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ABSTRACT

Recently Le & Mikolov described two log-linear models, called Paragraph Vector,
that can be used to learn state-of-the-art distributed representations of documents.
Inspired by this work, we present Binary Paragraph Vector models: simple neural
networks that learn short binary codes for fast information retrieval. We show that
binary paragraph vectors outperform autoencoder-based binary codes, despite us-
ing fewer bits. We also evaluate their precision in transfer learning settings, where
binary codes are inferred for documents unrelated to the training corpus. Results
from these experiments indicate that binary paragraph vectors can capture seman-
tics relevant for various domain-specific documents. Finally, we present a model
that simultaneously learns short binary codes and longer, real-valued representa-
tions. This model can be used to rapidly retrieve a short list of highly relevant
documents from a large document collection.

1 INTRODUCTION

One of the significant challenges in contemporary information processing is the sheer volume of
available data. Gantz & Reinsel (2012), for example, claim that the amount of digital data in the
world doubles every two years. This trend underpins efforts to develop algorithms that can efficiently
search for relevant information in huge datasets. One class of such algorithms, represented by, e.g.,
Locality Sensitive Hashing (Indyk & Motwani, 1998), relies on hashing data into short, locality-
preserving binary codes (Wang et al., 2014). The codes can then be used to group the data into
buckets, thereby enabling sublinear search for relevant information, or for fast comparison of data
items.

In this work we focus on learning binary codes for text documents. An important work in this
direction has been presented by Salakhutdinov & Hinton (2009). Their semantic hashing lever-
ages autoencoders with sigmoid bottleneck layer to learn binary codes from a word-count bag-of-
words (BOW) representation. Salakhutdinov & Hinton demonstrated that semantic hashing codes
used as an initial document filter can improve precision of TF-IDF-based retrieval. Learning from
BOW, however, has its disadvantages. First, word-count representation, and in turn the learned
codes, are not in itself stronger than TF-IDF. Second, BOW is an inefficient representation: even
for moderate-size vocabularies BOW vectors can have thousands of dimensions. Learning fully-
connected autoencoders for such high-dimensional vectors is impractical. Salakhutdinov & Hinton
restricted the BOW vocabulary in their experiments to 2000 most frequent words.

Recently several works explored simple neural models for unsupervised learning of distributed rep-
resentations of words, sentences and documents. Mikolov et al. (2013) proposed log-linear mod-
els that learn distributed representations of words by predicting a central word from its context
(CBOW model) or by predicting context words given the central word (Skip-gram model). The
CBOW model was then extended by Le & Mikolov (2014) to learn distributed representations of
documents. Specifically, they proposed Paragraph Vector Distributed Memory (PV-DM) model,
in which the central word is predicted given the context words and the document vector. During
training, PV-DM learns the word embeddings and the parameters of the softmax that models the
conditional probability distribution for the central words. During inference, word embeddings and
softmax weights are fixed, but the gradients are backpropagated to the inferred document vector.
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In addition to PV-DM, Le & Mikolov studied also a simpler model, namely Paragraph Vector Dis-
tributed Bag of Words (PV-DBOW). This model predicts words in the document given only the
document vector. It therefore disregards context surrounding the predicted word and does not learn
word embeddings. Le & Mikolov demonstrated that paragraph vectors outperform BOW and bag-
of-bigrams in information retrieval task, while using only few hundreds of dimensions. These mod-
els are also amendable to learning and inference over large vocabularies. Original CBOW network
used hierarchical softmax to model the probability distribution for the central word. One can also
use noise-contrastive estimation (Gutmann & Hyvärinen, 2010) or importance sampling (Cho et al.,
2015) to approximate the gradients with respect to the softmax logits.

An alternative approach to learning representation of sentences has been recently described by Kiros
et al. (2015). Networks proposed therein, inspired by the Skip-gram model, learn to predict sur-
rounding sentences given the center sentence. To this end, the center sentence is encoded by an
encoder network and the surrounding sentences are predicted by a decoder network conditioned on
the center sentence code. Once trained, these models can encode sentences without resorting to
backpropagation inference. However, they learn representations at the sentence level but not at the
document level.

