
Workshop track - ICLR 2018

ABOUT THE ATTRACTOR PHENOMENON IN DECOM-
POSED REINFORCEMENT LEARNING

Romain Laroche, Mehdi Fatemi, Joshua Romoff & Harm van Seijen
MSR Montréal, Canada
romain.laroche@microsoft.com

ABSTRACT

We consider tackling a single-agent RL problem by decomposing it to n learners.
These learners are generally trained egocentrically: they are greedy with respect to
their own local focus. In this extended abstract, we show theoretically and empiri-
cally that this leads to the presence of attractors: states attracting and detaining the
agent, against what the global objective function would advise.

1 INTRODUCTION

When a person faces a complex and important problem, his individual problem solving abilities might
not suffice. He has to actively seek for advice around him: he might consult his relatives, browse
different sources on the internet, and/or hire one or several people that are specialised in some aspects
of the problem. He then aggregates the advice in order to hopefully make the best possible decision.
A large number of papers tackle the decomposition of a single Reinforcement Learning task (RL,
Sutton & Barto, 1998) into several simpler ones. They generally follow a method where agents are
trained independently and greedily with respect to their local optimality, which we call egocentric,
and where their recommendations are aggregated into a global policy by voting or averaging.

Unlike Hierarchical RL (Dayan & Hinton, 1993; Parr & Russell, 1998; Dietterich, 2000), this
approach gives the learners the role of advisors. The learners are said to have a focus: reward function,
state space, learning technique, etc. This approach endeavours therefore to first, independently tackle
these different focuses and afterwards, merge their advice. Section 2 shows that the egocentric
planning presents the severe theoretical shortcoming of inverting a max

∑
into a

∑
max in the

global Bellman equation. It leads to an overestimation of the values of states where the learners
disagree, and creates an attractor phenomenon, causing the system to remain static without any
tie-breaking possibilities. We show that attractors can be avoided by lowering the discount factor γ.
Section 3 illustrates and empirically validates the theoretical results.

2 THEORETICAL ASPECTS

Advisor Advisor...Environment

Figure 1: The architecture

Markov Decision Process – The Reinforcement Learning
(RL) framework is formalised as a Markov Decision Pro-
cess (MDP). An MDP is a tuple 〈X ,A, P,R, γ〉 where X
is the state space, A is the action space, P : X ×A → X
is the Markovian transition function, R : X × A →
R is the reward function, and γ is the discount fac-
tor. The goal is to generate trajectories with high dis-
counted cumulative reward, also called more succinctly
return:

∑T−1
t=0 γtr(t). To do so, one needs to find a pol-

icy π : X × A → [0, 1] maximising the Q-function:
Qπ(x, a) = Eπ

[∑
t′≥t γ

t′−tR(Xt′ , At′)|Xt = x,At = a
]
.

In our setting, we assume that the task has been broken down into n learners, which are regarded
as specialised, possibly weak, learners that are concerned with a sub part of the problem. The
overall architecture is illustrated in Figure 1. At each time step, learner j sends to the aggregator

1

Workshop track - ICLR 2018

its local Q-values for all actions in the current state. The f function’s role is to aggregate the
learners’ recommendations into a policy. For the further analysis, we restrict ourselves to the linear
decomposition of the rewards: R(x, a) =

∑
j wjRj(xj , a). We define the aggregator function fΣ(x)

as being greedy over the Qj-functions aggregation QΣ(x, a).

We recall the theoretical result of van Seijen et al. (2017b): a theorem ensuring, under the local Markov
condition, that the learners’ training eventually converges. Although it guarantees convergence, it
does not guarantee the optimality of the converged solution.

Egocentric planning – It is the most common approach in the literature Singh & Cohn
(1998); Russell & Zimdars (2003); Harutyunyan et al. (2015). Theorem of van Sei-
jen et al. (2017b) guarantees for each learner j the convergence to the local opti-
mal value function, denoted by Qegoj , which satisfies the Bellman optimality equation:

x0x1 x2
a1 a2

r1 > 0 r2 > 0

a0

r0 = 0

Figure 2: Attractor example.

