
LinkChains: Exploring the space of decentralised
trustworthy Linked Data

Allan Third and John Domingue

Knowledge Media Institute, Open University, Milton Keynes, MK7 6AA, UK
{allan.third,john.domingue}

@open.ac.uk

Abstract. Distributed ledger platforms based on blockchains provide a
fully distributed form of data storage which can guarantee data integrity.
Certain use cases, such as medical applications, can benefit from guar-
antees that the results of arbitrary queries against a Linked Data set
faithfully represent its contents as originally published, without tamper-
ing or data corruption. We describe potential approaches to the storage
and querying of Linked Data with varying degrees of decentralisation
and guarantees of integrity, using distributed ledgers, and discuss their
a priori differences in performance, storage limitations and reliability,
setting out a programme for future empirical research.

1 Introduction

This paper presents an exploration of the space of approaches to the storage and
querying of Linked Data using distributed ledgers based on blockchains, in or-
der to provide distributed data storage and query processing while maintaining
guarantees of data integrity against corruption or tampering. These approaches
can be useful in domains such as medicine, engineering and scientific data pub-
lishing, where data integrity can be of critical importance, and where distributed
access to data would provide benefits in terms of availability and reliability.

Decentralisation has benefits other than increasing reliability by distribution.
There is also an issue of control and trust. If important data is kept centralised,
there remains the possibility of it being modified to suit the agenda of the central
data controller. This is particularly a risk if the data is of financial importance
to multiple, potentially disagreeing parties, particularly if the person or organi-
sation controlling data also stands to profit from it. There can be political issues
too, for example with climate data (see, e.g., [7]) or transparency in pharmaceu-
tical trials. Decentralisation provides insurance against problems in these types
of scenario, particularly if there can be strong guarantees of data integrity.

Since the introduction of Bitcoin [9], there have been significant efforts to
extend its underlying blockchain technology to more general uses cases beyond
simply cryptocurrency. The general notion of blockchains as secure, tamper-
proof, fully-distributed append-only record stores has given rise to the term
“Distributed Ledger” (DL). With the advent of blockchain platforms such as



Ethereum [16] capable of executing code, there has been (occasionally hyper-
bolic) talk of blockchains replacing the Web – the Ethereum Javascript library
is even called web3 – with part of the motivation being that blockchains are fully
decentralised. Each node in a network has a full copy of the blockchain and has
the potential to write to it; no node is privileged over any other.

More likely is that distributed ledger technology and the Web will develop to
complement each other, where relevant (see, for example, [8]). This paper sets
out the ways in which distributed ledgers can provide for the integrity of Linked
Data sets and Linked Data queries, and how this varies with the degree to which
data storage and querying are decentralised.

We present multiple approaches to this problem, differing in their levels of
decentralisation and strength of guarantee of integrity offered, and compare them
with each other. We begin by discussing Linked Data and distributed ledgers, and
then present the different approaches available (potential “LinkChains”) for the
storage and querying of Linked Data, tabulating how they compare along various
axes and finally discussing what both distributed ledgers and the Semantic Web
are lacking in order to support the full benefits of a Distributed Semantic Web.

2 Linked Data

Linked Data is one of the key components of the Semantic Web – the notion of
a large-scale machine-comprehensible Web of Data sitting alongside and com-
plementing the existing human-readable Web. Linked Data is often associated
with the Open Data movement, and there has been considerable success in en-
couraging the publication of large volumes of Linked Open Data for public reuse
– see, e.g, [4]. The usual standard for Linked Data is the Resource Description
Framework (RDF) [15], in which data are represented as triples – semantically,
“subject predicate object” sentences – or quads – “graph subject predicate ob-
ject” sentences – where graphs serve to group triples.

The aim of Linked Data is to support a Web of Data, and so, like the human-
readable Web, is designed around the idea that anyone can publish data without
any centralisation, and importantly, that once published, data can be consumed
by anyone who knows where to find it. The idea is therefore to support more
straightforward data integration, thanks to the common and simple data model,
based on multiple authors of data and common querying approaches.

Issues with centralised Linked Data publishing include availability and mu-
tability. A particular dataset is only available to be queried provided that its
hosting datastore remains available online. Even if its contents are mirrored, if
it contains URIs pointing to a particular server, those terms will cease to be
dereferencable if that server no longer exists. The contents of a dataset may
also be changed at any time, with no inherent means for clients to determine
when this has happened. Alterations to data can occur for a variety of reasons:
everyday updates by data authors, corruption or, potentially, deliberate data
tampering or removal (for example, [7]). For many use cases, of course this mu-
tability is an advantage, if it is important always to have the most up-to-date



data. For others, however, the opposite is true; it can be important to know that
data has not been modified, or that it corresponds to a particular version of the
dataset, for example, for retrospective clinical accountability.

