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ABSTRACT

We present a hierarchical planning and control framework that enables an agent
to perform various tasks and adapt to a new task flexibly. Rather than learning an
individual policy for each particular task, the proposed framework, DISH, distills
a hierarchical policy from a set of tasks by self-supervision and reinforcement
learning. The framework is based on the idea of latent variable models that
represent high-dimensional observations using low-dimensional latent variables.
The resulting policy consists of two levels of hierarchy: (i) a planning module that
reasons a sequence of latent intentions that would lead to optimistic future and
(ii) a feedback control policy, shared across the tasks, that executes the inferred
intention. Because the reasoning is performed in low-dimensional latent space,
the learned policy can immediately be used to solve or adapt to new tasks without
additional training. We demonstrate the proposed framework can learn compact
representations (3- and 1-dimensional latent states and commands for a humanoid
with 197- and 36-dimensional state features and actions) while solving a small
number of imitation tasks, and the resulting policy is directly applicable to other
types of tasks, i.e., navigation in cluttered environments. The supplementary video
is available at: https://bit.ly/2rwIfQn

1 INTRODUCTION

Reinforcement learning (RL) aims to compute the optimal control policy while an agent interacts
with the environment. Recent advances in deep learning enable RL frameworks to utilize deep
neural networks to efficiently represent and learn a policy having a flexible and expressive structure.
As a result, we’ve been witnessing RL agents that already achieved or even exceeded human-level
performances in particular tasks (Mnih et al., 2015; Silver et al., 2017). The core of intelligence,
however, is not just to learn a policy for a particular problem instance, but to solve various multiple
tasks or immediately adapt to a new task. Given that a huge computational burden makes it unrealistic
to learn an individual policy for each task, an agent should be able to reason about its action. If
predictions about consequences of actions are available, e.g., by using an internal model (Ha &
Schmidhuber, 2018; Kaiser et al., 2019), an intelligent agent can plan a sequence of its actions.
Involving planning procedures in a control policy could provide adaptiveness to an agent, but it is
often not trivial to learn such a prediction & planning framework: First, it is difficult to obtain the
exact internal dynamic model directly represented in high-dimensional state (observation) space.
Model errors inevitably become larger in the high-dimensional space and are accumulated along
the prediction/planning horizon. This prohibits planning methods from producing a valid prediction
and so a sensible plan. Second, and perhaps more importantly, planning methods cannot help but
relying on some dynamic programming or search procedures, which quickly become intractable for
problems with high degrees of freedom (DOFs) because the size of search space grows exponentially
with DOFs, i.e., the curse of dimensionality (LaValle, 2006).

Crucial evidence found in the cognitive science field is that there exists a certain type of hierarchical
structure in the humans’ motor control scheme addressing the aforementioned fundamental diffi-
culty (Todorov & Ghahramani, 2003; Todorov, 2004). Such a hierarchical structure is known to
utilize two levels of parallel control loops, operating in different time scales; in a coarser scale, the
high-level loop generates task-relevant commands for the agent to perform a given task, and then
in a finer time scale, the low-level loop maps those commands into control signals while actively
reacting to disturbances that the high-level loop could not consider (e.g., the spinal cord) (Todorov
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& Ghahramani, 2003). Because the low-level loop does not passively generate control signals from
high-level commands, the high-level loop is able to focus only on the task-relevant aspects of the envi-
ronment dynamics that can be represented in a low-dimensional form. Consequently, this hierarchical
structure allows us for efficiently predicting and planning the future states to compute the commands.
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Figure 1: The DISH framework.

Motivated by this evidence, we propose a frame-
work, termed "DISH", that DIStills a Hierar-
chical structure for reasoning and control. As
depicted in Fig. 1, the proposed framework has
two levels of hierarchy. The high-level loop
represents an agent’s current state as a low-
dimensional latent state and generates/reasons
task-relevant high-level commands by predict-
ing and planning the future in the latent space.
The low-level loop receives the high-level com-
mands as well as the current states and maps
them into the high-dimensional control sig-
nal. Two different types of learning are re-
quired to build such a framework: (i) a low-
dimensional latent representation for an internal
model should be obtained from agent’s own ex-
periences via self-supervised learning; (ii) a con-
trol policy should be learned while interacting
with the environment via reinforcement learning.
We combined these two learning problems by transforming a multitask RL problem into generative
model learning using the control-inference duality (Levine, 2018; Todorov, 2008; Rawlik et al., 2012).
In this perspective, an agent equipped with a low-level control policy is viewed as a generative model
that outputs trajectories according to high-level commands. Reasoning the high-level commands is
then considered as a posterior inference problem; we introduce a low-dimensional internal model to
make this inference tractable. We demonstrate that the proposed framework can learn the compact
representation (3-dimensional latent states for a humanoid robot having 90-dimensional states) and the
control policy while solving a small number of imitation tasks, and the learned planning and control
scheme is immediately applicable to new tasks, e.g., navigation through a cluttered environment.

2 RELATED WORK

Hierarchical RL: To apply task-specific policies learned from individual RL problems to various
tasks, hierarchical structures are often considered where each learned policy serves as a low-level
controlller, i.e., as a "skill", and a high-level controller selects which skills to perform in the context
the agent lies at (Peng et al., 2018; 2019; Merel et al., 2019a; Lee et al., 2019). Peng et al. (2018; 2019)
trained robust control policies for imitating a broad range of example motion clips and integrated
multiple skills into a composite policy capable of executing various tasks. Merel et al. (2019a)
similarly trained many imitation policies and utilized them as individual skills that a high-level
controller chooses based on the visual inputs. Lee et al. (2019) included transition policies which help
the agent smoothly switch between the skills. Another line of approaches is using continuous-valued
latent variables to represent skills (Co-Reyes et al., 2018; Gupta et al., 2018; Eysenbach et al., 2019;
Florensa et al., 2017; Hausman et al., 2018). Co-Reyes et al. (2018) proposed an autoencoder-like
framework where an encoder compresses trajectories into latent variables, a state decoder reconstructs
trajectories, and a policy decoder provides a control policy to follow the reconstructed trajectory.
Gupta et al. (2018); Eysenbach et al. (2019); Florensa et al. (2017) also introduced latent variables to
efficiently represent various policies. Instead of using one static latent variable, Merel et al. (2019b)
proposed a framework that encodes expert’s demonstrations as latent trajectories and infers a latent
trajectory from an unseen skill for one-shot imitation. Haarnoja et al. (2018a) proposed a hierarchical
structure for RL problems where marginalization of low-level actions provides a new system for
high-level action. In their framework, policies at all levels can be learned with different reward
functions such that a high-level policy becomes easier to be optimized from the marginalization.