In this work we present Binary Paragraph Vector models, an extensions to PV-DBOW and PV-DM
that learn short binary codes for text documents. One inspiration for binary paragraph vectors comes
from a recent work by Lin et al. (2015) on learning binary codes for images. Specifically, we intro-
duce a sigmoid layer to the paragraph vector models, and train it in a way that encourages binary
activations. We demonstrate that the resultant binary paragraph vectors significantly outperform se-
mantic hashing codes. We also evaluate binary paragraph vectors in transfer learning settings, where
training and inference are carried out on unrelated text corpora. Finally, we study models that si-
multaneously learn short binary codes for document filtering and longer, real-valued representations
for ranking. While Lin et al. (2015) employed a supervised criterion to learn image codes, binary
paragraph vectors remain unsupervised models: they learn to predict words in documents.

2 BINARY PARAGRAPH VECTOR MODELS

The basic idea in binary paragraph vector models is to introduce a sigmoid nonlinearity before the
softmax that models the conditional probability of words given the context. If we then enforce
binary or near-binary activations in this nonlinearity, the probability distribution over words will
be conditioned on a bit vector context, rather than real-valued representation. The inference in
the model proceeds like in Paragraph Vector, except the document code is constructed from the
sigmoid activations. After rounding, this code can be seen as a distributed binary representation of
the document.

In the simplest Binary PV-DBOW model (Figure 1) the dimensionality of the real-valued document
embeddings is equal to the length of the binary codes. Despite this low dimensional representation –
a useful binary hash will typically have 128 or fewer bits – this model performed surprisingly well
in our experiments. Note that we cannot simply increase the embedding dimensionality in Binary
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Figure 1: The Binary PV-DBOW model. Modifications to the original PV-DBOW model are high-
lighted.

PV-DBOW in order to learn better codes: binary vectors learned in this way would be too long to be
useful in document hashing. The retrieval performance can, however, be improved by using binary
codes for initial filtering of documents, and then using a representation with higher capacity to rank
the remaining documents by their similarity to the query. Salakhutdinov & Hinton (2009), for exam-
ple, used semantic hashing codes for initial filtering and TF-IDF for ranking. A similar document
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retrieval strategy can be realized with binary paragraph vectors. Furthermore, we can extend the
Binary PV-DBOW model to simultaneously learn short binary codes and higher-dimensional real-
valued representations. Specifically, in the Real-Binary PV-DBOW model (Figure 2) we introduce
a linear projection between the document embedding matrix and the sigmoid nonlinearity. During
training, we learn the softmax parameters and the projection matrix. During inference, softmax
weights and the projection matrix are fixed. This way, we simultaneously obtain a high-capacity
representation of a document in the embedding matrix, e.g. 300-dimensional real-valued vector, and
a short binary representation from the sigmoid activations. One advantage of using the Real-Binary
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Figure 2: The Real-Binary PV-DBOW model. Modifications to the original PV-DBOW model are
highlighted.

PV-DBOW model over two separate networks is that we need to store only one set of softmax
parameters (and a small projection matrix) in the memory, instead of two large weight matrices.
Additionally, only one model needs to be trained, rather than two distinct networks.

Binary document codes can also be learned by extending distributed memory models. Le & Mikolov
(2014) suggest that in PV-DM, a context of the central word can be constructed by either concate-
nating or averaging the document vector and the embeddings of the surrounding words. However,
in Binary PV-DM (Figure 3) we always construct the context by concatenating the relevant vectors
before applying the sigmoid nonlinearity. This way, the length of binary codes is not tied to the
dimensionality of word embeddings.
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Figure 3: The Binary PV-DM model. Modifications to the original PV-DM model are highlighted.

