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ABSTRACT

The problem of inferring unobserved values in a partially observed trajectory from
a stochastic process can be considered as a structured prediction problem. Tradi-
tionally inference is conducted using heuristic-based Monte Carlo methods. This
work considers learning heuristics by leveraging a connection between policy op-
timization reinforcement learning and approximate inference. In particular, we
learn proposal distributions used in importance samplers by casting it as a varia-
tional inference problem. We then rewrite the variational lower bound as a policy
optimization problem similar to Weber et al. (2015) allowing us to transfer tech-
niques from reinforcement learning. We apply this technique to a simple stochas-
tic process as a proof-of-concept and show that while it is viable, it will require
more engineering effort to scale inference for rare observations1.

1 INTRODUCTION

Stochastic processes are an important model of sequential data in the natural sciences (Allen, 2010).
Learning to fit theoretical models or sampling new sequential data that is consistent with the ob-
served data is crucial for a deeper mechanistic understanding. Given that data from a stochastic
process is ordered2 in a trajectory, predicting the values of unobserved variables in a partially ob-
served trajectory can be considered as a structured prediction problem.

For example, disease progression during an outbreak can be modeled by considering how the number
of healthy, sick and recovered individuals changes every day (Allen, 2008). Given observations from
an epidemic where we counted individuals towards the end of the outbreak, could we infer how the
disease progressed at the start of the outbreak?

Approximating these distributions directly from data can be difficult and multiple methods based on
heuristics have been proposed. In particular, many techniques use handcrafted Monte Carlo methods
based on importance samplers, Markov Chain Monte Carlo or rejection sampling schemes (Gilks
et al., 1995; Geyer & Thompson, 1995; Jiao et al., 2014; Sharma, 2017; Nelson et al., 2018). The
promise of automatically learning heuristics from raw and complex data is one of the tantalizing
goals of machine learning: It might allow us to use Monte Carlo methods for problems in which
heuristics are not obvious.

Variational inference (VI, Blei et al. (2006; 2017)) is an alternative technique to approximate proba-
bility distributions that has seen increasing success when combined with deep learning (Kingma &
Welling, 2013; Goodfellow et al., 2016; Gulrajani et al., 2016; Miao et al., 2016) in high dimensional

1Code is available at https://github.com/zafarali/better-sampling
2Usually the ordering variable is time.
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datasets. Our work adds to existing techniques that enhance Monte Carlo methods using variational
inference (Wexler & Geiger, 2007; Salimans et al., 2015; Naesseth et al., 2017; Müller et al., 2018).

Specifically, we consider the sampling of trajectories from the posterior distribution of a stochastic
process using importance samplers. We formulate learning of proposal distributions as a VI problem.
We then leverage the connection between VI and policy optimization reinforcement learning (Sutton
et al., 2000; Bachman & Precup, 2015; Weber et al., 2015) to learn these proposal distributions. We
apply reinforced variational inference (RVI, Weber et al. (2015)) to a simplified stochastic process
as a proof-of-concept where we aim to sample trajectories, τ , from a posterior over trajectories,
p(τ |xT ), given a single terminal observation, xT . Our contributions are:

1. Empirical validation of the RVI framework (Weber et al., 2015) suggests that RL is a viable
approach for VI and more advanced tools from policy optimization might carry over to VI.

2. Learning of proposal distributions in sequential importance samplers can result in perfor-
mance that is close to a hand-crafted importance sampler for most observed data. Qualita-
tive evaluation demonstrates the reasonability of proposals found but quantitative evalua-
tion identifies room for improvement.

2 BACKGROUND

In this section we describe technical background information regarding importance sampling, vari-
ational inference and reinforcement learning. These notions will be crucial to derive a variational
approach to importance sampling, trained using policy optimization.

2.1 IMPORTANCE SAMPLING

The expectation of function f under a distribution p(τ |xT ) can be estimated by drawing a large
number of samples or particles, τi ∼ p(τ |xT ) and computing the sample mean: Ep(τ |xT )[f(τ)] =∫
p(τ |xT )f(τ)dτ ≈ 1

N

∑
i

f(τi). In cases where p(τ |xT ) is difficult to sample from or the integral

requires evaluating rare samples, we can rewrite the integral and expectation by drawing instead from
a proposal distribution, τi ∼ q(τ), that is easy to sample from:∫

p(τ |xT )

q(τ)
q(τ)f(τ)dτ = Eq

[
p(τ |xT )

q(τ)
f(τ)

]
≈ 1

N

∑
i

p(τi|xT )

q(τi)
f(τi). (1)

This approach is known as importance sampling. We can think of the importance weight, wi =
p(τ |xT )
q(τ) , as a way to correct for the relative probability of drawing τ according to q(τ) instead of

p(τ |xT ).

