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N:M Structured sparsity has garnered significant interest as a result of relatively modest
overhead and improved efficiency. Additionally, this form of sparsity holds considerable
appeal for reducing the memory footprint owing to their modest representation overhead.
There have been efforts to develop training recipes for N:M structured sparsity, they primarily
focus on low-sparsity regions (~50%). Nonetheless, performance of models trained using
these approaches tends to decline when confronted with high-sparsity regions (>80%). In
this work, we study the effectiveness of existing sparse training recipes at high-sparsity
regions and argue that these methods fail to sustain the model quality on par with low-
sparsity regions. We demonstrate that the significant factor contributing to this disparity is
the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate
this undesirable effect, we employ decay mechanisms to progressively restrict the flow of
gradients towards pruned elements. Our approach improves the model quality by up to 2%
and 5% in vision and language models at high sparsity regime, respectively. We also evaluate
the trade-off between model accuracy and training compute cost in terms of FLOPs. At
iso-training FLOPs, our method yields better performance compared to conventional sparse
training recipes, exhibiting an accuracy improvement of up to 2%. We have open-sourced
our verified implementation and it can be found at https://github.com/abhibambhaniya/
progressive_gradient_flow_nm_sparsity.

1. Introduction

A prevailing tendency in state-of-the-art DNN is the rapid increase in their model [1H5]. To address the deploy-
ment challenges of these models, a large body of research proposes quantization [6H10], sparsification [11H20]],
and distillation [21]. This paper centers its attention on sparsification/pruning offering the following benefits:
(a) improved performance [22], (b) reduce memory usage [23], & (c) higher energy efficiency [24, 25]].

While appealing, sparsification predominantly revolves around the inherent trade-offs between the quality
of the model and compression ratio[ﬂ For example, some studies [13| [26] have demonstrated promising
results in achieving unstructured sparsity levels of around 90%-95% in image classification models, while
maintaining the quality of dense models. Similarly, the noticeable achievements of transformer-based models,
primarily driven by their exponential growth in model size [27], have stimulated interest [28531] in exploring
sparsification recipes for such models with high sparsity ratio. This serves as a significant incentive for the
sparsification of attention-based models, as it enables the pruning of a substantial number of model parameters
(>70%) 32, [33]]. Despite its inherent ability to trim the memory footprint of large models, the realization of
unstructured sparsity in hardware poses nontrivial challenges for acceleration. The sparsity-induced models
frequently exhibit comparable or inferior performance to their dense counterparts because of the additional
intricacies involved in compression/decompression of model parameters [[34439].

As such, structured sparsity has gained significant popularity because of its hardware-friendly characteristics.
[[L6l 40-45] found that employing fine-grained N:M structured sparsity, has the potential to mitigate the

*Equal contributions.
'We designate algorithmic-wise factors such as accuracy, recall, and precision as model quality. and denote model
runtime/latency as model performance.
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degradation in quality. Moreover, the debut of 2:4 structured-sparse tensor core in GPU Ampere architec-
ture [34] has generated additional enthusiasm in developing efficient N:M training recipes. Although recent
methods [22} 146150 demonstrate acceptable quality, their main focus lies in addressing sparsity levels up
to 2:8. These methods, however, less effective when dealing with high sparsity regimes such as 1:16, 1:32,
and higher. Through our studies, we identify that elevated levels of induced noise in the gradient magnitudes
constitute a notable contributing factor to such quality degradation. This phenomenon can be primarily
attributed to either the absence [51} 152] or perturbation of gradient flow of existing sparse training recipes.
Building on the insights our experiments, we introduce alternative training recipes that demonstrate substantial
improvements in model quality, particularly at high sparsity regime. We made the following contributions:

* The impact of gradient perturbations becomes increasingly evident at elevated levels of sparsity,
leading to a deterioration in the quality of the model. We present empirical evidence that SR-STE, a
state-of-the-art N:M structured training recipe [22]], is less effective at high sparsity regions, > 75%. We
attribute this to the nontrivial perturbation of gradient magnitudes. This perturbation during the initial stages
of traininéﬂ adversely amplifies the variance of gradients, resulting in a diminished model quality.

» Gradient flow is all you need. In order to alleviate the adverse effects of noisy gradients, we introduce
a class of decaying-based sparse training recipes tailored for N:M structured sparsity. The fundamental
principle underlying these methods involves progressively limiting the flow of gradients for pruned weights,
while allowing the gradients to freely flow at the early stages of training. Our results demonstrate that the
decaying-based methods consistently outperform SR-STE by up to 2%-5% in terms of model quality, while
pruning ~97% of parameters.

* Decaying-based sparse training recipes require less training FLOPs. To better understand the computa-
tional overhead of the proposed sparse training recipes, we present the trade-off between model accuracy and
training compute cost in term of FLOPS. The results show that at iso-quality, our method requires > 30%
fewer training FLOPs compared to SR-STE.

2. Background and Related Works

This work focuses on weight sparsity, which poses a significant challenge in serving attention-based models.

2.1. Computation Flow of Sparse Training Recipes

summarizes the computation flows of various training recipes for the sparsification of weights. A
sparsification recipe broadly entails 1) pruning criteria, 2) pruning schedule, and 3) sparsity pattern.

(1) Pruning criteria. The pruning criteria refers to the set of criteria used to determine the specific elements
within the weight tensor that should be pruned. Magnitude pruning selects the pruning elements based on their
absolute values, is one of the most widely used criteria for sparsification [12} 13} 117,136, 53H56]]. Recent work
employs other criteria such as gradient [57, 58], Hessian [59], connection sensitivity [53]], and importance
estimation [60]. In this paper, we use magnitude pruning, following SR-STE [22] the state-of-the-art structured
N:M training recipe.

(2) Pruning schedule. We classify the pruning schedules into the following broad categories:

* Fine-tuning with one-shot pruning— This approach [46] 147, 53] [54] involves training a dense model,
followed by on-shot weight pruning. Subsequently the pruned model is fine-tuned to regain the lost quality.

* Fine-tuning with iterative pruning— This method [[L1H17, |38} 158, 161463 trains a dense model followed by
iterative cycles of pruning and re-training, which shows a greater capacity to regain lost quality.