3 Distributed Ledgers and Blockchains

A distributed ledger is an ordered list of records whose full contents are shared by
nodes across a network, to which multiple authors can write in an append-only
way. A distributed ledger is intended to be immutable – once a record has been
appended, it effectively cannot be deleted or edited – and decentralised – there is
no central authority with control over access to it. The most well known example
of a distributed ledger is the Bitcoin infrastructure [9]; users are prevented from
spending the same Bitcoins twice by reference to a distributed ledger recording
every transaction in which Bitcoins are transferred.

These properties of distributed ledgers are ensured by the use of blockchains.
A blockchain is a data structure consisting of a linked list of blocks, originating
with a genesis block, with each block containing a set of transaction records.
Every node on a blockchain network has a complete copy of the entire chain,
and nodes compete for the right to aggregate (“mine”) new transactions into
a block and append that block to the chain, which is awarded by consensus of
the whole network. Successful nodes are rewarded in some way (e.g., with coins
in an associated cryptocurrency). There are different ways to implement the
competition mechanism, with the most common being “proof of work”, where
nodes must demonstrate the solution to a hard computational problem. The main
requirements are that there be a cost to adding a new block, and that if different
nodes disagree on the contents of the next block (“forking” the blockchain),
there is an incentive to resolve forks quickly according to a consensus. Once a
block has been added to a chain, anyone wishing to rewrite its contents must
convince the network as a whole to agree; the further back along the chain
a block is, the harder and more expensive it is to do. Provided a blockchain
network is sufficiently diverse (no more than 50% of all nodes owned or controlled
by a malicious owner), the contents of a blockchain are secure from malicious
alterations, and blocks a sufficient distance back along the chain from the most
recent block may be regarded as effectively immutable (see [6]) and containing
transactions which the network as a whole regards as having really happened.

Recent moves have taken distributed ledgers beyond storage of records to
include distributed computation as well, with the idea of smart contracts. These
are blobs of executable code stored on a blockchain with a published interface
describing methods and their parameters. When a transaction which calls a
smart contract method is mined onto the blockchain, that code is executed on
all nodes of the network. Because the content of a smart contract is subject
to the same promises of immutability as other kinds of blockchain data, and
code and data can be signed cryptographically, smart contracts can be a form of
trustworthy distributed computation. At the time of writing, the most developed
smart-contract-based distributed ledger platform is Ethereum [16].



Of course it takes resources to run a smart contract, and, being written in
Turing-complete languages, there is no way to guarantee that an arbitrary con-
tract will terminate on arbitrary input. Invocation of smart contracts therefore
involve a cost per significant step of computation.

Interfaces between distributed ledgers and the Semantic Web are in their in-
fancy. FlexLedger [11] describes generic HTTP interfaces to blockchains, with a
vocabulary implicit in the standardised names and responses of these interfaces.
BLONDiE [14] and EthOn [10] formalise blockchain concepts as ontologies. [12]
and [13] discuss initial approaches to RDF indexing of blockchains, and certifi-
cation of RDF temporal streams on blockchains, but both are very preliminary.

4 Distributed File Storage

There are a number of options for distributed file storage with content-based
addressing, and which can be used to provide some guarantee of file integrity,
such as the Interplanetary Filesystem (IPFS) [5], Swarm [1] and FileCoin [2].

The essential idea of content-addressed distributed storage is that all nodes
on a network share an index of files identified by the hash of their contents.
When any client requests a particular hash, all nodes hosting all or part of that
file respond and the contents can be copied by peer-to-peer filesharing to the
requesting node, where the original file’s contents are reassembled.

Files are immutable in the sense that any change to the contents results
in a change of hash, making it impossible to access a modified file’s contents
using the original file’s hash. However, there is generally no replication of data
without a request, e.g., on IPFS, and it is possible for file content to disappear
if the original host disappears and no cached copies remain on the network.

5 Data integrity and distribution

Distributed ledger technologies with smart contracts have the potential to pro-
vide immutable, trustworthy data storage and querying in a highly-decentralised
manner. It should be noted that by “trustworthy”, we mean “unmodified since
initial publication and reliably timestamped”. Of course if datasets are incorrect
when first published, the usual “Garbage In, Garbage Out” principle applies.

We here present the range of broad approaches to the storage and querying
of Linked Data in distributed contexts, and compare them according to: data
integrity guarantee, distribution of data, distribution of query processing, cost of
data storage and cost of data processing. In particular, we also consider whether
data integrity for a particular query can be verified in time proportional to the
size of the containing dataset, or proportional to the size of the query results.