Softmax layers in the models described above should be trained to predict words in documents given
binary context vectors. Training should therefore encourage binary activations in the preceding sig-
moid layers. This can be done in several ways. In semantic hashing autoencoders Salakhutdinov &
Hinton (2009) added noise to the sigmoid coding layer. Error backpropagation then countered the
noise, by forcing the activations to be close to 0 or 1. Another approach was used by Krizhevsky
& Hinton (2011) in autoencoders that learned binary codes for small images. During the forward
pass, activations in the coding layer were rounded to 0 or 1. Original (i.e. not rounded) activations
were used when backpropagating errors. Alternatively, one could model the document codes with
stochastic binary neurons. Learning in this case can still proceed with error backpropagation, pro-
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vided that a suitable gradient estimator is used alongside stochastic activations. We experimented
with the methods used in semantic hashing and Krizhevsky’s autoencoders, as well as with the two
biased gradient estimators for stochastic binary neurons discussed by Bengio et al. (2013). We also
investigated the slope annealing trick (Chung et al., 2016) when training networks with stochastic bi-
nary activations. From our experience, binary paragraph vector models with rounded activations are
easy to train and learn better codes than models with noise-based binarization or stochastic neurons.
We therefore use Krizhevsky’s binarization in our models.

3 EXPERIMENTS

To assess the performance of binary paragraph vectors, we carried out experiments on two datasets
frequently used to evaluate document retrieval methods, namely 20 Newsgroups1 and a cleansed
version (also called v2) of Reuters Corpus Volume 12 (RCV1). As paragraph vectors can be trained
with relatively large vocabularies, we did not perform any stemming of the source text. However,
we removed stop words as well as words shorter than two characters and longer than 15 characters.
Results reported by Li et al. (2015) indicate that performance of PV-DBOW can be improved by
including n-grams in the model. We therefore evaluated two variants of Binary PV-DBOW: one
predicting words in documents and one predicting words and bigrams. Since 20 Newsgroups is
a relatively small dataset, we used all words and bigrams from its documents. This amounts to
a vocabulary with slightly over one million elements. For the RCV1 dataset we used words and
bigrams with at least 10 occurrences in the text, which gives a vocabulary with approximately 800
thousands elements.

The 20 Newsgroups dataset comes with reference train/test sets. In case of RCV1 we used half
of the documents for training and the other half for evaluation. We perform document retrieval by
selecting queries from the test set and ordering other test documents according to the similarity of
the inferred codes. We use Hamming distance for binary codes and cosine similarity for real-valued
representations. Results are averaged over queries. We assess the performance of our models with
precision-recall curves and two popular information retrieval metrics, namely mean average preci-
sion (MAP) and the normalized discounted cumulative gain at the 10th result (NDCG@10) (Järvelin
& Kekäläinen, 2002). The results depend, of course, on the chosen document relevancy measure.
Relevancy measure for the 20 Newsgroups dataset is straightforward: a retrieved document is rel-
evant to the query if they both belong to the same newsgroup. However, in RCV1 each document
belongs to a hierarchy of topics, making the definition of relevancy less obvious. In this case we
adopted the relevancy measure used by Salakhutdinov & Hinton (2009). That is, the relevancy is cal-
culated as the fraction of overlapping labels in a retrieved document and the query document. Over-
all, our selection of test datasets and relevancy measures follows Salakhutdinov & Hinton (2009),
enabling comparison with semantic hashing codes.

We use AdaGrad (Duchi et al., 2011) for training and inference in all experiments reported in this
work. During training we employ dropout (Srivastava et al., 2014) in the embedding layer. To
facilitate models with large vocabularies, we approximate the gradients with respect to the softmax
logits using the method described by Cho et al. (2015). Binary PV-DM networks use the same
number of dimensions for document codes and word embeddings.