* From-scratch with learned pruning pattern— This pruning recipe [[L1}164] establishes the sparsity pattern
based on pretrained dense model and subsequently trains a sparse model from scratch.

» From-scratch while learning sparsity pattern— This approach [55} 58 |65H69] trains a sparse model from
scratch while concurrently learning the sparsity mask.

(3) Sparsity pattern. We broadly categorize sparsity patterns into following groups:

Recent studies for dense models [49] [51]] have shown that the early stage of training (critical region) is imperative in the
quality of training recipes.
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Fig. 1: The computation flow of (a) dense training, (b) sparsification, (c) fine-tuning, and (d) sparse training
(e.g. SR-STE). W represents a pruned matrix that is computed by element-wise multiplication (®) of W and
its sparsification mask (M). Sparse training recipes, such as SR-STE, introduce a “sparse refining” regularizer
(R) to adjust the gradient terms for pruned elements.

©
—

Backward Pass ~ Forward Pass
Backward Pass ~ Forward Pass

Fig. 2: An overview of different sparse training recipes (a) SR-STE [22], (b, ¢) proposed decaying mechanisms
in this work. (b) indicates decaying binary mask values for pruned weights (MDGF), whereas (c) gradually
change the N:M sparsity patters at different intervals (SDGF).

* Unstructured Sparsity refers to the process of pruning a model without imposing any constraints on the
sparsity pattern [[13,|36]53-55]]. This sparsity pattern is known to be able to prune the model size to an order
of magnitude smaller while retaining a similar model quality as its dense counterpart at the cost of increased
runtime overhead.

» Coarse-grained Structured Sparsity enforces coarse-grained sparsity patterns, including techniques like fil-
ter/channel pruning [14} 70, 71] and block-wise pruning [35,162}[71}[72]]. By skipping the entire computation
of a tensor, this sparsity pattern often yields speedup in natively-dense accelerators such as GPUs and TPUs.
Nevertheless, this trade-off often results in a reduction in model quality.

* Fine-grained Structured N:M Sparsity prunes (M-N) out of M consecutive elements. Several preliminary
studies rely on special threading and grouping techniques [16] or specialized sparse accelerators [40]
to exploit this fine-grained sparsity pattern. With the inclusion of 2:4 GEMM support in GPU Ampere
architecture [34], recent work starts to investigate effective training recipes for N:M sparsity patterns to
harness the existing accelerators [22 146-48]].
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Other related work. Other work has also investigated N:M structured sparsity in attention-based models.
[Figure 2fa) demonstrates the weight update scheme for the forward and backward pass of SR-STE [22].
SparseGPT [50] introduces a post-training sparsification recipe tailored for GPT-family models. SparseGPT
shows on-par model quality with up to 50% weight pruning under unstructured and N:M structured sparsity.
Finally, selective weight decay (SWD) [73] is a pruning method based on Lagrangian smoothing, which
penalizes weights that are selected for pruning. However, SWD neither explores attention models nor provides
training recipes for N:M structured sparsity.

3. Decaying-based Sparse Training Recipes

This section covers the class of decaying-based training recipes for fine-grained N:M sparsity. The main
premise of these recipes is to allow the gradient to flow through weight tensors in a controlled way to prevent
induced noise in the gradients. We broadly classify the proposed decaying-based training recipes into: (a)
“Mask Decay Gradient Flow” (MDGF) and (b) “Structure Decay Gradient Flow” (SDGF), each with sub-
variants which we discuss in details below. In contrast to [22], we intentionally refrain from modifying the
gradient update rules in either of these categories. Instead, we use different update rules for sparsity pattern or
sparsity mask tensor, facilitating unimpeded gradient flow during the entire sparse training process.



Implementation. In order to implement these methods, we employ the process of pruning dense weight
tensors (W;) to generate sparse weight tensors (W,), adhering to the following rule during the forward pass:

W = F(W, N, M, ®, 5, )

Here © represents the Hadamard product. ®(-) and D(-) calculate a decaying-based binary mask and decay
mask factor, respectively. (j) denotes the training step count. Each function’s implementations establish
distinct decaying-based training recipes. ®(-) calculates a binary mask that matches the dimensions of the
input weight tensor (W). The location of Os and 1s in the binary mask refers to pruned and unpruned weights,
respectively. In fine-grained N:M structured sparsity with magnitude pruning, ®(-) assigns a value of 1 to
the N weight tensor elements with the highest absolute magnitude within a contiguous block of M elements.
Simultaneously, it enforces all the other elements with the block to be set to 0. In addition, D(-) calculates the
decaying factor for binary mask according to the target decaying-based training recipe. It should be noted that
([®(W, N, M, j) + D(j)(1 — ®(W, N, M, 5))] is not a sparse matrix during intermediate steps. However, as
D(j) decays to 0 over the course of training, (W) ultimately equals (W - ®(W, N, M, 5)), which is sparse.

@ Mask Decay Gradient Flow (MDGF). In the first training recipe (b), we propose the use of
a diminishing value ranging from 1 to 0, as opposed to the commonly-used binary pruning mask (e.g., “0”
— pruned and “1” — dense). Note that for the mask-decay training recipes the function ®(-) produces a
mask tensor either with all ones (dense training) or with a sparsity pattern following target N:M fine-grained
structured sparsity. In the initial epochs, we use a mask comprising solely of ones and assign a constant value
of 1 to D(-), i.e., dense training.

Upon staring sparse training phase, D(-) produces gradually diminishing floating-point values between 1 and
0. The output of function D(-) depends on current decaying interval. Using a diminishing decaying factor
enables gradient flow for both pruned and unpruned weights. This is in contrast to prior work in which D(-) is
null which may cause instability in the training process. We propose two new implementations for D(-):

* MDGE-Linear uses D(j) = maz(1 — 5, x j,0) that reduces the decay mask values linearly with respect to
training steps.

» MDGF-Exponential, as its name implies, we use D(j) = e~#7*J indicating an exponential decrease in the
mask decay value relative to the ongoing training step.

The value of 3/, determines the rate of decay. To ensure a binary mask value for the target N:M sparsity
pattern, after sufficient decaying intervals, D(-) approaches zero. After reaching the target N:M sparsity
pattern, we proceed with few additional training epochs to restore the model accuracy. We postulate that using
non-binary pruning mask values facilitates the smooth propagation of gradients in pruned weights, resulting in
more stable sparse training. For practical use, we recommend setting the decay rate such that the decay factor
reaches zero when approximately 70% of the training budget is completed, allowing for sufficient fine-tuning
of the final sparse weights.