Note that the above hierarchical RL approaches train the high-level policy by solving another
RL problem; because the individual skill or the latent variables compress dynamics of the agent,
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variations of them provide efficient exploration for the high-level RL. Our framework also considers
low-dimensional and continuous latent trajectories to represent various policies. Rather than learning
a high-level policy, however, our framework learns an internal model with which the high-level
module performs reasoning; the agent can efficiently reason its high-level commands by searching the
low-dimensional latent space with the learned internal model. The learned planning/control structure
is then directly applicable to new sets of tasks the agent hasn’t met during training. Only a few recent
works (Hafner et al., 2019; Sharma et al., 2019) incorporated reasoning processes into high-level
modules, but neither of them exploits low-dimensional latent space for planning (Sharma et al., 2019)
nor low-dimensional commands (Hafner et al., 2019). Our ablation study in Section 4.1 shows the
effectiveness of utilizing both latent states and commands and, to our best knowledge, DISH is the
first framework doing so.

Model-based RL & Learning to Plan: Model-based RL algorithms attempt to learn the agent’s
dynamics and utilize the planning and control methods to perform tasks (Williams et al., 2017;
Deisenroth et al., 2015; Chua et al., 2018). Williams et al. (2017); Chua et al. (2018) utilized deep
neural networks to model the dynamics and adopted the model predictive control method on the
learned dynamics; Deisenroth et al. (2015) used the Gaussian processes as system dynamics, which
leads to the efficient and stable policy search. Though these methods have shown impressive results,
they are not directly applicable to systems having high DOFs because high-dimensional modeling
is hard to be exact and even advanced planning and control methods are not very scalable to such
systems. One exceptional work was proposed by Ha & Schmidhuber (2018), where the variational
autoencoder and the recurrent neural network are combined to model the dynamics of the observation.
They showed that a simple linear policy w.r.t the low-dimensional latent state can control the low
DOFs agent, but (i) high-DOFs systems require a more complicated policy structure to output high-
dimensional actions and (ii) reasoning (or planning) by predicting the future is essential to solve
a set of complex tasks. On the other hand, Ha et al. (2018a;b) trained the low-dimensional latent
dynamics from expert’s demonstrations and generated motion plans using the learned dynamics;
the high-dimensional motion plans were able to be computed efficiently, but the control policy for
executing those plans was not considered. Some recent works have attempted to build the policy
network in such way that resembles the advanced planning and optimal control methods: Tamar et al.
(2016) encoded the value iteration procedures into the network; Okada et al. (2017); Amos et al.
(2018) wired the network so as to resemble the path-integral control and the iterative LQR methods,
respectively. The whole policy networks are trained end-to-end and, interestingly, system dynamics
and a cost function emerge during the learning procedure. However, these methods were basically
designed just to mimic the expert’s behaviors, i.e., addressing inverse RL problems, and also tried to
find the control policy directly in the (possibly high-dimensional) state space.

3 DISH: DISTILLING HIERARCHY FOR PLANNING AND CONTROL

3.1 MULTITASK RL AS LATENT VARIABLE MODEL LEARNING

Suppose that a dynamical system with states s ∈ S is controlled by actions a ∈ A, where the states
evolve with the stochastic dynamics p(sk+1|sk,ak) from the initial states p(s1). Let r̃k(sk,ak) denote
a reward function that the agent wants to maximize with the control policy πθ(ak|sk). Reinforcement
learning problems are then formulated as the following optimization problem:

θ∗ = arg max
θ

Eqθ(s1:K ,a1:K)

[
K∑
k=1

r̃k(sk,ak)

]
, (1)

where the controlled trajectory distribution qθ is given by:

qθ(s1:K ,a1:K) ≡ p(s1)

K∏
k=1

p(sk+1|sk,ak)πθ(ak|sk). (2)

By introducing an artificial binary random variable ot, called the optimality variable, whose emission
probability is given by exponential of a state-dependent reward, i.e. p(Ok = 1|sk) = exp (rk(sk)),
and by defining an appropriate action prior p(a) and corresponding the uncontrolled trajectory
distribution, p(s1:K ,a1:K) ≡ p(s1)

∏K
k=1 p(sk+1|sk,ak)p(ak), we can view the above RL problem

as a probabilistic inference problem for a graphical model in Fig 2(a). The objective of such an
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Figure 2: (a) The conventional RL and (b) the proposed hierarchical RL framework. (c) The
action-marginalized inference problem. (d) A low-dimensional LVM for the high-level reasoning.

inference problem is to find the optimal variational parameter, θ, such that the controlled trajectory
distribution qθ(s1:K ,a1:K) fits the posterior distribution p(s1:K ,a1:K |O1:K = 1) best. More detailed
derivations of this duality can be found in Appendix A.2 or in the tutorial paper (Levine, 2018).

Rather than solving one particular task, i.e., one reward function, agents are often required to perform
various tasks. Let T be a set of tasks, and πθ∗t (ak|sk) be the optimal policy for tth task, i.e.,

θ∗t = arg max
θt

Eqθt (s1:K ,a1:K)

[
K∑
k=1

r̃
(t)
k (sk,ak)

]
, ∀t ∈ T . (3)

For high DOF systems, where policies πθt represent a mapping from a high-dimensional state space
to a high-dimensional action space, individually optimizing each policy is computationally too
expensive. Instead of doing so, we can assume that tasks the agent needs to perform require similar
solution properties and consequently the optimal policies have some sort of common structures. We
can then introduce a low-dimensional latent variable h(t) that, by compressing a particular aspect of
πθt over all the policies, each policy can be conditioned on as πθ(ak|sk,h(t)).