Performance of 128- and 32-bit binary paragraph vector codes is reported in Table 1 and in Fig-
ure 4. For comparison we also report performance of real-valued paragraph vectors. Note that the
binary codes perform very well, despite their far lower capacity: on both test sets the 128-bit Binary
PV-DBOW trained with bigrams approaches the performance of the real-valued paragraph vectors.
Furthermore, Binary PV-DBOW with bigrams outperforms semantic hashing codes: comparison of
precision-recall curves from Figure 4 with Salakhutdinov & Hinton (2009, Figures 6 & 7) shows
that on both test sets 128-bit codes learned with this model outperform 128-bit semantic hashing
codes. Moreover, the 32-bit codes from this model outperform 128-bit semantic hashing codes on
the RCV1 dataset, and on the 20 Newsgroups dataset give similar precision up to approximately 3%
recall and better precision for higher recall levels. Note that the difference in this case lies not only
in retrieval precision: the short 32-bit Binary PV-DBOW codes are more efficient for indexing than
long 128-bit semantic hashing codes.

1Available at http://qwone.com/˜jason/20Newsgroups
2Available at http://trec.nist.gov/data/reuters/reuters.html
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Table 1: Information retrieval results. The best results with binary models are highlighted.

Code
Model

With 20 Newsgroups RCV1
size bigrams MAP NDCG@10 MAP NDCG@10

128

PV-DBOW
no 0.4 0.75 0.25 0.79
yes 0.45 0.75 0.27 0.8

Binary PV-DBOW
no 0.34 0.69 0.22 0.74
yes 0.35 0.69 0.24 0.77

PV-DM
N/A

0.41 0.73 0.23 0.78
Binary PV-DM 0.34 0.65 0.18 0.69

32

PV-DBOW
no 0.43 0.71 0.26 0.75
yes 0.46 0.72 0.27 0.77

Binary PV-DBOW
no 0.32 0.53 0.22 0.6
yes 0.32 0.54 0.25 0.66

PV-DM
N/A

0.43 0.7 0.23 0.77
Binary PV-DM 0.29 0.49 0.17 0.53

We also compared binary paragraph vectors against codes constructed by first inferring short, real-
valued paragraph vectors and then using another unsupervised model or hashing algorithm for bi-
narization. When the dimensionality of the paragraph vectors is equal to the size of binary codes,
the number of network parameters in this approach is similar to that of Binary PV models. We
experimented with an autoencoder with sigmoid coding layer and Krizhevsky’s binarization, with
a Gaussian-Bernoulli Restricted Boltzmann Machine (Welling et al., 2004), and with two standard
hashing algorithms, namely random hyperplane projection (Charikar, 2002) and iterative quantiza-
tion (Gong & Lazebnik, 2011). Paragraph vectors in these experiments were inferred using PV-
DBOW with bigrams. Results reported in Table 2 shows no benefit from using a separate algorithm
for binarization. On the 20 Newsgroups dataset an autoencoder with Krizhevsky’s binarization
achieved MAP equal to Binary PV-DBOW, while the other three approaches yielded lower MAP.
On the larger RCV1 dataset an end-to-end training of Binary PV-DBOW yielded higher MAP than
the baseline approaches. Some gain in precision of top hits can be observed for iterative quantization
and an autoencoder with Krizhevsky’s binarization. However, it does not translate to an improved
MAP, and decreases when models are trained on a larger corpus (RCV1).

Table 2: Information retrieval results for 32-bit binary codes constructed by first inferring 32d real-
valued paragraph vectors and then employing another unsupervised model or hashing algorithm for
binarization. Paragraph vectors were inferred using PV-DBOW with bigrams.

Binarization model
20 Newsgroups RCV1

MAP NDCG@10 MAP NDCG@10
Autoencoder with Krizhevsky’s

0.32 0.57 0.24 0.67
binarization

Gaussian-Bernoulli RBM 0.26 0.39 0.23 0.52
Random hyperplane projection 0.27 0.53 0.21 0.66