@ Structure Decay Gradient Flow (SDGF) SDGEF decays the structure of the pruning mask, e.g. gradually
altering the sparsity level, e.g. S . In contrast to MDGF, this method strictly confines the pruning
mask values to either 1 or 0, e. g D( ) = 0 We propose two alternative implementations of ®(+), (a) Stepwise
and (b) Geometric.

The SDGF-Stepwise starts by inducing M-1:M structured sparsity. Subsequently, it gradually increase the
level of sparsity following 2Md : M formulation in which d denotes the index of the decaying interval, until

M —— N. For example, to retain a target sparsity level of 1:8, the method applies the following sparsity

2d
patterns at different decaying interval £ — % +— 2 — L.

The core idea of SDGF-Geometric is to maintain a constant ratio of % throughout successive decay intervals
by adjusting the values of N and M in proportion to each other. In all experiments, we configure ®(-) to be

’“;dM k XN . The value of k is set to 16, unless specifies otherwise. We empirically find that k£ > 16 offers

negligib]e improvements in terms of model quality. For example for a target spars1ty of 1:8, we induce the

following sparsity patterns at each decaying interval, - 128 — % — % — 126 — g. For both recipes, we

evenly partition the total sparsification epochs throughout the decaying intervals. Fundamentally, this approach
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Fig. 3: Trends for different indicators of gradient values during training. Data from ViT-tiny trained on
CIFAR-10 with 1:16 sparsity pattern. (a) and (b) show the running average of the variance of AdamW second
moment and gradient variance, respectively.

follows a hypothesis akin to MDGF. Enabling the flow of gradients of pruned weights throughout the model
potentially leads to higher model accuracy.

4. Impact of Gradient Flow in Sparsification

To better understand the impact of gradient flow while sparififying the weights, we follow the insight that
when the decaying variance of the noisy gradient is large, the algorithm might spend much time bouncing
around, leading to slower convergence and worse performance [52]]. Through MDGF and SDGF, we allow a
smoother and more stable gradient flow during backpropagation compared to SR-STE, thereby reducing the
noise introduced by high-sparsity constraints.

In order to observe the effect of proposed decay methods, we conducted an empirical analysis to compare
the gradient values of MDGF-Exponential and SR-STE [22]. We created a compact version of ViT with
three encoder layers, each with three attention heads, and an embedding size of 192. We trained this model
on CIFAR-10 [74] for 200 epochs with batch size 64 with AdamW optimizer. To understand the impact of
sparsification, we collect and analyze two different metrics, namely second moment and gradient variance.
These values are an indication of how effective the gradient estimations are for training [75H77].

4.1. Analysis of Second Moment Estimates

[3(a)] shows the variance of the second moment term (exponential moving average of squared gradient values)
for Feed-Forward (FF) layers in the model. We observe that in MDGF, the variance steadily decreases in
magnitude, whereas in SR-STE, the variance stays at the relatively high level even at the later stages of training.
Prior study [7/5H77] correlate lower variance of the second moment with faster convergence rate during training
and better model accuracy. This suggests that the gradient noise induced by SR-STE have negative impact on
the convergence of the model and model accuracy.

4.2. Analysis of Gradient Noise

[Figure 3|b) shows the variance of absolute back-propagation gradients. These values can be interpreted as
the amount of noise in the gradient estimates. Similar to the previous study, we collect the gradients of
Feed-Forward(FF) layer in tiny-ViT. We observe that in MDGF, the variance of gradients decreases quickly,
whereas in SR-STE, the variance of gradients has a lower slope (e.g. taking a larger number of steps). When the
variance of the gradient is higher, the optimizer spends time bouncing around, leading to slower convergence
and lower performance [51}152]]. The variance for MDGF-exponential comes down rather quickly thus the
gradients are less noisy compared to SR-STE. This would result in higher accuracy for MDGF-Exponential.
When observing the final validation accuracy of the two runs, we confirm our intuitive conclusions as the
SR-STE accuracy is lower compared to MDGF-Exponential accuracy.



Table 1: The compute and memory contributions of the three major layers in Transformers. These estimations
are made for ViT-Base. The FF layers account for around 64% of overall FLOPs and 66.6% of parameters. We
use sequence length 196 to read image of 224x224.

Einsum (Logit & Attend) Projections (Q/K/V/O) Feed Forward (FF1/FF2)

(T)FLOPS 1.42 (4%) 11.1 (32%) 22.20 (64%)
Params (MB) 0.0 (0%) 28.31 (33.3%) 56.62 (66.6%)

5. Experiment

In this section, we evaluate the effectiveness of various training recipes for N:M fine-grained structured
sparsity in a range of attention-based models and tasks, such as image classification, language translation and
understanding. Motivated by the relatively substantial contribution of FF layers (Table I)) in total FLOPs

Table 2: ImageNet-1K Top-1 validation accuracy on ViT-Base across different N:M sparsity patterns and
training recipes.

Sparse Target ‘ Dense ‘ SR-STE ~ MDGF-Linear ~ MDGF-Exponential ~ SDGF-Stepwise ~ SDGF-Geometric
2:4 (FF) 76.389 717.761 77.613 76.381 77.081 77.363
1:4 (FF) 76.389 78.782 78.512 78.579 77.357 78.347
1:8 (FF) 76.389 77.869 78.019 78.009 77.025 78.175
1:16 (FF) 76.389 75.637 76.594 77.325 75.923 76.869
1:32 (FF) 76.389 73.056 75.807 76.068 74.394 74.910
1:128 (FF) 76.389 72.069 74.012 74.180 71.725 69.801
1:4 (FF) + 1:4 (QK) 76.389 78.145 71.755 78.113 77.163 78.229
1:8 (FF) + 1:8 (QK) 76.389 75.527 76.473 77.349 76.617 76.334
1:8 (FF) + 1:4 (QK) 76.389 78.144 78.025 78.273 77.163 76.839
1:8 (FF) + 1:4 (QKV) | 76.389 78.222 78.319 78.319 77.309 78.213