Though Equation 1 is valid for any distribution q, the speed and quality of the approximation depends
on q. In general, designing a q(τ) that is better than random is difficult but can be done for some
simple posteriors (See Section S.1.2).

2.2 VARIATIONAL INFERENCE

Variational inference (VI) is an alternate approach to sample from a difficult distribution, p(τ), by
sampling from a learnable approximate distribution q(τ ; θ) instead. The variational parameters θ
are learned such that they minimize a divergence metric like the Kullback-Leibler or χ2 divergence
with the true posterior: q∗(τ) = arg minθD(q(τ ; θ)||p(τ |xT )). This procedure effectively turns the
inference problem into a optimization problem (Blei et al., 2017; Dieng et al., 2017).

2.3 REINFORCEMENT LEARNING AND POLICY GRADIENT METHODS

In reinforcement learning (RL) (Sutton & Barto, 1998), we search for a policy π that dictates how
an agent should interact with the environment in order to maximize the cumulative reward. Policy-
based methods (Sutton et al., 2000) involve parameterizing the policy πθ(a|s) and then directly
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optimizing: OER = Eτ∼πθ [
∑T
t=0 γ

trt] where rt is the reward obtained at time t by executing πθ in
the environment and γ is a discount factor that prioritizes rewards to be sooner rather than later.

The gradient of OER can be approximated using the REINFORCE (Williams, 1992) estimator:

∇θOER(θ) ≈
∑

st,at∼πθ

∇θ log πθ(at|st)Ψt (2)

where Ψt is a target that describes how good the sampled action, at, was on the long term reward.
We use the generalized advantage estimate (GAE) (Schulman et al., 2015b) as the target: Ψt =∑∞
l=0(γλ)lδt+l where δt+l = rt + γV π(st+1)− V π(st) is the temporal difference residual (Sutton

& Barto, 1998) and V π is a parameterized value function that estimates the long term discounted
reward. We also experiment with an entropy regularized version of this algorithm where the entropy
of the policy, H(π), is added to the objective to prevent learned policies from becoming deterministic
too quickly (Schulman et al., 2017a).

3 APPROACH USING REINFORCED VARIATIONAL INFERENCE (RVI)

We begin by casting the problem of learning a proposal distribution as a variational inference prob-
lem in Section 3.1. We then draw the connection with policy optimization in Section 3.2 which
results in a similar formulation to Weber et al. (2015).

3.1 THE VARIATIONAL INFERENCE PROBLEM

Recall that we are interested in sampling from the posterior over trajectories, p(τ |xT ) given a
single terminal observation, xT . We consider Markov processes where the recursive relationship
xt = xt−1 + ∆xt holds between random variables. Only a fixed number of transitions, ∆xt, are
possible and we model this as a discrete random variable with probability distribution p(∆x|xt−1).
The probability of observing a trajectory from the stochastic process τ = (x0, . . . , xT ) can be de-
composed as a product of the transitions: p(τ) = p(x0)

∏T−1
t=0 p(∆xt|xt−1).

Recall that variational inference introduces a simpler approximating posterior. Let q( ~τ |xT ) be the
approximate posterior over trajectories that can be written as a product of local parameterized con-
ditionals called proposals: q( ~τ |xT ) =

∏T−1
t=0 qθ(∆xt|xt+1).

Since we are given the ground-truth terminal observation, xT , the trajectory is created by going
backwards in time starting the sampling from qθ(∆xT−1|xT ), computing the next state xT−1 and
repeatedly sampling from qθ(∆xt−1|xt) until reaching t = 0. We can construct the trajectory by
using xt = xt+1 − ∆xt where ∆xt is one of the outcomes possible under the forward transition
probabilities. The KLD cannot be minimized exactly, and instead we maximize the evidence lower
bound (Blei et al., 2017):

DKL(q( ~τ |xT )||p(τ |xT )) ≤ −
[
Eq[log p(τ)]− Eq[log q( ~τ |xT )]

]︸ ︷︷ ︸
Evidence lower bound (ELBO)

(3)

In the next section, we will see how to transform the maximization of the ELBO into a policy
optimization problem and draw the connection with rewards in reinforcement learning.