Such a hierarchical structure is depicted as Fig. 2(b), where h can be interpreted as high-level
commands. We can then define the uncontrolled and the task t’s controlled trajectory distributions as

p(s1:K ,a1:K ,h1:K) ≡ p(s1)

K∏
k=1

p(sk+1|sk,ak)p(ak)p(hk), (4)

q
(t)
θ (s1:K ,a1:K ,h1:K) ≡ p(s1)

K∏
k=1

p(sk+1|sk,ak)πθ(ak|sk,hk)q(t)(hk|sk), (5)

receptively. In other words, the control policy πθ is shared across all the tasks, actively mapping
high-level commands h, into actual actions, a. Only high-level commands vary with the given task
specifications. In the perspective of control as inference, a corresponding inference problem now has
two parts: one for the policy parameter θ and another for the task-specific commands h. Note that,
if a high-level policy π̄θ(h|s) is used to compute high-level commands, the learning problem then
becomes the standard Hierarchical RL (HRL). We instead introduce a reasoning module to generate
high-level commands which infers the optimal h for a given task t and a current state s by predicting
futures. As often used in many HRL methods, the high-level module of the proposed framework
operates in a coarser time scale than the low-level policy does.

Similar to the latent model learning in Appendix A.3 and the control-inference duality in Appendix
A.2, we can derive the following lower-bound of optimality likelihood L(t) for a task t:

log pθ(O
(t)
1:K = 1) = log

∫
p(O

(t)
1:K = 1|s1:K)p(τ)

q
(t)
θ (τ)

q
(t)
θ (τ)

dτ

≥ E
q
(t)
θ (τ)

[
K∑
k=1

r
(t)
k (sk)− log

πθ(ak|sk,hk)

p(ak)
− log

q(t)(hk|sk)

p(hk)

]
≡ L(t)(θ, q), (6)
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where τ ≡ (s1:K ,a1:K ,h1:K). This suggests a novel learning scheme of the hierarchical policy
in Equation 5: (i) For a given task t and a fixed low-level policy πθ, high-level commands hk are
computed via variational inference. This inference procedure q(h|s) should take predictions about
future rewards into account to generate h, which can be interpreted as planning. To do so, we build an
internal model via self-supervised learning and perform planning with the internal model. (ii) With
the planning module equipped, a low-level policy πθ(a|s,h) generates control actions a as in RL
problems, which can be trained using standard deep RL algorithms (Schulman et al., 2017; Haarnoja
et al., 2018b).

3.2 SELF-SUPERVISED LEARNING OF INTERNAL MODEL

The role of q(h|s) is to compute the high-level commands that would lead to maximum accumulated
rewards in the future; as shown in Equation 6, this infers the commands that maximizes the likelihood
of optimality variables whenO1:K = 1 were observed. Given that the ELBO gap is the KL-divergence
between the posterior and variational distributions, it is obvious that more exact variational inference
will make the lower bound tighter, thereby directly leading to the agent’s better performance as well
as the better policy learning. What would the exact posterior be like? Fig. 2(c) shows the graphical
model of the inference problem that q(h|s) should address, which is obtained by marginalizing
actions from Fig. 2(b); as also shown in (Haarnoja et al., 2018a), such marginalization results in a
new system with new control input h, thus the inference problem in this level is again the RL/OC
problem. To get the command at the moment, h1, the inference procedure should compute the
posterior command trajectories h1:K by considering the dynamics and observations (the optimality
variables), and marginalize the future commands h2:K out. Though the dimensionality of h is much
lower than that of a, this inference problem is still not trivial to solve by two reasons: (i) The
dynamics of states pθ(s′|s,h) =

∫
p(s′|s,a)πθ(a|s,h)da contains the environment component of

which information can be obtained only through expensive interactions with the environment. (ii)
One might consider building a surrogate model pφ(s′|s,h) via supervised learning with transition
data obtained during low-level policy learning and utilizing the learned model for inference. However,
learning high-dimensional transition model is hard to be accurate and the inference (planning) in
high-dimensional space is intractable because of, e.g., the curse of dimensionality (Ha et al., 2018a).

However, we can reasonably assume that configurations that should be considered from planning
form some sort of low-dimensional manifold in the original space (Vernaza & Lee, 2012), and the
closed-loop system with high-level commands provides stochastic dynamics on that manifold. That
is, a high-dimensional transition model in Fig. 2(c) can be represented as a latent variable model
(LVM) in Fig. 2(d). Once this low-dimensional representation is obtained, any motion planning
or inference algorithms can solve the variational inference problem very efficiently with the vastly
restricted search space.

Our framework collects the trajectories from low-level policies and utilize them to learn a LVM for
inference, which is formulated as a maximum likelihood estimation (MLE) problem. Suppose that
we have collected a set of state trajectories and latent commands {s(n)1:K ,h

(n)
1:K}n=1,...,N . We then

formulate the MLE problem as:

φ∗ = arg max
φ

∑
n

log pφ(s
(n)
1:K |h

(n)
1:K). (7)

As in Fig. 2(d), the states are assumed to be emerged frwwwwwwwwwwom a latent dynamical
system, where a latent state trajectory, z1:K , lies on a low-dimensional latent space Z:

pφ(s1:K |h1:K) =

∫
pφ(s1:K |z1:K)pφ(z1:K |h1:K)dz1:K . (8)

In particular, we consider the state space model where latent states follow stochastic transition
dynamics with h as inputs, i.e., the prior pφ(z1:K |h1:K) is a probability measure of a following
system:

zk+1 = fφ(zk) + σφ(zk) (hk + wk) , wk ∼ N (0, I) (9)

and also a conditional likelihood of a state trajectory is assumed to be factorized along the time axis
as: sk ∼ N (µφ(zk),Σφ(zk)) ∀k. The resulting sequence modeling is a self-supervised learning
problem that has been extensively studied recently (Karl et al., 2017; Krishnan et al., 2017; Fraccaro
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et al., 2017; Ha et al., 2018b). In particular, we adopt the idea of Adaptive path-integral autoencoder
in (Ha et al., 2018b), where the variational distribution is parameterized by the controls, u, and an
initial distribution, q0, i.e., the proposal qu(z[0,T ]) is a probability measure of a following system:

zk+1 = fφ(zk) + σφ(zk) (hk + uk + wk) , wk ∼ N (0, I). (10)