Iterative quantization 0.31 0.58 0.23 0.68

Li et al. (2015) argue that PV-DBOW outperforms PV-DM on a sentiment classification task, and
demonstrate that the performance of PV-DBOW can be improved by including bigrams in the vo-
cabulary. We observed similar results with Binary PV models. That is, including bigrams in the
vocabulary usually improved retrieval precision. Also, codes learned with Binary PV-DBOW pro-
vided higher retrieval precision than Binary PV-DM codes. Furthermore, to choose the context size
for the Binary PV-DM models, we evaluated several networks on validation sets taken out of the
training data. The best results were obtained with a minimal one-word, one-sided context window.
This is the distributed memory architecture most similar to the Binary PV-DBOW model.
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Figure 4: Precision-recall curves for the 20 Newsgroups and RCV1 datasets. Cosine similarity was
used with real-valued representations and the Hamming distance with binary codes. For compar-
ison we also included semantic hashing results reported by Salakhutdinov & Hinton (2009, Fig-
ures 6 & 7).

3.1 TRANSFER LEARNING

In the experiments presented thus far we had at our disposal training sets with documents similar
to the documents for which we inferred binary codes. One could ask a question, whether binary
paragraph vectors could be used without collecting a domain-specific training set? For example,
what if we needed to hash documents that are not associated with any available domain-specific
corpus? One solution could be to train the model with a big generic text corpus, that covers a
wide variety of domains. It is not obvious, however, whether such model would capture language
semantics meaningful for unrelated documents. To shed light on this question we trained Binary PV-
DBOW with bigrams on the English Wikipedia, and then inferred binary codes for the test parts of
the 20 Newsgroups and RCV1 datasets. We used words and bigrams with at least 100 occurrences in
the English Wikipedia. The results are presented in Table 3 and in Figure 5. The model trained on an
unrelated text corpus gives lower retrieval precision than models with domain-specific training sets,
which is not surprising. However, it still performs remarkably well, indicating that the semantics it
captured can be useful for different text collections. Importantly, these results were obtained without
domain-specific finetuning.
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Table 3: Information retrieval results for the Binary PV-DBOW model trained on an unrelated text
corpus. Results are reported for 128-bit codes.

MAP NDCG@10
20 Newsgroups 0.24 0.51

RCV1 0.18 0.66
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Figure 5: Precision-recall curves for the baseline Binary PV-DBOW models and a Binary PV-
DBOW model trained on an unrelated text corpus. Results are reported for 128-bit codes.

3.2 RETRIEVAL WITH REAL-BINARY MODELS

As pointed out by Salakhutdinov & Hinton (2009), when working with large text collections one can
use short binary codes for indexing and a representation with more capacity for ranking. Follow-
ing this idea, we proposed Real-Binary PV-DBOW model (Section 2) that can simultaneously learn
short binary codes and high-dimensional real-valued representations. We begin evaluation of this
model by comparing retrieval precision of real-valued and binary representations learned by it. To
this end, we trained a Real-Binary PV-DBOW model with 28-bit binary codes and 300-dimensional
real-valued representations on the 20 Newsgroups and RCV1 datasets. Results are reported in Fig-
ure 6. The real-valued representations learned with this model give lower precision than PV-DBOW
vectors but, importantly, improve precision over binary codes for top ranked documents. This justi-
fies their use alongside binary codes.

Using short binary codes for initial filtering of documents comes with a tradeoff between the retrieval
performance and the recall level. For example, one can select a small subset of similar documents by
using 28–32 bit codes and retrieving documents within small Hamming distance to the query. This
will improve retrieval performance, and possibly also precision, at the cost of recall. Conversely,
short codes provide a less fine-grained hashing and can be used to index documents within larger
Hamming distance to the query. They can therefore be used to improve recall at the cost of retrieval
performance, and possibly also precision. For these reasons, we evaluated Real-Binary PV-DBOW
models with different code sizes and under different limits on the Hamming distance to the query. In
general, we cannot expect these models to achieve 100% recall under the test settings. Furthermore,
recall will vary on query-by-query basis. We therefore decided to focus on the NDCG@10 metric
in this evaluation, as it is suited for measuring model performance when a short list of relevant
documents is sought, and the recall level is not known. MAP and precision-recall curves are not
applicable in these settings.