3.2 THE CONNECTION TO POLICY OPTIMIZATION

To demonstrate the link with RL, we substitute the full forms of the variational distribution, q( ~τ |xT )
and trajectory probability, p(τ) into the ELBO (Equation 3):

Eqθ
[

log
p(τ)

q( ~τ |xT )

]
= Eqθ

[
log

p(x0)
∏T−1
t p(∆xt|xt)∏T−1

t qθ(∆xt|xt+1)

]
(4)

= Eqθ

[
log p(x0) +

T−1∑
t=0

log
p(∆xt|xt)

qθ(∆xt|xt+1)

]
(5)

By comparing with REINFORCE (Equation 2), Weber et al. (2015) view this as a RL problem
where at state xt+1 the policy q takes an action ∆xt in an environment and receives a reward
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rt = log p(∆xt|xt)
qθ(∆xt|xt+1) and moves to state xt. In the final step, we also obtain rf = log p(x0) as

a reward. The reward has an appealing interpretation: It is the relative log likelihood of execut-
ing the action ∆xt in the stochastic process versus that of the policy. It encourages the policy to
choose actions that would be likely under the generative stochastic process. We write Equation 5
as Eqθ [

∑
t rt + rf ], to show the equivalence to the RL objective with no discounting3, i.e. γ = 1.

Equation 5 suggests that we can use off-the-shelf reinforcement learning algorithms to optimize the
parameters of the proposal distribution q(τ) by learning the one step proposal qθ(∆xt|xt+1) as the
policy.

An algorithm to obtain a trajectory from proposal and subsequently update it would proceed in three
phases:

1. Collect a trajectory: Sample ∆xt ∼ qθ(∆t|xt) and update the state xt−1 = xt − ∆xt.
Now xt−1 is used to obtain the next sample and is repeated until t = 0.

2. Update the proposal: For each ∆xt that is obtained, rewards are calculated as rt =

max(Rmin, log p(∆xt|xt)
qθ(∆xt|xt+1) ) and rf = log p(x0) and used to compute the empirical re-

turn4. The gradient is then estimated using REINFORCE and a GAE target and used to
update the parameters via stochastic optimization.

3. Update the posterior: If the final position x0 is valid under the prior, i.e. p(x0) > 0, then
the trajectory is saved with the weight wi = p(x0)

∏
t

p(∆xt|xt)
qθ(∆xt|xt+1) .

3.3 USING THE χ2 DIVERGENCE

In this section, we will motivate the χ2 divergence as alternative to the KLD. We then demonstrate
the flexibility of the RVI framework by extending it to minimize this divergence and making a
connection to sparse reward reinforcement learning.

Assume that we want to estimate the likelihood of an observation xT , which requires taking an
intractable integral over all possible paths: p(xT ) =

∫
p(xT , τ)dτ . We can use importance sampling

with a parameterized proposal distribution qθ(τ) so that we can estimate p(xT ) with fewer samples
and lower variance. Specifically,

p(xT ) =

∫
p(τ, xT )dτ ≈ 1

N

N−1∑
n=0

w(τ) = p̂(xT ) (6)

where τ ∼ qθ(·) and wτ = p(xT ,τ)
qθ(τ) are the importance weights. Burda et al. (2015) used such

an importance sampling estimate of the log-likelihood to improve variational autoencoders. One
property we might desire from the importance sampling proposal is that it minimizes the variance
of p̂(xT ):

V (p̂(xT )) =
1

N

{
Eq[w(τ)2]− Eq[w(τ)]2

}
(7)

=
1

N

{
Eq

[(
p(τ)

q(τ)

)2
]
− p̂(xt)2

}
(8)

which corresponds to minimizing the χ2-divergence: Dχ2(p(τ)||q(τ)) = Eqθ
[(

p(τ)
q(τ)

)2

− 1
]
.

In Dieng et al. (2017), the likelihood ratio estimate for the gradient is derived for the exponentiated
“χ2 Upper Bound” or CUBO, 1

2 logEq[
(p(τ)
q(τ)

)2
], which is an upper bound on Dχ2(p(τ)||q(τ)):

∇θ exp

(
2

1

2
logEq

[(
p(τ)

q(τ)

)2])
≈ − 1

N

∑
n

(
p(τ (n))

q(τ (n))

)2

∇θ log q(τ (n)) (9)

3In practice we still use discounting close to 1 for optimization stability.
4Rmin is used here to avoid issues where we might have −∞ rewards.
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Unlike the KLD, the χ2-divergence cannot be broken down into a summation. Instead, we can

treat −
(
p(τ)
q(τ)

)2

as a sparse reward that only appears at the end of a trajectory. Since we still build
trajectories by sampling from the local conditionals qθ(∆xt|xt+1), we can never assign credit to any
particular action. Sparse reward problems are generally quite difficult as there are no intermediate
signals to guide learning (Ng et al., 1999). Our work will only evaluate the feasibility of replacing
the KLD with the χ2 and we will leave investigation of densification to future work.

4 RELATED WORK

Many efforts have been made to combine variational optimization and Monte Carlo methods. We
cover a few approaches here and, where relevant, describe connections and deviations with existing
literature. See Appendix S.2 for a wider discussion on the connections between policy optimization,
variational inference and importance sampling.