Compared to the original formulation in (Ha et al., 2018b), the probability model here is conditioned
on the commands, h1:K , making the learning problem conditional generative model learning (Sohn
et al., 2015).1 Note that it is also possible to first obtain a low-dimensional representation considering
each state (not trajectory) independently and then fit their dynamics using RNNs like World Model (Ha
& Schmidhuber, 2018), or to stack two consecutive observations and learn the dynamical model
considering the stacked data as one observation like E2C (Watter et al., 2015). However, Ha et al.
(2018b) showed that the representations learned from the short horizon data easily fail to extract
enough temporal information and a latent dynamical model suitable for planning can be well-obtained
only when considering long trajectories.

3.3 REASONING (PLANNING) WITH LEARNED INTERNAL MODEL

Once the LVM is trained, a planning module can efficiently explore the state space S through the
latent state z and infer the latent commands h1:K that are likely to result in high rewards; in particular,
we adopt a simple particle filter algorithm for inference, because it is known to perform well with
non-linear and non-Gaussian systems (Ha et al., 2018a; Piche et al., 2019). Particle filtering, which
is also called the sequential Monte-Carlo, utilizes a set of samples and their weights to represent
a posterior trajectory distribution. Starting from the initial state, it propagates a set of samples
according to the dynamics (Equation 9) and updates the weights using the observation likelihood
as w′ ∝ w × p(Ok = 1|sk). It also resamples the low-weighted particles to maintain the effective
sample size. In the perspective of this work, this procedure can be viewed as the agent simulating
multiple future state trajectories with the internal model, assigning each of them according to the
reward, and reasoning the command that leads to the best-possible future. The detailed explanation is
elaborated in Appendix A.4 and in Algorithm 2. Note that for the more complex environment, we
can also iterate the whole procedure multiple times to compute a better command, then the planning
algorithm becomes the adaptive path integral method (Kappen & Ruiz, 2016; Williams et al., 2017;
Ha et al., 2018b). If the resampling procedure is eliminated, it is equivalent to the widely-used cross
entropy method (Hafner et al., 2019). Any other inference/planning algorithms compatible with the
graphical model of Fig. 2(d) can be also used.

3.4 MAIN LEARNING ALGORITHM

Algorithm 1 DIStilling Hierarchy for Planning and Control
1: Initialize policy θ and latent model φ
2: for l = 1, ..., L do
3: while not converged do
4: Sample a task t ∈ T
5: Run the policy a ∼ πθ(a|s,h) with high-level commands h ∼ qφ(h|s; t)
6: Store trajectories τ into the experience buffer
7: Train the policy πθ using e.g. PPO . Equation 6
8: end while
9: Random sample h and collect rollouts.

10: Train the internal model using e.g. APIAE . Equation 7
11: end for

The overall learning procedure is summarized in Algorithm 1. The procedure consists of an outer
internal model learning loop and an inner policy update loop. During the policy update stage (inner
loop), the algorithm samples a task, solves the sampled task by using the hierarchical policy, and
collects trajectories into the experience buffer. At each time step, the low-level policy decides actions
the agent takes under the high-level commands determined by the planning module equipped with the

1Effectively it only shifts the control input prior from N (0, I) to N (h, I) as written in Equation 9 and
Equation 10 (Williams et al., 2017).
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(a) DISH (b) zaz′ (VAE) (c) DISH (d) shs′

Figure 3: (a), (b) Learned latent models colored by angular velocity. (c), (d) Rollout samples in
horizontal (x-z plane) colored by latent command value.

internal latent model. Using trajectory data in the buffer, the low-level policy is updated via a deep RL
algorithm (e.g., policy gradient methods). After the low-level policy update, DISH collects another
rollouts by random sampling a latent variable h, and the internal model is learned via self-supervised
learning. These two learning procedures are then iterated for L times.

Note that, for complex systems, tasks can be selected more carefully (at line 4) for the better learning
landscape; for example, in earlier phases where the agent couldn’t yet learn a valid policy and/or
an internal model, the agent can first learn them through imiation learning of expert’s demonstra-
tions (Peng et al., 2018) or play data (Lynch et al., 2019) or through intrinsic motivations to acquire
useful skills by itself (Sharma et al., 2019). As more challenging tasks are gradually provided to the
agent, the internal model (or the reasoning module) is learned to cover wider ranges of state space for
those tasks and the low-level policy is trained such that it can be operated with more complicated
high-level commands.

4 EXPERIMENT

In this section, we demonstrate the effectiveness of the proposed framework on performing planning
and control for the high dimensional humanoid model (Peng et al., 2018) which has 197 state features
and 36 action parameters, simulated by 1.2kHz Bullet physics engine (Coumans et al., 2013). The
low-level control policy and the internal latent model are trained through the imitation learning, where
three locomotion data from the Carnegie Mellon University motion capture (CMU mocap) database
are used as target motions of imitation. The control policy is trained with the DeepMimic imitation
reward (Peng et al., 2018) by using proximal policy optimization (PPO) (Schulman et al., 2017),
while the internal model is learned to maximize the likelihood of experience data (i.e. Equation 7) by
using the APIAE approach (Ha et al., 2018b). The internal model of DISH is constructed to have a
3-dimensional latent state and a 1-dimensional latent command for all experiments. The low-level
policy and the internal model are operated in different time scales, 30Hz and 1Hz, respectively.
The learned hierarchical model is then evaluated on trajectory following and navigation tasks in
Section 4.1 and 4.2, respectively. For planning and execution, the model predictive control (MPC)
scheme with particle filtering (A.4) is used; a 5-second trajectory is planned and the first reasoned
high-level command is applied to the low-level policy at 1Hz and 4Hz for each task.