(~64%) and parameter count (~66.6%), we center our experiments around sparsification of these layers within
the encoder and decoder blocks. In addition, we conduct experiments on the pruning of projection layers
(Q/X/V) for a variant of ViT-Base [78]], a variant of SwinV2-Base [79]], and T5X-Base [1]]. For ViT-Base,
we use fixed-size patches (resolution 16 x 16) on images with resolution 224. In SwinV2-Base, we employ
window sizes of 8 x8 on images with resolution 256. For image classification tasks, we branched (commit:
1304589) our implementation from PyTorch Image Models [80] and use NVIDIA A100 GPUs for training
on ImageNet-1K dataset [81]. For T5X-Base, we extend the official Google T5X release (commit: |[d3d3cbf)
with sparsification training recipes and use Google TPUv3. We train these models from scratch using different
training recipes across different patterns of N:M fine-grained structured sparsity. SR-STE [22]] serves as the
baseline sparse training recipe to assess the effectiveness of the proposed training recipes in terms of model
accuracy. [Appendix C|have details about training hyperparameters, dataset details, and evaluation metrics.

5.1. Image Classification — ViT-Base and SwinV2

ViT-Base model quality. presents Top-1 validation accuracy for variations of N:M sparsity in
ViT-Base, with the highest accuracy model indicated in bold. The “Sparse Target” column signifies the
intended level of N:M sparsity. For example, a sparsity target of 1:32 indicates that sparse tensors exhibit at
most one non-zero for every 32 contiguous elements. In low sparsity scenarios (e.g., 2:4 and 1:4), both MDGF
and SR-STE demonstrate comparable performance. Nevertheless, with increases in either sparsity degree (e.g.,
1:8 and higher) or the number of sparse layers, e.g., 1:4 (FF) + 1:4 (QK), employing SR-STE is detrimental to
model quality. In contrast, the proposed decaying-based training recipes, MDGF and SDGF, yield the highest
accuracy.

Interestingly, when aiming for a sparsity target of 1:32 (approximately 97%), MDGF-Exponential showcases a
mere 0.3% reduction in accuracy compared to a fully dense model (76.389 vs. 76.068). Additionally, we notice
that the model accuracy increases at modest sparsity degrees, specifically in 2:4/1:4/1:8 (FF) patterns, resulting
in an improvement of up to A(Acc) = +2.4% in 1:4 (FF). The increase in model accuracy, demonstrated in
M(a)l can be attributed to Occam’s Hill, wherein the positive impact of sparsity as a means of regularization is
elucidated [82} 83]]. The performance of MDGF-Exponential training recipe is comparable to that of SR-STE
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Fig. 4: ViT-Base trained on ImageNet-1K with different sparsity patterns and targets. (a) shows the Occam’s
hill where sparsity improves the model accuracy. The dashed red line shows the reduction in inference FLOPs
at different sparsity ration. At high sparsity regime (>80%) MDGTF yields better accuracy than SR-STE
and (b) demonstrates model accuracy across training recipes (dense and sparse) at different training FLOPs.
The vertical line indicates the proposed decaying method is better (1.6%) than dense model at given training
FLOPS. The vertical line shows that the decaying based method reaches to dense model accuracy at 37.8%
less training FLOPs.

in low-sparsity scenarios. However, the proposed MDGF-Exponential recipe far surpasses SR-STE when
confronted with high-sparsity patterns.
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demonstrate Top-1 validation accuracy for SwinV2-Base. Similar to ViT-Base, we observe that the
decaying-based algorithms outperforms SR-STE across various N:M sparsity patterns. In 1:4 and 1:8 (35),
SDGF-Geometric yields the highest Top-1 validation accuracy. Whereas, in high-sparsity patterns, MDGF-
Exponential demonstrates superior performance compared to SR-STE. To summarize, the results from the
two image classification models demonstrate that the proposed training recipes, MDGF and SDGF, which
incorporate decaying-based approaches for N:M fine-grained structured sparsity, yield superior performance
compared to SR-STE.

Table 3: ImageNet-1K Top-1 validation accuracy on SwinV2-Base across different N:M sparse patterns and
training recipes.

Sparse Target ‘ Dense ‘ SR-STE =~ MDGF-Exponential SDGF-Stepwise SDGF-Geometric
1:4 (FF) 83.45 82.355 82.491 82.267 82.469
1:8 (FF) 83.45 81.437 81.466 81.382 81.382
1:16 (FF) 83.45 80.154 80.542 80.386 80.274
1:32 (FF) 83.45 78.972 79.545 76.480 79.277
1:8 (FF) + 1:8(QK) 83.45 81.441 81.550 81.218 81.438

5.2. Language Understanding — T5X-Base

We also analyze the efficacy of the proposed decaying-based training recipes for the language understanding
task. We employ a dense pre-trained T5X-Base model trained on the C4 dataset with a span-corruption



objective [[1]. The dense pre-trained model undergoes fine-tuning using the GLUE dataset [84]] with various
training recipes for N:M structured sparsity. depicts the overall score, summarized across eight
different GLUE tasks. We observer a consistent trend where SDGF outperforms SR-STE at high-sparsity
patterns and increasing number of sparse layers. Notably, we observe a relative difference of A = +5.3in 1:8
(FF) + 1:8 (QKV) sparsity pattern. [Appendix Aland[Appendix B|provide details about the T5X-Base model,
per-task evaluation metrics, and additional ablation studies.

Table 4: The GLUE overall score on the sparsified T5X-Base model across different N:M sparse training
recipes and patterns.

Model ‘ Sparsity Target | Dense | SR-STE SDGF-Stepwise SDGF-Geometric
T5X-Base 1:4 (FF) 86.2 84.1 83.7(A = —0.4) 83.4
T5X-Base 1:32 (FF) 86.2 79.4 80.9 (A = +1.5) 79.3
T5X-Base | 1:8(FF)+ 1:8 (QK) | 86.2 758 80.7(A = +4.9) 76.8
T5X-Base | 1:8(FF)+ 1:4(QKV) | 86.2 78 80.3 (A = +2.3) 78.9
T5X-Base | 1:8 (FF)+ 1:8 (QKV) | 86.2 742 7195(A = +5.3) 75.8

5.3. Language Translation — Enc-Dec
Table 5: The translation accuracy on WMT task across different N:M sparsity patterns and training recipes.