We note that the formulation provided here was also provided in Weber et al. (2015) for more
generic stochastic computation graphs. Our work grounds this framework in a concrete approximate
inference problem.

Grover et al. (2018) used rejection sampling to minimize the KL divergence using a resampled
ELBO: Proposed samples are rejected if they have a low likelihood under the model resulting in a
resampled proposal distribution. This is particularly similar to our work as their accept-reject step
is differentiable which means it can be adapted over time.

The most similar to our work is Gu et al. (2015) and Naesseth et al. (2017) who learned proposal
distributions in the sequential Monte Carlo setting. Our work deviates in one crucial way: we learn
discrete transitions between states in the sequence. This allows some increased flexibility at the cost
of being potentially high variance due to the gradient estimator. Indeed Naesseth et al. (2017) use
the reparameterization technique (Kingma & Welling, 2013) that provides a low variance gradient
estimator for continuous distributions5. In particular, Naesseth et al. (2017) derive a differentiable
filtering algorithm that combines variational optimization and an expectation-maximization algo-
rithm to automatically learn both the proposal and forward model.

Recently Müller et al. (2018) used variational inference by optimizing for proposals represented
by normalizing flows (Rezende & Mohamed, 2015) to learn sampling distributions for constructing
light paths. Like this work, the authors optimize the χ2 divergence and obtained similar qualitative
results.

Markov Chain Monte Carlo (MCMC) methods are another family of techniques to approximate
probability distributions. Salimans et al. (2015) used variational optimization to learn the transition
operator of the Markov chain that is used in MCMC algorithms. Though this kind of algorithm
can be extended to the sequential setting it would require sampling many times from the Markov
Chain. Our work avoids the use of a transition operator for the Markov chain by directly requiring
the proposal distribution to produce a valid transition within the stochastic process itself.

5 RESULTS

In this section we will describe some quantitative and qualitative empirical results that show the
viability of the problem formulation and approach using RVI. We will also highlight failure modes
of the method.

5.1 EXPERIMENTAL SETUP

Environments: We consider stochastic processes based on random walks as environments (Sec-
tion S.1). They are chosen specifically to demonstrate the usefulness of the technique and not be-
cause they are particularly complex. Random walks form the basis for more complex processes.

5While reparameterization techniques exist for discrete distributions, they are not differentiable without
making a continuous relaxation (Jang et al., 2016; Maddison et al., 2016).
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Figure 1: KL divergence (KLpq) between the approximate and true posterior for different samplers
organized by the starting distance from the origin, xT ∈ {0, 12, 24, 36, 48}, after 250,000 samples. As the
distance increases, methods like naive Monte Carlo (MC) begin to fail. Using RVI-KLD can learn to perform
as well as the hand crafted importance sampler when the xT is close to the window and where MC cannot
perform at all. RVI begins to fail for more extreme cases, xT ∈ {36, 48}.

Specifically, we use the simple 1D random walk whose initial point is described by a discrete uni-
form distribution with a window (-5, 5) and evolves by taking a step +1 or -1 with equal probability
for T = 50 timesteps (See complete details in Section S.1.1). We control the ending point, xT , to
modulate the difficulty of the posterior estimation problem, i.e. as xT → 50 the observation becomes
rarer and the posterior over starting positions becomes skewed towards values near the edges of the
window. The proposal, qθ, is a categorical distribution over possible transitions, ∆xt.

Quantitative Evaluations: To measure the online performance of importance samplers, we report
the KL Divergence between the approximated and true posterior6 over starting positions (KLpq).
Note that the KLpq is only one downstream metric of interest and presents some limitations. To
avoid overfitting to one metric, we also consider qualitative behaviours to better understand the
different components of the learned proposals and the posteriors.

Qualitative Evaluations: To understand the adaptive behaviour of the proposal, we observe how
trajectories sampled from the proposal change during the optimization procedure. We investigate
the reasonability of proposal learned by visualizing the expected direction a particle will move at
any point xt at any time t. Finally, we use a histogram to compare the approximated posterior over
starting positions to the true posterior to understand the sensitivity in KLpq.

Baselines: We consider two baselines: (1) Naive Monte Carlo (MC) where the transition probability
p(xt|xt−1) is used as the proposal q(xt−1|xt); and (2) Hand-crafted importance sampler with a soft
proposal (ISSoft) where the backward probability is biased toward the window depending on the
average number of steps needed to be within the range of the window7.

5.2 QUANTITATIVE PERFORMANCE

We first investigate the viability of learning proposals online that are specific to each ending obser-
vation. Unsurprisingly, ISSoft performs well for all ending observations and is therefore a simple
but strong baseline to beat. After sampling and training with 250,000 trajectories RVI-KL performs
as well as ISSoft for observations that are close to the window xT ∈ {0, 12}. For observations that
are far away from the window, xT ∈ {24, 36}, RVI-KL performs better than the random MC method
but not as good as the hand-crafted ISSoft (Figure 1).