6 Distributed trustworthy storage and querying

6.1 Base case

The default case for comparison is Linked Data stored in a single server in, for
example, a triple or quad store, or embedded in HTML. Data may be distributed
only effectively by duplication of the full datastore, with anyone wishing to use
any copy of the data needing to know the precise location of the desired copy.
Of course a Linked Dataset can be “distributed” across multiple datastores and
be drawn together by queries – this, after all, is one of the main points of Linked
Data – but in this case too, it is necessary to know the physical locations of each
segment of the data, and it is anyway somewhat orthogonal to the point. For the
sake of argument, let us assume that we are discussing a single dataset stored
in one logical location, with linked integrations performed in the usual ways on
top of the storage and querying described here.

Standard approaches, then, support only a manually-managed distribution of
data. Distribution of query processing is not supported either: queries are eval-
uated in a single location, whether server or client. Storage and querying costs
are ongoing and relate to the server costs of hosting. There are no guarantees of
data integrity beyond what can be achieved by securing the relevant servers.

6.2 Content-addressed distributed storage (CADS)

There can be increased assurances of data integrity with content-addressed dis-
tributed storage, which could serve as filesystem in the backend of a Linked Data
store, and, because CADS identifies a file by hashing its contents, these hashes
can be returned with query results. A client can then, if desired, retrieve the
file directly from CADS and verify its contents. In order further to ensure that
dataset contents have not been modified, a client must also have a local copy
of all relevant hashes to which to compare the results – otherwise a malicious
user could replace both dataset contents and published hashes to ensure that
tampered data still appeared genuine.

Here, querying is not distributed and query costs are higher than the base
case, largely because verification of results requires copying a whole dataset.
Data storage is distributed “on demand” - CADS files are mirrored across the
network as needed. This has two consequences, which may cause a delay the
first time a dataset is accessed, and lead to a risk of file contents becoming
inaccessible if their original host deletes them or goes down and they are not
cached on other nodes. Storage costs are therefore similar to the base case.

Using a distributed ledger with CADS (CADS+DL) A slight improve-
ment to the data verification step of this approach could be made to avoid the
requirement for clients to maintain secure lists of dataset hashes and times-
tamps, by placing, at the time of dataset publication, its hash and timestamp
in a record on a distributed ledger. This would then permit checking of a hash
and its timestamp in a trustable way without the need for a local copy.



The need to check the entire dataset from which results are drawn is ex-
pensive, potentially prohibitively so, as well as unnecessary and inelegant where
query results may be very small in comparison with their source.

6.3 Distributed ledgers for storage and querying

Ideally, one could verify a query result in time proportional to the size of the
query results themselves, and not the full dataset. We can do this by storing
Linked Data directly on distributed ledgers. The following describes three ap-
proaches to doing so.

All approaches require a common data store, implemented as a contract. For
consistent hashing, this requires a canonical string format for quads.

Base case with an accompanying distributed ledger (Base+DL) The
standard query engine approach involves using a quad store as in the basic case,
with the data kept in the store as normal. On retrieval of query results, these can
be verified by transforming each quad in the result into the canonical format, and
checking each individually using the methods of the smart contract datastore.
This can be applied using a SPARQL server too, but requires some extra trans-
formation of query results – SPARQL SELECT queries return variable bindings
matching a given graph pattern; to generate quads, the graph pattern would
need to be expanded with each variable binding in turn.

The benefits of this approach are that it provides query-level verification (as
opposed to dataset-level) while maintaining a standardised infrastructure. Data
is technically distributed in that it is duplicated across the distributed ledger by
being in the smart contract datastore, but the copy of the datastore for querying
is redundant. Query processing is similarly split, with query evaluation taking
place in the standard datastore, and verification being distributed. While there
is an extra cost in populating the smart contract datastore, the verification does
not cost, as it involves only reading from a contract. The guarantee of data
integrity inherits the guarantee provided by the distributed ledger, with the
possibility to check data timestamps in a trustworthy way.

Base case with a distributed ledger backend (Base+DL backend) The
redundant duplication of the data can be avoided by adapting a standard quad
store to use the smart contract data store as a backend. Apart from the saving
in data, this approach has similar properties to the preceding one.

“Pure” distributed ledger (“Pure” DL) For a fully decentralised solution,
both data storage and querying can be carried out on a distributed ledger. To do
so, we use the same smart contract datastore, and add a smart contract index
and query engine. This method achieves fully distributed storage and querying
of Linked Data on a distributed ledger with strong guarantees of data integrity.
The trade-off is cost: as well as the initial cost of populating the smart contract
data store, there is an execution cost for evaluating every query.



7 Comparison and Evaluation

Table 1 summarises the different approaches, with the aim of classifying of pos-
sible solutions which can be considered in the context of particular concrete use
cases, and, importantly, to provide a programme for future empirical research.