Model | Sparsity Target | Dense | SR-STE  SDGF-Stepwise ~ MDGF-Exponential
Enc-Dec (WMT) 1:16 0.747 0.709 0.717 0.717
Enc-Dec (WMT) 1:32 0.747 0.707 0.713 0.714
Enc-Dec (WMT) 1:64 0.747 0.707 0.710 0.711
Enc-Dec (WMT) 1:128 0.747 0.707 0.708 0.711

Finally, we compare the performance of different sparse training recipes on WMT language translation
task [85]]. For that, we use an encoder-decoder transformer-based model [[86] each with six layers and 16
heads, which is relatively smaller than T5X-Base. outlines the details about this model and the training
hyperparameters.

[Table 5|demonstrates the accuracy results across range of sparsity patterns and training recipes. We observe that
SDGF and MDGEF collectively outperform SR-STE across various N:M structured sparsity patterns. However,
we note that the difference in accuracy achieved through different training recipes is relatively smaller. This
can be attributed to the model size (6 layers vs. 12 layers in T5X-Base), as well as the nature of the translation
task, which appears to be less sensitive to sparsity patterns and training recipe

5.4. Recipe impact for CNNs.

While the primary focus of this work is on evaluating sparse training recipe for transformer models, for the
sake of completeness, we also test the efficacy of our recipe on CNNs. We train ResNet-50 following two
sparse training recipes (SR-STE and MDGF-Exponential) and across different sparse patterns (2:8, 1:8). We
pruned all the convolution layers and evaluate Top-1 validation accuracy on CIFAR-10. shows a
similar pattern, decaying-based sparse training recipes outperform SR-STE in both cases.

Table 6: ResNet-50 Top-1 validation accuracy.

Sparse Target | Dense | SR-STE ~ MDGF-Exponential
2:8 ‘ 85.09 ‘ 83.33 83.60

1:8 85.09 80.78 82.48

5.5. Baseline Comparison

Table 7: Comparing various sparsification techniques by fine-tuning T5X on GLUE dataset.
Sparse Target | SR-STE [22] | SNIP [53] | IDP [87] | MDGF-Exponential
1:32 (FF) | 79.4 | 795 | 806 | 80.9

SR-STE is our primary baseline in our evaluations as it has shown good results in low-sparsity regions [2:4,1:4]
and is considered SOTA for N:M training. We also compared against other techniques like Inherited Dynamic

*Model accuracy is less affected as we increase the sparsity level beyond 1:32.



Pruning (IDP) [87], and SNIP: Single-shot Network Pruning [53]. compares the results on T5X with
GLUE dataset. We also tried to test against LBC [88]] but could not recreate the results shown in the paperE]

5.6. Inference speedup on Real Hardware.

Current SOTA hardware accelerates sparsity at a 2:4 ratio. However, adopting higher sparsity levels can enable
even faster inference, even without dedicated hardware support for such patterns. This acceleration primarily
arises from reduced memory movement in memory-bound kernels.

To evaluate end-to-end acceleration on GPUs, we measure the runtime of the ViT-Large [18]] inference stage
across various N:M sparse patterns, using the dense implementation as a baseline. We induce N:M sparse
patterns only in the FF layers. Our results demonstrate substantial benefits from N:M sparsity, even for patterns
beyond 2:4, during end-to-end model inference. [Table 8| presents the speedups achieved on V100 and A100
GPUs for different N:M sparsity patterns compared to dense ViT implementations. It is important to emphasize
that these gains primarily stem from reduced memory movement and optimizations via custom cuSPARSE
APIs. Furthermore, we report standalone acceleration for sparse FFN kernels in

Table 8: Speedup of ViT Inference with various sparsity amounts in FF layers.

Hardware | Dense  2:4 1:4 1:8 1:16  1:32  1:128

V100 1.0 1.542 2202 3.019 3.460 3.558 3.380
A100 1.0 1.953 2.614 2958 3.014 3.129 3.259

6. Limitations and Future Works

This work explores effective high-ratio sparsity for self-attention models. While we evaluate MDGF and
SDGF in isolation, combining them across training regions may yield better model quality. Our key finding
is that high sparsity degrades gradient estimation, which we mitigate by progressively tightening gradient
flow—a simple yet effective strategy across various models and datasets.

However, our approach has limitations. First, while empirically effective, it lacks a strong theoretical foundation
explaining why gradient decay alleviates sparsity effects. Future work could provide a rigorous analysis.
Second, our method focuses on structured sparsity at training time and may not extend to dynamic scenarios
like KV cache compression in autoregressive models. Adapting it to such contexts remains an open challenge.
Further, applying our techniques to autoregressive models, which suffer from high inference costs and memory
constraints, is a promising direction. A deeper evaluation in this setting could enhance their impact and utility.

7. Conclusion

We study the efficacy of recent sparsity recipes for N:M sparsity across transformer-based models and find that
conventional methods introduce significant gradient noise at high sparsity (>75%). To address this, we propose
decaying-based training recipes, with MDGF-Exponential achieving state-of-the-art accuracy—improving
vision models by 2% and language models by 5% at high sparsity. Our results highlight the critical role
of gradient flow, especially in early training. For same training FLOPs, our approach improves accuracy
by 2%. Additionally, MDGF-Exponential (1:16) matches SR-STE (2:4) accuracy while reducing inference
FLOPs by 60% and parameters by 30%. Finally, real hardware tests show up to 3.38 x speedup over dense
implementations. The source code is open sourced and available in github,
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A. Ablations Studies

This section shows the various ablation studies we performed during our experiments.

A.1. Effect of dense training steps (d)

Both our proposed methods, MDGF and SDGF include a dense training phase. We do an ablation study
on different amounts of dense training steps(% of total steps) in We perform this study on the
language translation model (more implementation details in section [§C.2.4)) trained on WMT-17. We found
that changing the dense step between 1.25% - 10% of the total training steps does not observably change the
accuracy performance. However, empirically, we found that the dense training phase is still essential. The
model cannot achieve as competitive accuracy without few epochs of dense training.

Table 9: Ablation: The effect of number of dense training steps (d).