5.3 QUALITATIVE ANALYSIS

In this section we take a look at qualitative aspects of learning proposals as well as final posteriors
learned. To understand if the posterior samples better trajectories after successive steps of opti-
mization, we measure the proportion of trajectories that end within the window during optimization.
Compared to the start of the optimization, a larger number of trajectories sampled from the proposal
end within the window (Figure S1).

6For the random walk, the posterior over starting positions can be derived exactly. See Section 18.
7The probabilities are given by Equation 20. See Section S.1.1 for a complete definition.
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(a) End Point = 0
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(b) End Point = 24
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Figure 2: Approximated posterior distribution over starting states when using KLD rewards.
There is a high degree of matching between the approximated (blue bars) and true distributions (red
dots). For xT = 48, many posteriors do not estimate the low probability values in the support
well which explains the high KLpq. Note that even values have zero probability of occurring since
starting between (-5, 5) and continuing for 50 steps cannot result in an even number.
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(b) RVI xT = 0.
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(c) RVI xT = 12.
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(d) RVI xT = 36.
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(e) RVI xT = 48.

Figure 3: A variety of proposals are learned conditioned on the ending observation, xT . (a) The hand-
crafted proposal. (b-e) The learned proposals after 250,000 trajectories. When the observation, xT , is far from
the window of starting positions, the proposal learned is skewed to push trajectories toward the window. Arrows
show the expected step at any given x and t combination.

To understand the poor quantitative performance (Figure 1), we visualize the posterior over start-
ing positions, p(x0|xT ), obtained by RVI-KL (Figure 2) compared to the true analytics posterior.
For ending points that are close to the window, the posterior recovered is near-perfect for both 1D
(Figure 2a and 2b) and 2D random walks (Figure S2). Even though we were unable to record quan-
titative performance for xT = 48 (Figure 1), the posteriors found captured the general shape, and
only missed the low probability mass values of x0 (Figure 2c).

Visualizing the proposal reveals sufficient specialization for each ending observation (Figure 3). Par-
ticularly interesting is the progressively skewed proposals obtained when the ending point changes
from xT = 0 to xT = 36. Indeed the proposal learned when xT = 48 is not completely unreason-
able as it prevents the particle from moving into the region where xi < 0.

end point, xT
method 0 12 24 36 48

ISSoft 0.000033 0.000039 0.000058 0.000068 0.000036

RVI-KL+pre+eval 0.000034† 0.000055 0.000055† 0.000207 NaN
RVI-KL+pre+fine 0.000034† 0.000108 0.003550 NaN NaN

RVI-KL 0.000030† 0.000118 0.000720 0.005527 NaN
RVI-KL+ent 0.000031† 0.000093 0.000661 0.056438 NaN
RVI-C2 0.004475 0.011863 0.026869 0.002469 0.000806

Table 1: Mean performance for different objectives and training schemes after 100,000 trajec-
tories Bold font represents best performing methods in each category. † represents better-than or on
par with ISSoft as measured by overlap in the errors. See full table with standard errors in Table 2.
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5.4 AN ALTERNATE OBJECTIVE FUNCTION

In this section, we devise an experiment to probe whether we are using the right objective function.
In particular, we pre-train a proposal by using the algorithm outlined in Section 3.2 and chang-
ing the ending observation, xT , after each trajectory (Figure S3a)8. Evaluation of the pre-trained
proposal by measuring KLpq after 100,000 trajectories reveals that it performs on-par with ISSoft
and better than training from scratch: The model is of sufficient representational capacity and the
pre-training scheme can produce a proposal that generalizes well to different end points (Table 1,
RVI-KL+pre+eval). Next, we repeat the experiment but this time allowing the proposal to be fine-
tuned (Figure S3b and S3c). Surprisingly, performance becomes worse compared to no fine-tuning
at all: Even though the initialization is good, the training scheme resulted in worse performance.
One possible reason could be the use of the wrong objective function (Table 1, RVI-KL+pre+fine).

In Section 3.3 we showed how minimizing the χ2 divergence is equivalent to minimizing the vari-
ance of the estimator of the log-likeihood. Furthermore, we showed how it could be used in the RVI
framework. We find that this technique does not perform well (Table 1, RVI-C2) compared to using
KLD (Table 1, RVI-KL). Despite not having good quantitative performance, the correct shape of the
approximate posterior has been captured (Figure S4).