Base case CADS CADS+DL Base+DL Base+DL “Pure” DL
backend

Data No On demand On demand Partial* Yes Yes
distributed

Queries No No No No No Yes
distributed

Verification No No No Yes Yes Yes
distributed

Ongoing Yes Yes Yes Yes Yes No
data cost

One-off No No Small Large Large Large
data cost

Query cost Low Medium* Medium* Low Low High

Integrity None Yes, cost for Yes, cost for Yes Yes Yes
guarantee management verification
Table 1. Comparison of approaches to verifiable Linked Data storage and querying.
Medium*: low query cost, high verification cost, Partial*: Yes, but a local copy of the
data is also needed

We are in the process of implementing each of the non-base scenarios above in
order to experiment with their real-world performance and cost in comparison
with each other. However, doing so is only one step in the whole process of
using Distributed Ledgers properly for the Semantic Web. There are a number
of further issues to be solved; in particular, addressing on the distributed ledger
side, and tools and standards for trust metadata on the Linked Data side.

Addressing is perhaps the most pressing of these. Fundamental to Linked
Data is the notion that resources be addressable by URL. While Ethereum has
the Ethereum Name Service [3], which allows human-readable names to be as-
signed to Ethereum resources, these names are not connected to standard DNS
resolution. Individual nodes may of course have URLs and Web gateways, but
nodes are potentially transitory and no one node is essential to a distributed
ledger platform, by design. Ideally, akin to the “protocol, host, path” pattern
for Web URLs, there would be a “chain type, chain, resource” URL format, where
“chain type” specifies a particular distributed ledger protocol, (e.g., Ethereum or
Bitcoin, “chain” specifies an individual instance of a ledger (e.g., the Ethereum
main or developers’ chain, the Bitcoin blockchain), resolvable via standard DNS,
and “resource” identifies a particular entity or resource.

On the Linked Data side, the most common model for query results are the
variable binding results provided by SPARQL endpoints, yet none of the specific



formats for this model, as far as we are aware, are able to carry metadata about
the results. Ideally, it would be possible to insert trust and provenance metadata
(as RDF) in a result set for clients to access easily.

8 Conclusion and Future Work

We have described and categorised multiple different approaches to the verifiable
storage and querying of Linked Data on distributed ledgers, comparing them
with each other along multiple axes.

We are in the early days of exploring the potential of distributed ledgers and
their role in supporting architectures for verified claims. This potential will only
be realised and fully exploited with standard means of connecting them to the
existing data architecture of the Web, and the wealth of existing work on Linked
Data and the Semantic Web.

References

1. (2017), http://swarm-gateways.net
2. (2017), http://filecoin.io
3. (July 2017), https://ens.domains
4. Abele, A., McCrae, J.P., Buitelaar, P., Jentzsch, A., Cyganiak, R.: Linking Open

Data Cloud Diagram 2017. http://lod-cloud.net/ (2017)
5. Benet, J.: IPFS: content addressed versioned P2P fs. arXiv:1407.3561 (2014)
6. Buterin, V.: http://ethereum.stackexchange.com/a/203 (2016)
7. Eilperin, J.: Under Trump, inconvenient data is being sidelined (2017),

https://www.washingtonpost.com/politics/under-trump-inconvenient-data-is-
being-sidelined/2017/05/14/3ae22c28-3106-11e7-8674-437ddb6e813e story.html

8. English, M., Auer, S., Domingue, J.: Blockchain technologies & the Semantic Web:
A framework for symbiotic development. In: CS Conference for University of Bonn
Students, J. Lehmann, H. Thakkar, L. Halilaj, and R. Asmat, Eds. pp. 47–61 (2016)

9. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
10. Pfeffer, J., Beregszazi, A., Detrio, C., Junge, H., Chow, J., Oancea, M.,

Pietrzak, M., Khatchadourian, S., Bertolo, S.: EthOn - an Ethereum ontology.
https://consensys.github.io/EthOn/EthOn spec.html (2016)

11. Sporny, M., Longley, D.: Flex Ledger 1.0. W3C Blockchain CG (2016)
12. Third, A., Domingue, J.: Linked Data indexing of distributed ledgers. In: Proceed-

ings of the 1st International Workshop on Linked Data and Distributed Ledgers
at WWW 2017. pp. 1431–1436. WWW 2017 (2017)

13. Third, A., Tiddi, I., Bastianelli, E., Valentine, C., Domingue, J.: Towards the
temporal streaming of graph data on distributed ledgers. In: 2nd International
Workshop on Linked Data and Distributed Ledgers, Supplementary Proceedings
of the 14th Extended Semantic Web Conference (forthcoming 2017)

14. Ugarte, H.: BLONDiE. https://github.com/EIS-Bonn/BLONDiE (2016)
15. W3C: Resource Description Framework. https://www.w3.org/RDF/ (2014)
16. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper (2014)