We refer to the appendix for the reward functions, hyperparmeters, and network architectures (A.5
and A.6), task configurations (A.7), and more experimental results (A.8). Our TensorFlow (Abadi
et al., 2015) implementation will be made available in the final manuscript. The videos of the training
procedure and the resulting policy are available at: https://bit.ly/2rwIfQn

4.1 ABLATION STUDY: LEARNING HIERARCHICAL STRUCTURE

In the first experiment, we examine how effectively the proposed framework learns and exploits
the internal model. To investigate the effectiveness of each component introduced, we conduct
ablation studies by considering three baselines: (i) sas′ that does not have neither the hierarchical
structure nor LVMs (Fig. 2(a)), (ii) shs′ that utilizes the hierarchical policy but doesn’t learn the low-
dimensional latent dynamics (Fig. 2(c)), and (iii) zaz′ that considers the latent dynamics but without
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Table 1: Comparison between different types of internal models.
command, h LVM, z Algorithm

zhz′ O O DISH (ours)
sas′ X X Tamar et al. (2016); Okada et al. (2017); Amos et al. (2018)
shs′ O X Sharma et al. (2019)
zaz′ X O Ha & Schmidhuber (2018); Hafner et al. (2019)

Table 2: Quantitative comparison for trajectory following tasks. ‘F’ denotes that it was not able to
record the true trajectory since the agent kept falling.

Reconstruction ||ref-true|| ||plan-ref|| ||plan-true||

DISH (ours, L=1, Fig. 1 & Fig.2(d)) 0.3820 0.1638 0.1576 0.0930
DISH+ (ours, L=2) 0.8414 0.1452 0.1509 0.1105
sas′ (w/o command & LVM, Fig. 2(a)) 0.1289 F 0.1771 F
shs′ (w/o LVM, Fig. 2(c)) 0.1393 0.2226 0.1579 0.2231
zaz′ (w/o command) 2.3351 F 0.2589 F

the hierarchical structure (no latent commands, a LVM version of Fig. 2(a)2). Given the rollouts
{τ (i)} = {s(i)1:K ,a

(i)
1:K ,h

(i)
1:K}, learning sas′ and shs′ are simply supervised learning problems. For

the zaz′ model, the variational autoencoder (VAE) approach (Kingma & Welling, 2013) is taken
to train mappings between the observation and the latent space, and then the latent dynamics is
trained via supervised learning, following the idea of (Ha & Schmidhuber, 2018). Note that most
HRL frameworks can be categorized as either zaz′ e.g., (Ha & Schmidhuber, 2018; Hafner et al.,
2019) or shs′ e.g., (Sharma et al., 2019). The similar network structures are used for the baselines;
implementation details of the baselines also can be found in A.6. Table 1 summarizes the different
features of the models with the related works.

Figs. 3(a) and 3(b) show the learned latent space colored by the moving-averaged angular velocity
of the ground truth motion. In the case of DISH, the latent state forms a manifold of a cylindrical
shape in 3-dimensional space where the locomotion phase and the angular velocity are well encoded
along the manifold. In contrast, the latent state structure of the zaz′ model does not capture the phase
information and failed to construct a periodic manifold, which prevents a valid latent dynamics from
being learned. Figs. 3(c) and 3(d) show the rollout trajectories from each internal model colored by
the values of high-level commands, h. The high-level commands of DISH are learned to control
the heading direction of the humanoid so that the agent can make the structural exploration in the
configuration space. The shs′ model, on the other hand, fails to learn a valid controlled dynamics
(since its space is too large) and consequently just generates noisy trajectories.

To quantitatively evaluate the reasoning performance of DISH and its ability to flexibly perform
different tasks, we compare DISH to the baseline models on three trajectory following tasks: going
straight, turning left and right. Table 2 reports the RMS errors for reconstruction and differences
between the reference, planned, and executed trajectories. There are three things we can observe
from the table: (i) Although sas′ has the lowest reconstruction error, the computed action from its
internal model even cannot make the humanoid walk. This is because the humanoid has a highly
unstable dynamics and reasoning of the high-dimensional action is not accurate enough to stabilize
the humanoid dynamics, i.e., searching over the 36-dimensional action space with the limited number
of particles (1024 in this case) is not feasible. For the same reason, zaz′ also fails to let the humanoid
walk. (ii) Only the models considering the hierarchical policies can make the humanoid walk, and
the DISH framework generates the most executable and valuable plans; the humanoid with the shs′
model walks just in random directions rather than following a planned trajectory (see Fig. 3(d)),
which implies that the high-level command h does not provide any useful information regarding the
navigation. (iii) By iterating the low-level policy and the internal model learning further, DISH+
becomes able to reason better plans as well as execute them better. Further analysis can be found in
A.8

2Note that Fig.2(d) depicts a LVM version of Fig. 2(c).
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(a) (b) (c) (d)

Figure 4: Cluttered environments for navigation tasks.

4.2 PLANNING AND CONTROL WITH LEARNED HIERARCHY

In the second experiment, we further demonstrate the capability of DISH framework to perform
navigation tasks in cluttered environments (shown in Fig. 4). Since the humanoid character with the
baseline models either kept falling or failed to walk in a desired direction, we omit the comparisons
with the baselines in this task. The navigation reward is designed as a sum of two components:
penalty for distance from the goal and penalty for collision with obstacles. As shown in Figs. 4(c)
and 4(d) as well as in the supplementary video, the humanoid equipped with the DISH policy is able
to not only escape a bug trap that cannot be overcome with greedy algorithms (i.e. without planning),
but also navigate through obstacle regions successfully. Note that, unlike the HRL algorithms, the
proposed hierarchical policy trained using the imitation tasks can be directly applied to the navigation
tasks. It shows the generalization power of reasoning process; utilizing the internal model and the
command-conditioned policy, the agent becomes able to plan and control its motions to adapt to new
tasks and environments.

5 CONCLUSION

We proposed a framework to learn a hierarchical policy for an RL agent. In the proposed policy, the
high-level loop plans the agent’s motion by predicting its low-dimensional "task-specific" futures
and the low-level loop maps the high-level commands into actions while actively reacting to the
environment using its own state feedback loop. This sophisticated separation was able to emerge
because two loops operated in different scales; the high-level planning loop only focuses on task-
specific low-dimensional aspects in a coarser time scale, which enables it to plan relatively long-term
futures. In order to learn the internal model for planning, we took advantage of recent advances in
self-supervised learning of sequential data, while the low-level control policy is learned using a deep
RL algorithm. By alternately optimizing both the LVM and the policy, the proposed framework was
able to construct a meaningful internal model as well as a versatile control policy.