6 DISCUSSION AND FUTURE WORK

Our experiments have shown that policy optimization can be a viable approach to learn interesting
proposals that, in some instances, performs on par with hand-crafted ones. This result shows us
the viability of two things: (1) Framing sequential variational inference problems as policy opti-
mization problems; (2) Learning proposals that can approximate posteriors for stochastic processes.
These observations are encouraging and suggest that more advanced techniques from policy opti-
mization, like generalized advantage estimation (Schulman et al., 2015b) or asynchronous advantage
actor critic (Mnih et al., 2016), can be brought to variational inference9. Therefore, RVI can learn
proposals for simple stochastic processes. Despite the approach being easily extended to different
stochastic processes given the forward dynamics, it might require significant future work to be able
to learn posterior distributions for more advanced stochastic processes.

We identify at least two areas for improvement. In particular, poor results on rare instances of xT
that are far from the window highlights the need for better data sampling strategies10. Secondly, it
is somewhat paradoxical that RVI cannot learn to improve upon pre-trained proposals: The local
optimum obtained by training on the distribution of ending points, i.e. pre-trained, is worse than
if we trained from scratch or specialized the pre-trained distribution. This means that the KLD
objective function being optimized is not reflective of the kind of downstream tasks we want to
evaluate the model on. One way to check this would be to directly optimize for the downstream
metric and verify the quality of the KLD objective and will be left for future work. The latter part
of this work considered alternative objectives such as the χ2 divergence, but is inconclusive as to its
merits.

One possible solution to make transfer more feasible is to impose a penalty that ensures that propos-
als do not deviate from the pre-trained proposal unless there is a significant benefit and is a known
approach in policy optimization (Schulman et al., 2015a). Perhaps the gradients are too noisy to find
a better optimum and a better multi-sample gradient estimator (Mnih & Rezende, 2016) or variance
reduction techniques should be used.

In this work we have investigated and empirically validated that we can leverage connections be-
tween policy optimization and variational inference to learn proposals in importance sampling. Our
results are encouraging but also highlight the amount of engineering needed to get these methods to
work for more difficult problems.

8Full details in Section S.3.1.
9We observed progressively improved optimization by using more sophisticated targets, Φt.

10Commonly referred to as exploration in reinforcement learning.
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Figure S1: Evidence for adapting proposals (a) The proportion of trajectories that ended in the
window increases as optimization progresses; (b) Example trajectories sampled during the opti-
mization end within the window (dashed lines). Dark colors represent trajectories sampled during
the first 100 optimization steps. Light colors represent trajectories sampled during the last 100 opti-
mization steps.
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Figure S2: Exact and approximated posteriors over starting locations for the two dimensional
random walk given the ending observation point is xT = {4,−2}. The agreement is near-perfect.

S SUPPLEMENTARY MATERIAL

S.1 RANDOM WALK

The random walk is a simple stochastic process (Pearson, 1905) where the sequential dependence
between two variables, Xt and Xt+1, in a random walk is described by:

Xt+1 = Xt + ∆X (10)
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(b) Fine-tuned, xT = 12.
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Figure S3: Proposals obtained by pre-training and then fine-tuning. (a) Proposal obtained by
training with multiple xT ; (b-c) Specialization of the pretrained proposal based on the last observa-
tion.
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Figure S4: Approximated posterior distribution over starting states when using C2 rewards.
There is a degree of mismatch between the true posterior (red dots) and the approximated posterior
(blue bars), however, the overall shape has been captured.

where the transition, ∆X , is drawn according to the following probability distribution:

P (∆X|Xt) =

{
p if ∆X = +1

1− p if ∆X = −1
(11)

The first random variable is drawn from a discrete uniform prior, P (X0 = x) = 1
|X | ∀x ∈ X ,

where |X | is the size of the support. Though this may seem like a trivial process, it has widespread
use in financial mathematics, modelling animal movement, infectious diseases, biophysics and even
computer science.

S.1.1 DERIVING THE ANALYTIC POSTERIOR FOR THE RANDOM WALK

Though sampling from the posterior over trajectories, p(τ |xT ), can be difficult for arbitrary stochas-
tic processes, in the case of the simple random walk described in Section S.1, the posterior over
starting states, p(x0|xT ), can be calculated exactly. We use this result to compute a downstream
measure for the performance of the approximate distribution obtained by different methods consid-
ered in the experimental section.

For the purposes of clarity, we will override notation for this section: Let St = ∆Xt as defined
in Equation 11; X0 the random variable describing the starting position; and D = XT the random
variable describing the final position.