Accuracy MDGF-Linear SDGF-Stepwise

Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

1.25%  0.7155  0.7134  0.7106 ~ 0.7100  0.7157  0.7134  0.7108  0.7106
25% 07160  0.7127  0.7110  0.7093  0.7160  0.7136  0.7117  0.7100
5%  0.7157 07137  0.7103  0.7094  0.7164  0.7141  0.7107  0.7098
10%  0.7156  0.7126  0.7107  0.7104  0.7165  0.7128  0.7115  0.7107

Dense steps (d)

A.2. Effects of fine-tuning steps (s)

We also have a sets of study on number of fine-tuning steps in[Table T0] We perform this study on the language
translation model (more implementation details in section [§C.2.4) trained on WMT-17. We found that for all
of our proposed methods, the fine-tuning steps between 10% - 20% of the total training steps do not observably
change the accuracy performance. However, empirically, we also found few steps of fine-tuning at the end are
essential to recovering the accuracy.

Table 10: Ablation: The effect of number of fine-tuning steps (s).

Accuracy MDGF-Linear SDGF-Stepwise

Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

10%  0.7153  0.7130  0.7107  0.7098  0.7160  0.7125  0.7095  0.7072
20%  0.7161  0.7132  0.7106  0.7097  0.7121 0.7093  0.7081 0.7065

Fine-tuning steps (s)

A.3. Effect of (3) in MDGF-Linear

We also study on effect of decay rate on model’s accuracy in|Table 11} We do experiments with varying 3* for
ViT-Base trained on Imagenet-1k for different sparsity targets.

We observe that a higher decay rate is beneficial at low sparsity targets (2:4,1:4), but for targets higher than
1:8, we found lower decay rate works better.

Table 11: Ablation: The effect of mask decay rate (5°) for MDGF-Linear.

Sparsity Target 2:4 1:4 1:8
0.0002 ‘ 77495  78.448 78.019

o t
Mask decay rate (5%) "o 001 | 77.613 78512 76.4075

B. Detailed Results for T5X-Base Sparsification on GLUE Dataset

We compared sparsification methods N:M block sparsification against state-of-the-art technique, SR-STE on.
TS5 model uses a span-based masked language modeling (MLM) objective. T5 models were introduced in [1]]
and the updated models are available at T5SX-github. We train a pre trained t5x-base model on GLUE dataset
[84].

14


https://github.com/google-research/t5x

The main paper shows a snapshot of the performance across various sparsity targets using the overall score as
metric. [Table 12] presents all 9 scores for each sparsification technique and sparsity target.

Table 12: GLUE full score using various T5X-base with different N:M sparse targets and various sparsification
techniques.

| | overallscore  CoLA  MNLImatched ~ MNLI mismatched MRPC QNLI QQP RTE  SST2 STS-B
Dense | - | 862 589 87.2 87 924/892(90.8) 936  92.0/89.2(906) 823 95 90.1/90.0 (90.0)
SR-STE (Zero Dense) 14 83.1 418 85.2 853 92.8/90.0(914) 923  91.8/889(903) 791 936  89.5/89.2(89.3)
SR-STE (10K Dense) 14 84.1 48.1 85.7 85.6 924/895(91.0) 921  91.8/89.0(90.4) 827 936  87.9/87.7(87.8)
MDGF-Stepwise (10K Dense) 14 83.7 488 85.3 85.4 92.4/892(90.8) 923  91.8/89.0(904) 805 935  86.5/86.3(86.4)
MDGF-Geometric (Zero Dense) 14 83.3 484 85.3 853 92.0/89.0(90.5) 918  91.8/889(903) 78 928 87.3/87.4(87.3)
MDGF-Geometric (10K Dense) 14 83.4 472 85.4 853 92.6/89.7(9L1) 92 91.8/89.0(90.4) 798 929  86.7/86.4(86.5)
SR-STE (Zero Densc) 1:32 77.1 19 813 81.3 90.9/87.0(89.0) 869  90.6/87.4(89.0) 7I.I 899  86.7/86.8(86.8)
SR-STE (10K Dense) 1:32 79.4 294 822 82.6 91.5/88.5(90.0)  89.6  912/882(89.7) 726 914  87.1/87.2(87.2)
MDGF-Stepwise (10K Dense) 1:32 80.9 383 83.6 83.7 92.5/89.7(91.1) 905  9L5/885(90.0) 744 912 852/850(85.1)
MDGF-Geometric (Zero Dense) 1:32 776 202 813 81.6 91.8/88.5(90.1) 872  90.8/87.7(892) 733  90.  85.8/855(85.6)
MDGF-Geometric (10K Dense) 1:32 79.3 292 823 82.9 91.3/88.0(89.6) 904  91.3/883(89.8) 733  90.5  85.4/854(854)
SR-STE (Zero Dense) 1:8(FF) + 1:3(QK) 744 157 772 77.6 80.9/85.8(87.8)  83.6  89.7/86.2(87.9) 675 882  84.1/83.9(84.0)
SR-STE (10K Dense) 1:8(FF) + 1:8(QK) 75.8 19.9 786 79.4 89.7/86.0(87.9) 84  90.1/86.7(884) 70 894 84.5/84.2(84.4)
MDGF-Stepwise (10K Dense) 1:8(FF) + 1:3(QK) 80.7 38.7 83.1 832 90.9/87.7(89.3) 899  91.2/882(89.7) 762 919  84.5/84.5(84.5)
MDGF-Geometric (Zero Dense) | 1:8(FF) + 1:8(QK) 75.8 216 78.8 79 90.0/86.0(88.0) 836  90.1/866(883) 697 889  84.0/83.9(83.9)
MDGF-Geometric (10K Dense) | 1:8(FF) + 1:8(QK) 76.8 223 80.7 80.9 89.8/858(87.8) 863  90.5/87.4(89.0) 70 91.1  83.7/83.4(83.6)
SR-STE (Zero Dense) 1:8(FF) + 1:8(QKV) 732 13.5 76.3 764 80.0/84.6(86.8) 832  89.5/859(87.7) 639 87 843/84.2(842)
SR-STE (10K Dense) 1:8(FF) + 1:8(QKV) 742 16.1 717 776 88.5/84.1(863) 829  89.9/86.3(88.1) 664 888  84.4/84.2(84.3)
MDGF-Stepwise (10K Dense) 1:8(FF) + 1:8(QKY) 79.5 33 823 823 91.3/87.7(89.5) 892  91.0/88.0(895) 744  9L1  84.5/84.8(84.6)
MDGF-Geometric (Zero Dense) | 1:8(FF) + 1:8(QKV) 755 22.1 786 787 90.5/86.8(88.6) 834  90.0/865(882) 679 882  84.2/84.2(84.2)
MDGF-Geometric (10K Dense) | 1:8(FF) + 1:8(QKV) 75.8 19.5 79.4 79.6 80.4/853(873) 845  902/86.8(88.5 704 898  833/83.0(83.2)
SR-STE (Zero Dense) 1:8(FF) + 1:4(QKV) 75.1 15 784 79 90.5/86.8(88.6) 842  90.1/86.6(88.4) 679 884  86.2/86.1(86.2)
SR-STE (10K Dense) 1:8(FF) + 1:4(QKV) 78 245 812 81.6 911/87.7(89.4)  87.1  90.6/87.3(89.0) 722 909  85.8/858(85.8)
MDGF-Stepwise (10K Dense) L:8(FF) + 1:4(QKV) 80.3 36.4 832 834 90.9/87.3(89.1) 903  91.3/883(89.8) 747 909  85.2/850(85.1)
MDGF-Geometric (Zero Dense) | 1:8(FF) + 1:4(QKV) 76.8 202 80.5 80.8 91.3/87.7(89.5) 854  90.3/87.0(88.6) 708 904  84.9/84.9(849)
MDGF-Geometric (10K Dense) | 1:8(FF) + 1:4(QQKV) 789 27.7 82.4 824 91.3/87.7(89.5) 888  91.0/88.1(89.6) 744 913 845/84.5(845)