As future works, it would be interesting to incorporate visual inputs into the high-level reasoning
module as suggested by Merel et al. (2019a). Though only continuous latent variables were considered
in our framework, utilizing discrete variables such as a notion of logics or modes (Toussaint et al.,
2018) also seems to be a promising direction. Lastly, besides imitation of experts, an agent should be
able to learn from play data (Lynch et al., 2019) or from its own intrinsic motivation (Sharma et al.,
2019).
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A APPENDIX

A.1 CONTROL-INFERENCE DUALITY

One theoretical concept this work extensively takes advantage of is the duality between optimal
control (OC) and probabilistic inference (Levine, 2018; Todorov, 2008; Rawlik et al., 2012). The
idea is that, if we consider an artificial binary observation whose emission probability is given by
the exponential of a negative cost, an OC problem can be reformulated as an equivalent inference
problem. In this case, the objective is to find the trajectory or control policy that maximizes the
likelihood of the observations along the trajectory. One advantage of this perspective is that in order
to solve the OC or RL problems, we can adopt any powerful and flexible inference methods, e.g., the
expectation propagation (Toussaint, 2009), the particle filtering (Ha et al., 2018a; Piche et al., 2019),
or the inference for Gaussian processes (Mukadam et al., 2018). In addition to utilizing efficient
inference methods, this work also enjoys the duality to transform a multi-task RL problem into a
generative model learning problem, which enables an agent to distill a low-dimensional representation
and a versatile control policy in a combined framework.

A.2 REINFORCEMENT LEARNING AS PROBABILISTIC INFERENCE

For easier reference, we restate the RL problem and the controlled trajectory distribution here:

θ∗ = arg max
θ

Eqθ(s1:K ,a1:K)

[
K∑
k=1

r̃k(sk,ak)

]
, (11)

qθ(s1:K ,a1:K) ≡ p(s1)

K∏
k=1

p(sk+1|sk,ak)πθ(ak|sk), (12)

respectively. It is well known in the literature that the above optimization (Equation 11) also can be
viewed as a probabilistic inference problem for a certain type of graphical models (Levine, 2018;
Todorov, 2008; Rawlik et al., 2012). Suppose we have an artificial binary random variable ot, called
the optimality variable, whose emission probability is given by exponential of a state-dependent
reward, i.e.,

p(ok = 1|sk) = exp (rk(sk)) , (13)
and the action prior p(ak) defines the uncontrolled trajectory distribution (see also Fig. 2(a)):

p(s1:K ,a1:K) ≡ p(s1)

K∏
k=1

p(sk+1|sk,ak)p(ak). (14)

Then we can derive the evidence lower-bound (ELBO) for the variational inference:

log p(O1:K) = log

∫
p(O1:K |s1:K)p(s1:K ,a1:K)ds1:Kda1:K

= log

∫
p(O1:K |s1:K)p(s1:K ,a1:K)

qθ(s1:K ,a1:K)

qθ(s1:K ,a1:K)
ds1:Kda1:K

≥ Eqθ(s1:K ,a1:K)

[
K∑
K=1

(
log p(Ok|sk)− log

πθ(ak|sk)

p(ak)

)]

= Eqθ(s1:K ,a1:K)

[
K∑
k=1

rk(sk)− log
πθ(ak|sk)

p(ak)

]
≡ L(θ). (15)

The ELBO maximization in Equation 15 becomes equivalent to the reinforcement learning in
Equation 11 by choosing an action prior p(ak) and parameterized policy family πθ(ak|sk) to match
r̃k = rk − log πθ

p
3. Similar to Equation 19, the above maximization means to find the control policy

πθ resulting in the variational distribution that best approximates the posterior trajectory distribution
when all the optimality variables were observed p(s1:K ,a1:K |O1:K = 1).

3For example, when p(ak) and πθ(ak|sk) are given as Gaussian with the same covariance, log πθ
p

encodes
quadratic penalty on the control effort; when p(a) is given as an uninformative uniform distribution, log πθ

p

becomes the entropy regularization term in the maximum entropy reinforcement learning (Ziebart et al., 2008;
Haarnoja et al., 2018b).
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A.3 SELF-SUPERVISED LEARNING OF LATENT DYNAMICAL MODELS

Self-supervised learning is an essential approach that allows an agent to learn underlying dynamics
from sequential high-dimensional sensory inputs. The learned dynamical model can be utilized to
predict and plan the future state of the agent. By assuming that observations were emerged from
the low-dimensional latent states, the learning problems are formulated as latent model learning,
which includes an intractable posterior inference of latent states for given input data (Karl et al., 2017;
Krishnan et al., 2017; Fraccaro et al., 2017; Ha et al., 2018b).

Suppose that a set of observation sequences {s(n)1:K}n=1,...,N is given, where s
(n)
1:K ≡ {sk;∀k =

1, ...,K}(n) are i.i.d. sequences of observation that lie on (possibly high-dimensional) data space S .
The goal of the self-supervised learning problem of interest is to build a probabilistic model that well
describes the given observations. The problem is formulated as a maximum likelihood estimation
(MLE) problem by parameterizing a probabilistic model with φ:

φ∗ = arg max
φ

∑
n

log pφ(s
(n)
1:K). (16)

For latent dynamic models, we assume that the observations are emerged from a latent dynamical
system, where a latent state trajectory, z1:K ≡ {zk; ∀k ∈ 1, ...,K}, lies on a (possibly low-
dimensional) latent space Z:

pφ(s1:K) =

∫
pφ(s1:K |z1:K)pφ(z1:K)dz1:K , (17)

where pφ(s1:K |z1:K) and pφ(z1:K) are called a conditional likelihood and a prior distribution,
respectively. Since the objective function (Equation 16) contains the intractable integration, it cannot
be optimized directly. To circumvent the intractable inference, a variational distribution q(·) is
introduced and then a surrogate loss function L(q, φ; s1:K), which is called the evidence lower bound
(ELBO), can be considered alternatively:

log pφ(s1:K) = log

∫
pφ(s1:K |z1:K)pφ(z1:K)dz1:K

≥ Eq(z1:K)