Our goal is to derive the posterior over starting states, p(X0 | D). Using Bayes Rule:

pX0|D(X0 | D) =
pD|X0

(D | X0)pX0(X0)

pD(D)
(12)

Therefore, we can first derive pD|X0
(D|X0) and then apply Bayes rule to obtain the desired posterior

distribution.

end point, xT
method 0 12 24 36 48

ISSoft 0.000033± 0.000004 0.000039± 0.000005 0.000058± 0.000009 0.000068± 0.000008 0.000036± 0.000008

RVI-KL+pre+eval 0.000034± 0.000005 0.000055± 0.000009 0.000055± 0.000018 0.000207± 0.000078 NaN
RVI-KL+pre+fine 0.000034± 0.000007 0.000108± 0.000034 0.003550± 0.003092 NaN NaN

RVI-KL 0.000030± 0.000007 0.000118± 0.000035 0.000720± 0.000224 0.005527± 0.002945 NaN
RVI-KL+ent 0.000031± 0.000006 0.000093± 0.000031 0.000661± 0.000200 0.056438±NaN NaN
RVI-C2 0.004475± 0.001486 0.011863± 0.004135 0.026869± 0.010958 0.002469± 0.001587 0.000806± 0.000311

Table 2: Mean performance and standard error for different training schemes after 100,000
trajectories
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Since we are taking steps of size +1 or -1, the random variable describing our step, St, is a shifted
Bernoulli, i.e. St = 2Xt − 1 where Xt ∼ Bern(p). Explicitly, St has the following distribution:

pSt(St = s) = pXt

(
Xt =

s+ 1

2

)
=

{
p if s+1

0 = 1

1− p if s+1
2 = 0

(13)

If the walk is of length T , the distribution of the total displacement due to the steps taken, ST =∑T
i=1 St, is given by:

pST (ST = s) = pST

( T∑
i=1

St = s

)

= pST

( T∑
i=1

(2Xt − 1) = s

)

= pST

( T∑
i=1

Xt =
s+ T

2

)
(14)

We know that
∑T
i=1Xt is distributed according to the Bernoulli distribution. Therefore:

pST (ST = s) = pST

( T∑
i=1

Xt =
s+ T

2

)
=

(
T
s+T

2

)
p
s+T

2 (1− p)T−
s+T

2 if
s+ T

2
∈ [0, T ] (15)

We now have all the terms necessary to compute the numerator of Equation 12. We first con-
sider pX0

(X0). Since it is drawn uniformly within a window between −c and +c, i.e. X0 ∼
DiscreteUniform(−c, c), the probability mass function is given by

pX0
(x) =

{
1

2c+ 1
x ∈ [−c, c]; 0 otherwise

}
(16)

Next, we focus on pD|X0
(D |X0). Note that the total distance moved is D = X0 + ST . Therefore,

we can write:

pD|X0
(D = d | X0 = x) ∝ pD|X0

(X0 + ST = d | X0 = x)

= pST |X0
(ST = d− x | X0 = x)

= pST (ST = d− x) (17)

We then have that PX0|D(d, x) ∝ PST (d− x)PX0
(x). This lets us write the posterior as:

PX0|D(X0 = x|D = d) ∝ 1

2c+ 1

(
T

d−x+T
2

)
p
d−x+T

2 (1− p)T−
d−x+T

2 (18)

if x ∈ [−c, c] and
⌊
d−x+T

2

⌋
∈ [0, T ] and 0 otherwise.

(
a
b

)
= a!

(a−b)!b! is the binomial coefficient.

S.1.2 THE DIFFICULTY OF DESIGNING GOOD PROPOSALS

Consider the simple example of sampling trajectories from the posterior of the random walk intro-
duced in Section S.1. Since the random walk is unbiased11, we could use a Naive MC method:
construct a trajectory backward, ~τ 12, by considering a new walk starting from xT . Specifically, we
sample xt according to q(xt|xt+1) = p(xt+1|xt).

The process described works remarkably well but poses a problem when xT has drifted far from the
window of possible starting positions. Sampling backward according to the forward probabilities
will likely result in the final sampled position, x̂0, being close to xT 13.

11Behaviour is the same whether it is run forward or backward.
12We use ~τ to refer to trajectories sampled backward such that xt+1 was drawn before xt. Similarly, ~τ

denotes trajectories that were sampled forward, such that xt was drawn before xt+1.
13Since the walk is unbiased, it is not expected to deviate far from where it started.
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To combat this, we can use an importance sampling scheme to sample from a q that is different from
p, but ensures that we obtain trajectories that are biased towards the window. This will result in x0’s
that are more likely under the prior and therefore a better estimate of the posterior. The question
now becomes How would we design a proposal q?