Information retrieval results for Real-Binary PV-DBOW are summarized in Table 4. The model
gives higher NDCG@10 than 32-bit Binary PV-DBOW codes (Table 1). The difference is large
when the initial filtering is restrictive, e.g. when using 28-bit codes and 2-bit Hamming distance
limit. Real-Binary PV-DBOW can therefore be useful when one needs to quickly find a short list
of relevant documents in a large text collection, and the recall level is not of primary importance.
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If needed, precision can be further improved by using plain Binary PV-DBOW codes for filtering
and standard DBOW representation for raking (Table 4, column C). Note, however, that PV-DBOW
model would then use approximately 10 times more parameters than Real-Binary PV-DBOW.
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Figure 6: Information retrieval results for binary and real-valued codes learned by the Real-Binary
PV-DBOW model with bigrams. Results are reported for 28-bit binary codes and 300d real-valued
codes. A 300d PV-DBOW model is included for reference.

Table 4: Information retrieval results for the Real-Binary PV-DBOW model. All real valued repre-
sentations have 300 dimensions and are use for ranking documents according to the cosine similarity
to the query. (A) Real-valued representations learned by Real-Binary PV-DBOW are used for rank-
ing all test documents. (B) Binary codes are used for selecting documents within a given Hamming
distance to the query and real-valued representations are used for ranking. (C) For comparison,
variant B was repeated with binary codes inferred using plain Binary PV-DBOW and real-valued
representation inferred using original PV-DBOW model.

Code Hamming NDCG@10
size distance (bits) 20 Newsgroups RCV1

A B C A B C
28

2
0.64 0.72 0.87 0.75 0.79 0.87

24 0.6
0.65 0.86

0.74
0.76 0.83

3
0.63 0.8 0.75 0.81

20 0.58 0.6 0.73 0.73 0.73 0.79
16 0.54 0.55 0.72 0.72 0.72 0.79

4 CONCLUSION

In this article we presented simple neural networks that learn short binary codes for text documents.
Our networks extend Paragraph Vector by introducing a sigmoid nonlinearity before the softmax
that predicts words in documents. Binary codes inferred with the proposed networks achieve higher
retrieval precision than semantic hashing codes on two popular information retrieval benchmarks.
They also retain a lot of their precision when trained on an unrelated text corpus. Finally, we
presented a network that simultaneously learns short binary codes and longer, real-valued represen-
tations.

The best codes in our experiments were inferred with Binary PV-DBOW networks. The Binary PV-
DM model did not perform so well. Li et al. (2015) made similar observations for Paragraph Vector
models, and argue that in distributed memory model the word context takes a lot of the burden of
predicting the central word from the document code. An interesting line of future research could,
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therefore, focus on models that account for word order, while learning good binary codes. It is
also worth noting that Le & Mikolov (2014) constructed paragraph vectors by combining DM and
DBOW representations. This strategy may proof useful also with binary codes, when employed with
hashing algorithms designed for longer codes, e.g. with multi-index hashing (Norouzi et al., 2012).
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A VISUALIZATION OF BINARY PV CODES

For an additional comparison with semantic hashing, we used t-distributed Stochastic Neighbor
Embedding (van der Maaten & Hinton, 2008) to construct two-dimensional visualizations of codes
learned by Binary PV-DBOW with bigrams. We used the same subset of newsgroups and RCV1
topics that is pictured in Salakhutdinov & Hinton (2009, Figure 5). Codes learned by Binary PV-
DBOW (Figure 7) appear slightly more clustered.

(a) A subset of the 20 Newsgroups dataset: green - soc.religion.christian, red - talk.politics.guns,
blue - rec.sport.hockey, brown - talk.politics.mideast, magenta - comp.graphics, black - sci.crypt.

128 dimensional codes 32 dimensional codes

(b) A subset of the RCV1 dataset: green - disasters and accidents, red - government borrowing, blue
- accounts/earnings, magenta - energy markets, black - EC monetary/economic.

128 dimensional codes 32 dimensional codes

Figure 7: t-SNE visualization of binary paragraph vector codes; the Hamming distance was used to
calculate code similarity.
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