[
log

pφ(s1:K |z1:K)pφ(z1:K)

q(z1:K)

]
≡ L(q, φ; s1:K), (18)

where q(·) can be any probabilistic distribution over Z of which support includes that of pθ(·). Note
that the gap between the log-likelihood and the ELBO is the Kullback-Leibler (KL) divergence
between q(z) and the posterior pθ(z1:K |s1:K):

log pφ(s1:K)− L(q, φ; s1:K) = DKL(q(z1:K)||pφ(z1:K |s1:K)). (19)

One of the most general approaches is the expectation-maximization (EM) style optimization where,
alternately, (i) E-step denotes an inference procedure where an optimal variational distribution q∗ is
computed for given φ and (ii) M-step maximizes the ELBO w.r.t. model parameter φ for given q∗.
Note that if we construct the whole inference and generative procedures as one computational graph,
all the components can be learned by efficient end-to-end training (Karl et al., 2017; Krishnan
et al., 2017; Fraccaro et al., 2017; Ha et al., 2018b). In p articular, Ha et al. (2018b) proposed the
adaptive path-integral autoencoder (APIAE), a framework that utilizes the optimal control method;
this framework is suitable to this work because we want to perform the planning in the learned latent
space. APIAE considers the state-space model in which the latent states are governed by a stochastic
dynamical model, i.e., the prior pφ(z1:K) is a probability measure of a following system:

zk+1 = fφ(zk) + σφ(zk)wk, z0 ∼ p0(·), wk ∼ N (0, I). (20)

Additionally, a conditional likelihood of sequential observations is factorized along the time axis:

pφ(s1:K |z1:K) =

K∏
k=1

pφ(sk|zk). (21)

14



Under review as a conference paper at ICLR 2020

If the variational distribution is parameterized by the control input u1:K−1 and the initial state
distribution q0 as:

zk+1 = fφ(zk) + σφ(zk) (uk + wk) , z0 ∼ q0(·), wk ∼ N (0, I), (22)

the ELBO can be written in the following form:

L = Equ
[

log pφ(s1:K |z1:K) + log
p0(z0)

q0(z0)
−
K−1∑
k=1

1

2
‖uk‖2 + u>k wk

]
. (23)

Then, the problem of finding the optimal variational parameters u∗ and q∗0 (or equivalently, the best
approximate posterior) can be formulated as a stochastic optimal control (SOC) problem:

u∗, q∗0 = arg min
u,q0

Equ(z1:K)

[
V (z1:K) +

K−1∑
k=1

1

2
‖uk‖2 + u>k wk

]
, (24)

where V (z1:K) ≡ − log p0(z(0))
q0(z(0))

−
∑K
k=1 log pφ(sk|zk) serves as a state cost of the SOC problem.

Ha et al. (2018b) constructed the differentiable computational graph that resembles the path-integral
control procedure to solve the above SOC problem, and trained the whole architecture including the
latent dynamics, p0(z), fφ(z) and σφ(z), and the generative network, pφ(s|z) through the end-to-end
training.

A.4 PLANNING BY PARTICLE FILTERING

Algorithm 2 Particle Filtering with Internal Model for Planning

1: Initialize ∀i ∈ {1, ..., Nparticle} : z
(i)
1 ∼ qφ(·|s:cur) and w(i)

1 = 1/Nparticle
2: for k = 2, ...,Kplan do
3: for i = 1, ..., Nparticle do
4: z

(i)
k = fφ(z

(i)
k−1) + σφ(z

(i)
k−1)

(
h
(i)
k−1 + w

(i)
k−1

)
, w

(i)
k−1 ∼ N (0, I)

5: s
(i)
k ∼ N

(
µφ(z

(i)
k ),Σφ(z

(i)
k )
)
.

6: w
(i)
k = w

(i)
k−1 exp(rk(s

(i)
k ))

7: end for
8: w

(i)
k = w

(i)
k /

∑
j w

(j)
k , ∀i ∈ {1, ..., Nparticle}

9: Resample {z(i)1:k,w
(i)
1:k} if

(∑
i(w

(i)
k )2

)−1
< Nparticle/3

10: end for
11: return h∗1 =

∑
i w

(i)
Kplan

w
(i)
1 . h∗k =

∑
i w

(i)
Kplan

w
(i)
k ,∀k = 1, ..,KMPC for general MPC cases

At each time step δt, the high-level planner takes the current state as an argument and required
to output the commands by predicting the future trajectory and corresponding reward rk(·). We
adopted the particle filter algorithm to perform such the reasoning and the pseudo code is shown in
Algorithm 2. The particle filter algorithm attempts to represent the posterior distribution using a set of
samples. The algorithm first samples Nparticle initial latent states using the inference network (which
is a part of the learned internal model) and assigns the same weights for them. During the forward
recursion, the particles are propagated using the latent dynamics of the internal model (line 4), and
the corresponding configurations are generated through the learned model (line 5). The weights of all
particles are then updated based on the reward of the generated configurations (line 6 and 8); i.e.,
the particles that induce higher reward values will get higher weights. If only a few samples have
weights effectively, i.e., if the weights collapse, the algorithm resamples the particles from the current
approximate posterior distribution to maintain the effective sample size (line 9). After the forward
recursion over the planning horizon, the optimal commands are computed as a linear combination
of the initial disturbances; i.e., it is given by the expected disturbance under the posterior transition
dynamics (Kappen & Ruiz, 2016).
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Figure 5: The network architecture of low-level policy network.