Qegoj (xj , a) = E
[
rj + γmax

a′∈A
Qegoj (x′j , a

′)

]
,

where the local immediate reward rj is sampled according to
Rj(xj , a), and the next local state x′j is sampled according to
Pj(xj , a). In the aggregator global view, we get:

QegoΣ (x, a) = E

∑
j

wjrj + γ
∑
j

wj max
a′∈A

Qegoj (x′j , a
′)


≥ E

[
r + γmax

a′∈A
QegoΣ (x′, a′)

]
.

Egocentric planning suffers from an inversion between the max and
∑

operators and, as a con-
sequence, it overestimate the state-action values when the learners disagree on the optimal ac-
tion. This flaw has critical consequences in practice: it creates attractor situations. Before we
define and study them formally, let us explain attractors with an illustrative example based on
the simple MDP depicted in Figure 2. In initial state x0, the system has three possible actions:
stay put (action a0), perform learner 1’s goal (action a1), or perform learner 2’s goal (action
a2). Once achieving a goal, the trajectory ends. The Q-values for each action are easy to com-
pute: QegoΣ (s, a0) = γr1 + γr2, QegoΣ (s, a1) = r1, and QegoΣ (s, a2) = r2. As a consequence, if
γ > r1/(r1 + r2) and γ > r2/(r1 + r2), the local egocentric planning commands to execute action
a0 endlessly.
Definition 1. An attractor x is a state where the following strict inequality holds:

max
a ∈A

∑
j

wjQ
ego
j (xj , a) < γ

∑
j

wj max
a∈A

Qegoj (xj , a).

Theorem 1. State x is attractor, if and only if the optimal egocentric policy is to stay in x if possible.

Note that there is no condition in Theorem 1 (proofs are omitted because of space constraint) on the
existence of actions allowing the system to be actually static. Indeed, the system might be stuck in an
attractor set, keep moving, but opt to never achieve its goals. To understand how this may happen,
just replace state x0 in Figure 2 with an attractor set of similar states: where action a0 performs a
random transition in the attractor set, and actions a1 and a2 respectively achieve tasks of learners 1
and 2. Also, it may happen that an attractor set is escapable by the lack of actions keeping the system
in an attractor set. For instance, in Figure 2, if action a0 is not available, x0 remains an attractor, but
an unstable one.
Definition 2. A learner j is said to be progressive if the following condition is satisfied:

∀xj ∈ Xj ,∀a ∈ A, Qegoj (xj , a) ≥ γmax
a′∈A

Qegoj (xj , a
′).

The intuition behind the progressive property is that no action is worse than losing one turn to do
nothing. In other words, only progress can be made towards this task, and therefore non-progressing
actions are regarded by this learner as the worst possible ones.

2

Workshop track - ICLR 2018

Theorem 2. If all the learners are progressive, there cannot be any attractor.

The condition stated in Theorem 2 is very restrictive. Still, there exist some RL problems where
Theorem 2 can be applied, such as resource scheduling where each learner is responsible for the
progression of a given task. Note that a setting without any attractors does not guarantee optimality
for the egocentric planning. Most of RL problems do not fall into this category. Theorem 2 neither
applies to RL problems with states that terminate the trajectory while some goals are still incomplete,
nor to navigation tasks: when the system goes into a direction that is opposite to some goal, it gets
into a state that is worse than staying in the same position.

Figure 3: Attractor.

Navigation problem attractors – We consider the three-fruit attractor il-
lustrated in Figure 3: moving towards a fruit, makes it closer to one of
the fruits, but further from the two other fruits (diagonal moves are not al-
lowed). The expression each action Q-value is as follows: QegoΣ (x, S) =
γ
∑
j maxa∈AQ

ego
j (xj , a) = 3γ2, and QegoΣ (x,N) = QegoΣ (x,E) =

QegoΣ (x,W) = γ + 2γ3. That means that, if γ > 0.5, QegoΣ (x, S) >
QegoΣ (x,N) = QegoΣ (x,E) = QegoΣ (x,W). As a result, the aggregator would
opt to go South and hit the wall indefinitely.

Figure 4: The Pac-Boy game.

More generally in a deterministic task where each action a in a state
x can be cancelled by a new action a-1

x , it can be shown that the
condition on γ is a function of the size of the action set A.
Theorem 3. State x ∈ X is guaranteed not to be an attractor if:

∀a ∈ A,∃a-1
x ∈ A, such that P (P (x, a), a-1

x) = x ,
∀a ∈ A, R(x, a) ≥ 0 ,
γ ≤ 1

|A|−1 .