Here is an itemized list of nine tasks used in the GLUE dataset, along with brief descriptions of each:

* CoLA (Corpus of Linguistic Acceptability): Classify whether a given sentence is grammatically
acceptable or not.

* MNLI (Multi-Genre Natural Language Inference): Classify the relationship between a given
premise and hypothesis as entailment, contradiction, or neutral. We use the standard test set, for
which we obtained private labels from the authors, and evaluate on both the matched (in-domain) and
mismatched (cross-domain) sections.

* MRPC (Microsoft Research Paraphrase Corpus): Determine whether a pair of sentences express
the same meaning or not.

* QNLI (Question-answering Natural Language Inference): Determine whether a given question
can be answered correctly using a given sentence.

* QQP (Quora Question Pairs): Determine whether a pair of questions from Quora are semantically
equivalent or not.

* RTE (Recognizing Textual Entailment): Classify the relationship between a given premise and
hypothesis as entailment or not.

* SST-2 (Stanford Sentiment Treebank): Determine the sentiment of a given sentence as either
positive or negative.

* STS-B (Semantic Textual Similarity Benchmark): Calculate the similarity score between two
sentences on a scale from O to 5.

These tasks cover various aspects of language understanding, including sentence acceptability, sentiment
analysis, paraphrase detection, textual similarity, natural language inference, question-answering, and co-
reference resolution.

IFigure /| shows the accuracy vs. fine-tuneing step curve for each of the 9 benchmarks of GLUE.
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C. Detailed Experimental Settings

C.1. Datasets
C.1.1. ImageNet-1K

ImageNet-1K [81]] is a large-scale image classification task, known as one of the most challenging image
classification benchmarks. It consists of more than 1.2 million training images and 50K validation images
with a size of 224x224 pixels, each with 3 channels. Each image is labeled as one of the 1K classes. We use
this dataset for studies in Section 4.1 of the main paper. For ViT and SwinV2 experiments, we use a patch size
of 16. This converts the 224x224 pixel image into an input of sequence length 224/16 = 224/16 = 196.

Evaluation metrics. All reported results follow standard Top-1 validation accuracy.

C.1.2. CIFARI10

CIFAR-10 [[74] is a smaller-scale image classification dataset consisting of 10 classes. Each class has 6000
color images of 32x32 pixels in size.

Evaluation metrics. All reported results to follow standard Top-1 accuracy.

C.1.3. GLUE

The General Language Understanding Evaluation (GLUE) [84] benchmark is a collection of resources for
training, evaluating, and analyzing natural language understanding systems. GLUE consists of: A benchmark
of nine sentence- or sentence-pair language understanding tasks built on established existing datasets and
selected to cover a diverse range of dataset sizes, text genres, and degrees of difficulty, shows the
overall score for each sparsity target using different sparsification methods.

Evaluation metrics. All reported results in the main paper use the overall average score.

C.14. WMT

WMT-17 (English-German) [85] is a key benchmark in machine translation research. They hold several
translation datasets across different languages. The training set consists of about 4.5 million bilingual sentence
pairs from WMT 2014.

Evaluation metrics. We calculate accuracy by comparing the translated output to the correct translation in the
validation datasets.

C.2. Hyperparameters for Different Models
C.2.1. Image Classification — Vision Transformers (ViT)

We train the ViT-Base model on ImageNet-1k with hyperparameters presented in We follow the
hyperparameter setting in [80] for all ViT experiments. We also use the same hyperparameters to train ViT-Tiny
model ( 3 layers, 3 attention head per layer, Embedding dimension: 192) on CIFAR-10 for initial experiments
in Section 3.2 for analysing the trends of weights, gradients and optimizer moments and comparing those with
SR-STE.

The detailed list of all hyperparameters can be found at hyperparaters.yaml. For ViT-Base, the training phase
takes ~ 44 hours on 16 - A100 GPUs.

shows the Top-1 and Top-5 accuracy trends for training ViT to various sparsity targets with different
sparsification techniques. We observe generally, MDGF and SDGF are better than SR-STE, especially for
high-sparsity targets.
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Table 13: Hyperparameters used for training ViT on ImageNet-1K.

Batch Size 256
Training Epoches 350
Learning Rate le-3
LR Warmup Epoches 15
LR Decay schedular Cosine
Decay Rate 0.1
Decay Epoches 100
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

C.2.2. Image Classification — Swin Transformer V2 (SwinV2)

We train the SwinV2-Base model on imagenet-1k with hyperparameters presented in We follow the
hyperparameter setting in [79] for all SwinV2 experiments.

Table 14: Hyperparameters used for training SwinV2 on ImageNet-1K.