A.5 TRAINING LOW-LEVEL POLICY

For the training algorithm for low-level policy network (πθ), we extend motion imitation approach
(Peng et al., 2018) to multi-task scheme; we construct value networks parameterized by neural
network with size [197, 1024, 512, 1] for each task (three in our experiments), and the low-level
policy network (actor network) taking a state feature s and a latent variable h as inputs to determine
an action a as illustrated in Fig. 5. The imitation reward is given as following:

rt = 0.3rroot
t + 0.2rpose

t + 0.15rvel
t + 0.15ree

t + 0.2rcom
t (25)

rroot
t = exp

(
− 0.5||p̂rt − prt ||22 − 0.5||ˆ̇prt − ṗrt ||22 − 0.5||q̂rt − qrt ||22 − 0.05||ˆ̇qrt − q̇rt ||22

)
rpose
t = exp

(
− 2

∑
||q̂jt − qjt ||22

)
rvel
t = exp

(
− 0.1

∑
||ˆ̇qjt − q̇jt ||22

)
ree
t = exp

(
− 40

∑
||p̂et − pet ||22

)
rcom
t = exp

(
− ||ˆ̇pct − ṗct ||22

)
where qt and pt represent angle and global position while ˆ represent those of the reference.4
As reference motion data, three motion capture clips, turning left (t = [1, 0, 0]), going straight
(t = [0, 1, 0]), turning right (t = [0, 0, 1]) from the Carnegie Mellon University motion capture
(CMU mocap) database are utilized. Following the reference, PPO with same hyperparameters is
used for RL algorithm. Since the internal model does not exist at the first iteration (l = 1), the
high-level planner is initialized by qφ(h|s; t) = wT t where w = [−1, 0, 1]. After the first iteration,
high-level planner computes a command ht that makes the model to best follow the horizontal
position of the reference motion for 5 seconds (δt = 0.1s and Kplan = 50). The corresponding
reward function is as following:

rk = −||p̂rh,k − prh,k||22 (26)

where ph,k is the horizontal components of position vector at time step k.

A.6 TRAINING INTERNAL MODELS

Internal models of DISH is trained to maximize the ELBO in Equation 23 by using the APIAE
approach (Ha et al., 2018b) with hyperparameters as following: 3 adaptations (R = 4), 10 time steps
(K = 10), 32 samples (L = 32), and time interval of 0.1s (δt = 0.1). The network architectures of
transition network and inference network are shown in Fig 6.

For the baselines, the transition functions, fφ(xk+1|xk,yk), were parameterized by neural networks
having same architectures as DISH except for the input variables as shown in Table 3. The loss

4Each superscript denotes as following: r: root (pelvis), j: local joints, e: end-effectors (hands and feet), c:
center-of-mass.
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Table 3: Input variables of baseline transition models

input variables DISH sas′ shs′ zaz′

xk zk sk sk zk
yk hk ak hk ak

(a) transition network (b) generative network

Figure 6: The network architecture of internal model.

function for baseline is as following:

Lsas′(φ) =

K∑
k=1

||sk − s̃k||22, s̃k = fsas
′

φ (s̃k−1,ak−1), (27)

Lshs′(φ) =

K∑
k=1

||sk − s̃k||22, s̃k = fshs
′

φ (s̃k−1,hk−1), (28)

Lzaz′(φ) =

K∑
k=1

||sk − g(z̃k)||22, z̃k = fzaz
′

φ (z̃k−1,ak−1), (29)

where s̃1 = s1, z̃1 is latent state for s1 inferred by VAE, and g(·) is learned generative network of
VAE.

A.7 TASK CONFIGURATIONS

Trajectory Following Tasks: Planning reward rt penalizes the distance between the horizontal
position of the root of humanoid character prk and the that of reference trajectory p̄k:

rk = −||p̄k − prh,k||22. (30)

Navigation Tasks: Planning cost rt penalizes the distance between the horizontal position of the
root of humanoid character prk and the that of the goal pgoal and the collision with obstacles, while
giving a reward on arrival:

rk = −||pgoal − prh,k||22 − 105 × (IS_CRASHED) + 104 × (IS_REACHED). (31)

A.8 FURTHER RESULTS

Table 4 reports the RMS between reference, planned, and executed trajectories for each tasks. As
illustrated in the table, DISHs showed the best performance. Although shs′ sometimes showed
smaller errors for the difference between the planed and reference trajectories, the errors between the
reference and executed trajectory of DISHs are always smallest. This demonstrates that DISHs best
learn the internal dynamics of the humanoid, making the most valid predictions for future motion.
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Table 4: Comparison of RMS errors between reference, planned, and executed trajectories for
different types of internal models.

task1 (turn left) task2 (go straight) task3 (turn right)

||ref-true|| ||plan-ref|| ||plan-true|| ||ref-true|| ||plan-ref|| ||plan-true|| ||ref-true|| ||plan-ref|| ||plan-true||

DISH 0.1290 0.1364 0.0743 0.2073 0.1705 0.1073 0.1550 0.1661 0.0974
DISH+ 0.1466 0.1704 0.1223 0.1177 0.1075 0.1177 0.1711 0.1747 0.0988
sas′ F 0.2474 F F 0.0660 F F 0.2178 F
shs′ 0.2525 0.2036 0.3167 0.1385 0.0561 0.1280 0.2767 0.2140 0.2247
zaz′ F 0.2731 F F 0.1994 F F 0.3044 F

Comparing DISH (L = 1) and DISH+ (L = 2), we can observe that DISH outperforms in the turning
tasks while showing the worse performance in going straight. This is because the high-level planner
is initialized to output only one of {−1, 0, 1} (as shown in Appendix A.5), so the corresponding
low-level policy of DISH is trained only around h ∈ {−1, 0, 1} rather than along the continuous h
values. As a result, the DISH agent is only good at radical turns (not smooth turns), making it difficult
to stabilize its heading direction properly. The ability to turn smoothly is obtained in the next iteration
where the proper reasoning module is equipped, thus, although it lost some ability to turn fast, the
DISH+ agent achieves the better ability to walk straight and the increased average performance (see
Table 2).

Fig. 7 shows rollout samples by varying the control values. Except for DISHs, the generated
trajectories are very noisy, which indicates that the baseline internal models are not suitable for
planning the future movements of the humanoid.
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(a) DISH (b) shs′

(c) sas′ (d) zaz′

Figure 7: Rollout samples from different types of internal models. (a) and (b) is colored by latent
control value.
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