For the problem of the random walk, designing a q that is better than random is easy: Given that we
know particles started in a window defined between −c and c, we can design a proposal that pushes
xt toward the window. We first calculate a bias term, b, which measures, on average, how many
steps are needed to move toward the window at any given time t during the walk. We use a softness
coefficient, s, to define how strong the bias should be:

b =


(l−xt)s
(T−t) if xt < l

(r−xt)s
(T−t) if xt > r

0 otherwise

(19)

where T is the total length of the walk. If the particle at time t, xt, drifts too far from the window, i.e.
the average number of steps needed is larger than the step size , |b| > 1, it is not possible to return
to a position where the window is in reach within a reasonable time frame and a random action is
executed instead. Otherwise, with probability p = 1 − |b| we take a random step and probability
1− (1− |b|) a step in the bias direction. Specifically, the probability of each action is:

q(∆X|xt) =

{p
2 + (1− p)1(b > 0) for ∆X = −1
p
2 + (1− p)1(b < 0) for ∆X = +1

(20)

where 1 is the indicator function: It is 1 when the argument is true and 0 otherwise.

S.2 CONNECTIONS BETWEEN IMPORTANCE SAMPLING, VARIATIONAL INFERENCE AND
POLICY OPTIMIZATION

IMPLICATIONS FOR IMPORTANCE SAMPLING

In this work we have viewed sequential importance sampling as a variational inference problem.
We demonstrated the flexibility of the approach in learning proposals to situations where they are
not obvious. The implication of this result is encouraging: Applying importance sampling to non-
traditional problems where proposals are not obvious. Given that VI works well with high dimen-
sional real world sequential data (Bachman & Precup, 2015; Goyal et al., 2017; Müller et al., 2018)
we conjecture that it can be used to learn complex proposal distributions in domains beyond vision
and text.

Given that the sequential KLD breaks down into sums of rewards, we leveraged the fact that we
did not need to optimize the joint probability of the whole trajectory: The transition at every step
could be weighted by the action probability similar to the per-decision importance sampler in Precup
(2000).

IMPLICATIONS FOR VARIATIONAL INFERENCE

Our work has shown the viability of using policy optimization algorithms for sequential variational
inference problems. This suggests that state-of-the-art methods from reinforcement learning can be
brought into variational inference (Kakade, 2002; Schulman et al., 2015a; 2017b) for learning ap-
proximating distributions. For example, we transferred the concept of “λ-return” using generalized
advantage estimation to sequential VI (Schulman et al., 2015b).

Beyond the obvious scheme of transferring methods, we can also consider more subtle concepts
from reinforcement learning. For example, we can consider the KLD terms in the RVI framework
as a generalized value function and combine these with auxiliary tasks (Sutton et al., 2011) that can
stabilize learning. Concepts like eligibility traces for credit assignment might be able to allow us to
use a more diverse set of reward specifications (Singh & Sutton, 1996).

IMPLICATIONS FOR REINFORCEMENT LEARNING

Though we have explored probabilistic inference as reinforcement learning, there has been a re-
newed interest in viewing reinforcement learning as probabilistic inference (Levine, 2018). All
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these connections are under-explored and will be the subject of new research in the next few years.
The KLD makes an appearance in a variety of policy optimization algorithms to regularize policy
improvement steps. Perhaps some work should be put into exploring different divergences. For
example, Neumann (2011) uses the reverse KLD to obtain policies with more cautious behaviour.

More directly related to this work is the concept of learning a backward model and was successfully
introduced as recall traces in Goyal et al. (2019). Most recently, Piche et al. (2019) have successfully
used a (learned) sequential Monte Carlo algorithm to learn promising future trajectories to plan in
continuous control reinforcement learning problems. Significant research will surface in the next
few years from exploring this connection more closely.

Policy optimization is a special case of gradient descent on an importance sampled loss function
(Jie & Abbeel, 2010): When estimating importance sampled objectives, we could re-use trajectories
collected at any time before a given update to estimate a gradient. Mnih & Rezende (2016) shows
an approach to multi-sample REINFORCE-like objectives that may be useful in policy optimization
when using multiple samples. The idea further generalizes by thinking of off-policy learning where
we have a target policy, π, that we wish to learn and a behaviour policy µ from which data is
collected. The forward model serves the same purpose as µ and the proposal of π. Revisiting these
notions of off-policy policy optimization by using tools from variational inference is a promising
direction (Fellows et al., 2018).

S.3 IMPLEMENTATION DETAILS

We represent policy and value functions using two independent three-layer neural networks with
RELU non-linearities (Glorot et al., 2011) implemented in PyTorch (Paszke et al., 2017). Each layer
has 32 hidden units. We use the RMSProp update rule during optimization (Tieleman & Hinton,
2012). We make our code open source at https://github.com/zafarali/better-sampling.

S.3.1 FINE-TUNING EXPERIMENT

To pre-train the proposal distribution we train q on a range of final positions, xT , obtained by sam-
pling an initial point, x0 ∼ p(x0), and doing a rollout. This allows q to be trained from the natural
distribution of ending points.

To fine-tune the model, we take the pre-trained model from above and continue training with xT
held fixed to the end point of interest.
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