Batch Size 128
Training Epoches 350
Learning Rate le-3
LR Warmup Epoches 20
LR Decay schedular Cosine
Decay Rate 0.1
Decay Epoches 30
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

The detailed model configuration is the same as present in the original Microsoft research GitHub repo,
SwinV2-base.yaml The detailed list of all hyperparameters was taken from config.yaml. For SwinV2-Base,
the training phase takes ~ 54 hours on 16 - A100 GPUs.

C.2.3. Language Understanding — T5X

We train the T5X-Base model on GLUE dataset with hyperparameters presented in We follow the
hyperparameter setting in [[1] for all T5X training experiments.

The detailed model configuration is the same as present in the original Google research GitHub repo,
T5X model T5X-Base’s training phase takes ~ 22 hours on 8 x Google Cloud TPUvV3 cores.

Table 15: Hyperparameters used for training T5X on GLUE.

Batch Size 128
Training Steps 100k
Learning Rate le-3
LR Warmup Steps 1000
LR Decay schedular Constant
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

C.2.4. Language Translation Model — Enc-Dec

We train an encoder-decoder-based model on WMT-17 with hyperparameters presented in The
model is inspired by the attention paper [86]]. We follow the hyperparameter setting in [89] to train all models.
The training phase takes ~ 8 hours on 32 - Google Cloud TPU v3 cores.
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ImageNet Top-1Accuracy

ImageNet Top-5 Accuracy

—

Table 16: Model configurations and hyperparameters for training model on WMT.

Number of Encoder Layers 6
Number of Decoder Layer 6
Hidden Dimension Size 1024
Feed-Forward Dimension Size 4096
Number of Attention Heads 16
Max Sequence Length 256
Training Dataset WMT-17
Testing Dataset WMT-14
Batch Size 512
Training Steps 200K
Learning Rate 0.0625
LR Warmup Steps 1000
Decay Factor 0.5
Optimizer Adam
Optimizer coefs betal = 0.9, beta2 =0.92
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. 6: Training Epochs vs Accuracy graph for different sparsity targets. We train ViT-Base on ImageNet-1K.
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Fig. 7: Per-task evaluations for T5X-Base model finetuned on the GLUE dataset for SOK steps.



D. FLOPS Calculation

Vit-Base

(coert |
Fig. 8: Operations for ViT base model. For sake of brevity, we only include the operators that take significant
runtime. Parameter dimensions are mentioned in blue text near the corresponding operators.

Query(Q)

Logit (L)

Out-Proj
(©)

Key (K)

Attend (A)

Value (V) [D, 4D] [4D, D]

shows various operators in ViT base model. The breakdown of flops, shows that FF accounts
for majority of the FLOPS and thus would be our main avenue of sparsification.

| FLOPS (G) | Q/K/V/O | L/A | FFI/FF2 |

| Dense | 277 | 07| 111
Table 17: Operator wise FLOPS breakdown for ViT-base.

We calculate the total number of flops for the model as follows.

FLOPS,,t = FLOPSsy + FLOPSpp * Spp
FLOPSgy = FLOPSQ + FLOPSkg + FLOPSy + FLOPS, + FLOPS 4, + FLOPSp
FLOPSpr = FLOPSpp1 + FLOPSppa

FLOPSs 4 is number of flops in self-attention layers which consists of QKV generation, 2 einsums (Logit
and Attend) and output projection(O).

FLOPSFprp is number of flops of the 2 feed-forward layers.
Using these equations, We list the total FLOPS of ViT-base for various sparsity targets in

\ Sparsity : Spp | FLOPSs4 | FLOPSpp | FLOPS;,; |
Dense : 1.0 12.51 22.19 34.71
2:4 (FF):0.5 12.51 11.1 23.61
1:4 (FF) : 0.25 12.51 5.55 18.06
1:8 (FF) : 0.125 12.51 2.77 15.29
1:16 (FF) : 0.0625 12.51 1.39 13.90
1:32 (FF) : 0.03125 12.51 0.69 13.20
1:128 (FF) : 0.0078125 12.51 0.17 12.69

Table 18: FLOPS(G) calculation for various level of sparsity in ViT-Base.

E. Sparse Matmuls speedup on Real Hardware.
We have conducted additional experiments showcasing the benefits of other N:M sparsity forms in performing
sparse matrix multiplications on hardware without compute support for N:M (!= 2:4) acceleration.

We performed these experiments using real hardware, specifically V100, A100, and GH200. We used cupy [90]
library along with the spmatrix.dot [91]] function for sparse computation. We measured the run-time (after a
few iterations of warm-up) of different feedforward kernels of ViT.
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shows the speedup of running VIT FFN kernels on different hardware. As shown, different forms of
N:M sparsity offer speedup over default 2:4 structured sparsity (up to 8.62 on V100, 5.87 on A100 and 4.16 on

H100).

These results further support our claim on the benefits of N:M sparsity variants in delivering performance.
Note that the benefits of non-2:4 kernels can be primarily attributed to memory savings, reduction in the data
communication, and customized cusparse API. We also included nsys profiler logs to ensure the
benefits originate from both memory savings and customized cusparse kernel.

Table 19: Average Speedup across FF1 and FF2 compared to 2:4 for different sparsity levels.

Hardware \ 24 14 1:8  1:16 1:32 1:128
V100 1.0 1.83 3.05 525 764 8.62
A100 1.0 1.85 296 401 4.82 5187

GH200 1.0 1.80 258 322 365 4.6

- B7.4% Kemels

Fig. 9: Nsys profiler log for running N:M hardware on A100.

¥ 14.3% sorti32_by_key_merge_core

» 12.6% sorti32_by_key_local_core

» 10.2% DeviceMergeSoriMergeKeme!

» 10.2% DeviceMergeSortPartitionkes mel

b 9.4% cusparselinclusive_localsean_core

+ 9.3% cusparselinclusive_scan_domina_v1_e:
+ B.6% cusparselinclusive_scan_merge_core
» 8.2% DeviceMergeSortBlockSortKemel

» 2.9% load_balancing_kernel

» 127%cupy_take

» 1.2% DeviceReducexemel

» 1.1% cupy_copy__int32_int32

b 1.0% DeviceReduceSIngleT lekemel

+ 0.9% cupy_copy_float32_float32

» 126% Memary
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