to the fact that the adversarial training has to weaken both of the
submodels simultaneously. Figure 3d illustrates that.

For a further illustration of the effects of adversarial training we plotted actual images of the decision
boundaries for non-adversarially and adversarially trained Baseline and 2-Ensemble models (Figure 4).

8

Under review as a conference paper at ICLR 2019

(a) Baseline (b) Baseline (c) SingleAdv (d) Ensemble2

(e) SingleAdv (f) Ensemble2 (g) Ensemble2Adv (h) Ensemble2Adv

Figure 4: Decision boundaries for various architectures/training methods. Each column shows the
decision regions of two models on the same 2-dimensional plane in the space of all images. On every
picture the black dot corresponds to the datapoint—an unaltered (ship) image from the test dataset.
The light rectangle superimposed over the dot represents the bounds of the permitted attack region
within the region. The two red arrows are the two vectors—attack directions on the base image, with
respect to respectively the first and second tested model. The red dots are the images resulting from
the attack. The plane presented is then the (unique) 2-dimensional plane containing those 3 points.
Dark grey is void (outside the slice boundaries), and all other pixels are generated by a forward pass
of the model at those coordinates, with the colour used representing the majority class.

Decision regions of the models are 3072-dimensional sets, so visualizing them itself poses a challenge.
What we present are color-coded values of the models restricted to 2-dimensional planes in the space
of all images, chosen so that the original image and the closest adversarial example (or attempt to
find one) for both models in a pair being compared are co-planar. We observe, amongst other things,
some support for the hypothesis put forward in Figure 3: adversarial training adds “thickness” around
the natural image points, pushing the boundary further away from them, and in doing so, making
adversarial examples harder to find (even within the test set); ensembling makes some classes more
“consistent” within the decision plane, but introduce small “pockets” or “tentacles” of other classes;
and the combinator thereof removes said pockets to create large regions of the correct class around
images. We believe that such an approach of choosing a good plane and plotting the values of models
on it is a more informative way of visualizing phenomena taking place in the universe of robustness
and adversarial examples than more traditional approaches like t-SNE plots (Maaten & Hinton, 2008).

7 CONCLUSIONS AND FURTHER WORK

In this paper, we provide an empirical study of the effect of increasing the number of parameters in a
model trained with adversarial training methods, with regard to its robustness to test-time adversarial
attacks. We showed that while increasing parameters improves robustness, it is better to do so by
ensembling smaller models than by producing one larger model. Through our experiments, we show
that this result is not only due to ensembling alone, or to the implicit robustness of an ensemble of
adversarially trained models, but specifically to due to the adversarial training of an ensemble as
if it were a single model. We proposed a high level interpretation of why this phenomenon might
occur. Further work should seek to determine whether scaling the number of models in the ensemble
while controlling for number of parameters produces significant improvements over the minimal
ensembles studied here in an attempt to draw conclusions about why such architectures are generally
more robust than larger single models, even under adversarial training.

9

Under review as a conference paper at ICLR 2019

REFERENCES

Mahdieh Abbasi and Christian Gagné. Robustness to adversarial examples through an ensemble of
specialists. 2017. URL http://arxiv.org/abs/1702.06856.

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. arXiv preprint arXiv:1801.00553, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. Accessed: 2018-02-03, 2018. URL
https://arxiv.org/abs/1802.00420.

Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial examples.
arXiv preprint arXiv:1607.04311, 2016.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14. ACM, 2017a.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on, pp. 39–57. IEEE, 2017b.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial
images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu. Defense
against adversarial attacks using high-level representation guided denoiser. arXiv preprint
arXiv:1712.02976, 2017.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and Kevin Murphy. Improved image captioning
via policy gradient optimization of spider. arXiv preprint arXiv:1612.00370, 2016.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

10

http://arxiv.org/abs/1702.06856
https://arxiv.org/abs/1802.00420

Under review as a conference paper at ICLR 2019

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
artificial intelligence research, 11:169–198, 1999.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances In Neural Information Processing Systems, pp. 4026–4034, 2016.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277,
2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506–519. ACM, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. arXiv
preprint arXiv:1710.10766, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Andrej Junginger Holger Ulmer Thilo Strauss, Markus Hanselmann. Ensemble methods as a defense
to adversarial perturbations against deep neural networks. 2017. URL https://arxiv.org/
abs/1709.03423.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. In ICLR, 2018.

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial
risk and the dangers of evaluating against weak attacks. In The 35th International Conference on
Machine Learning (ICML), 2018.

David Warde-Farley and Ian Goodfellow. Adversarial perturbations of deep neural networks. Pertur-
bations, Optimization, and Statistics, pp. 311, 2016.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial effects
through randomization. arXiv preprint arXiv:1711.01991, 2017.

Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Rana Bhat, and Xiaolin Li. Adversarial examples:
Attacks and defenses for deep learning. arXiv preprint arXiv:1712.07107, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

11

https://arxiv.org/abs/1709.03423
https://arxiv.org/abs/1709.03423

	Introduction
	Preliminaries
	Adversarially-trained Ensembles
	Experimental Setup
	Models Compared
	Training Procedure
	Evaluation Procedure

	Results and Analysis
	Discussion
	Conclusions and Further Work