3 PAC-BOY EXPERIMENT

In this section, we empirically validate the findings of Section 2 in the Pac-Boy domain van Seijen
et al. (2017a): a fruit collection task (see Figure 4). The decomposed setting is associating one learner
for each of the 75 potential fruit locations. The local state space consists in the agent position and
the existence –or not– of the fruit. Four different settings are compared: the two baselines linear
Q-learning and DQN-clipped, and egocentric with γ = 0.4, egocentric with γ = 0.9. The linear
Q-learning and egocentric with γ = 0.9 do not succeed at getting positive rewards. DQN-clipped
reaches a 25-reward average, while egocentric with γ = 0.4 approaches the 37.5 optimal reward,
with an average of 36.

One can notice that the Markov assumption holds in this setting and that, as a consequence, the
theorem from van Seijen et al. (2017b) applies. Theorem 3 determines sufficient conditions for not
having any attractor in the MDP. In the Pac-Boy domain, the cancelling action condition is satisfied
for every x ∈ X . As for the γ condition, it is not only sufficient but also necessary, since being
surrounded by goals of equal value is an attractor if γ > 1/3. In practice, an attractor becomes stable
only when there is an action enabling it to remain in the attraction set. Thus, the condition for not
being stuck in an attractor set can be relaxed to γ ≤ 1/(|A|−2). Hence, the result of γ > 1/2 in the
example illustrated by Figure 3.

We provide links to 3 video files (click on the blue links) representing a trajectory generated at the
50th epoch for various settings. egocentric-γ = 0.4 adopts a near optimal policy coming close to
the ghosts without taking any risk. The fruit collection problem is similar to the travelling salesman
problem, which is known to be NP-complete (Papadimitriou, 1977). However, the suboptimal small-γ
policy consisting of moving towards the closest fruits is in fact a near optimal one. Regarding the
ghost avoidance, egocentric with small γ gets an advantage over other settings: the local optimisation
guarantees a perfect control of the system near the ghosts. The most interesting outcome is the
presence of the attractor phenomenon in egocentric-γ = 0.9: Pac-Boy goes straight to the centre area
of the grid and does not move until a ghost comes too close, which it still knows to avoid perfectly.
This is the empirical confirmation that the attractors present a real practical issue. Finally, we observe
that DQN-clipped struggles to eat the last fruits.

3

https://streamable.com/6tian
https://streamable.com/sgjkq
https://streamable.com/emh6y

Workshop track - ICLR 2018

REFERENCES

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Proceedings of the 7th Annual
Conference on Neural Information Processing Systems (NIPS), 1993.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of Artificial Intelligence Research, 2000.

Anna Harutyunyan, Tim Brys, Peter Vrancx, and Ann Nowé. Off-policy reward shaping with
ensembles. arXiv preprint arXiv:1502.03248, 2015.

Christos H Papadimitriou. The euclidean travelling salesman problem is NP-complete. Theoretical
Computer Science, 1977.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Proceedings
of the 11th Advances in Neural Information Processing Systems (NIPS), 1998.

Stuart J. Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In
Proceedings of the 20th International Conference on Machine Learning (ICML), pp. 656–663,
2003.

Satinder P. Singh and David Cohn. How to dynamically merge markov decision processes. In
Proceedings of the 12th Annual Conference on Advances in neural information processing systems,
pp. 1057–1063, 1998.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press, 1998. ISBN 0262193981. URL
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&
amp;path=ASIN/0262193981.

Harm van Seijen, Mehdi Fatemi, Joshua Romoff, and Romain Laroche. Separation of concerns in
reinforcement learning. CoRR, abs/1612.05159v2, 2017a. URL http://arxiv.org/abs/
1612.05159v2.

Harm van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey Tsang.
Hybrid reward architecture for reinforcement learning. arXiv preprint arXiv:1706.04208, 2017b.

4

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0262193981
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0262193981
http://arxiv.org/abs/1612.05159v2
http://arxiv.org/abs/1612.05159v2

	Introduction
	Theoretical aspects
	Pac-Boy Experiment

