Progressive Gradient Flow for Robust N:M Sparsity
Training in Transformers

Abhimanyu Rajeshkumar Bambhaniya!”, Amir Yazdanbakhsh?*, Suvinay Subramanian?

Sheng-Chun Kao*, Shivani Agrawal®, Utku Evci® , Tushar Krishna!
!Georgia Institute of Technology, 2Google DeepMind, *Google, “Waymo

abambhaniya3@gatech.edu, ayazdan@google.com, suvinay@google.com, felixkao@google.com,
shivaniagrawal@google.com, evcu@google.com, tushar@ece.gatech.edu

N:M Structured sparsity has garnered significant interest as a result of relatively modest
overhead and improved efficiency. Additionally, this form of sparsity holds considerable
appeal for reducing the memory footprint owing to their modest representation overhead.
There have been efforts to develop training recipes for N:M structured sparsity, they primarily
focus on low-sparsity regions (~50%). Nonetheless, performance of models trained using
these approaches tends to decline when confronted with high-sparsity regions (>80%). In
this work, we study the effectiveness of existing sparse training recipes at high-sparsity
regions and argue that these methods fail to sustain the model quality on par with low-
sparsity regions. We demonstrate that the significant factor contributing to this disparity is
the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate
this undesirable effect, we employ decay mechanisms to progressively restrict the flow of
gradients towards pruned elements. Our approach improves the model quality by up to 2%
and 5% in vision and language models at high sparsity regime, respectively. We also evaluate
the trade-off between model accuracy and training compute cost in terms of FLOPs. At
iso-training FLOPs, our method yields better performance compared to conventional sparse
training recipes, exhibiting an accuracy improvement of up to 2%. We have open-sourced
our verified implementation and it can be found at https://github.com/abhibambhaniya/
progressive_gradient_flow_nm_sparsity.

1. Introduction

A prevailing tendency in state-of-the-art DNN is the rapid increase in their model [1H5]. To address the deploy-
ment challenges of these models, a large body of research proposes quantization [6H10], sparsification [11H20]],
and distillation [21]. This paper centers its attention on sparsification/pruning offering the following benefits:
(a) improved performance [22], (b) reduce memory usage [23], & (c) higher energy efficiency [24, 25]].

While appealing, sparsification predominantly revolves around the inherent trade-offs between the quality
of the model and compression ratio[ﬂ For example, some studies [13| [26] have demonstrated promising
results in achieving unstructured sparsity levels of around 90%-95% in image classification models, while
maintaining the quality of dense models. Similarly, the noticeable achievements of transformer-based models,
primarily driven by their exponential growth in model size [27], have stimulated interest [28531] in exploring
sparsification recipes for such models with high sparsity ratio. This serves as a significant incentive for the
sparsification of attention-based models, as it enables the pruning of a substantial number of model parameters
(>70%) 32, [33]]. Despite its inherent ability to trim the memory footprint of large models, the realization of
unstructured sparsity in hardware poses nontrivial challenges for acceleration. The sparsity-induced models
frequently exhibit comparable or inferior performance to their dense counterparts because of the additional
intricacies involved in compression/decompression of model parameters [[34439].

As such, structured sparsity has gained significant popularity because of its hardware-friendly characteristics.
[[L6l 40-45] found that employing fine-grained N:M structured sparsity, has the potential to mitigate the

*Equal contributions.
'We designate algorithmic-wise factors such as accuracy, recall, and precision as model quality. and denote model
runtime/latency as model performance.

Second Conference on Parsimony and Learning (CPAL 2025).

https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity
https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity

degradation in quality. Moreover, the debut of 2:4 structured-sparse tensor core in GPU Ampere architec-
ture [34] has generated additional enthusiasm in developing efficient N:M training recipes. Although recent
methods [22} 146150 demonstrate acceptable quality, their main focus lies in addressing sparsity levels up
to 2:8. These methods, however, less effective when dealing with high sparsity regimes such as 1:16, 1:32,
and higher. Through our studies, we identify that elevated levels of induced noise in the gradient magnitudes
constitute a notable contributing factor to such quality degradation. This phenomenon can be primarily
attributed to either the absence [51} 152] or perturbation of gradient flow of existing sparse training recipes.
Building on the insights our experiments, we introduce alternative training recipes that demonstrate substantial
improvements in model quality, particularly at high sparsity regime. We made the following contributions:

* The impact of gradient perturbations becomes increasingly evident at elevated levels of sparsity,
leading to a deterioration in the quality of the model. We present empirical evidence that SR-STE, a
state-of-the-art N:M structured training recipe [22]], is less effective at high sparsity regions, > 75%. We
attribute this to the nontrivial perturbation of gradient magnitudes. This perturbation during the initial stages
of traininéﬂ adversely amplifies the variance of gradients, resulting in a diminished model quality.

» Gradient flow is all you need. In order to alleviate the adverse effects of noisy gradients, we introduce
a class of decaying-based sparse training recipes tailored for N:M structured sparsity. The fundamental
principle underlying these methods involves progressively limiting the flow of gradients for pruned weights,
while allowing the gradients to freely flow at the early stages of training. Our results demonstrate that the
decaying-based methods consistently outperform SR-STE by up to 2%-5% in terms of model quality, while
pruning ~97% of parameters.

* Decaying-based sparse training recipes require less training FLOPs. To better understand the computa-
tional overhead of the proposed sparse training recipes, we present the trade-off between model accuracy and
training compute cost in term of FLOPS. The results show that at iso-quality, our method requires > 30%
fewer training FLOPs compared to SR-STE.

2. Background and Related Works

This work focuses on weight sparsity, which poses a significant challenge in serving attention-based models.

2.1. Computation Flow of Sparse Training Recipes

summarizes the computation flows of various training recipes for the sparsification of weights. A
sparsification recipe broadly entails 1) pruning criteria, 2) pruning schedule, and 3) sparsity pattern.

(1) Pruning criteria. The pruning criteria refers to the set of criteria used to determine the specific elements
within the weight tensor that should be pruned. Magnitude pruning selects the pruning elements based on their
absolute values, is one of the most widely used criteria for sparsification [12} 13} 117,136, 53H56]]. Recent work
employs other criteria such as gradient [57, 58], Hessian [59], connection sensitivity [53]], and importance
estimation [60]. In this paper, we use magnitude pruning, following SR-STE [22] the state-of-the-art structured
N:M training recipe.

(2) Pruning schedule. We classify the pruning schedules into the following broad categories:

* Fine-tuning with one-shot pruning— This approach [46] 147, 53] [54] involves training a dense model,
followed by on-shot weight pruning. Subsequently the pruned model is fine-tuned to regain the lost quality.

* Fine-tuning with iterative pruning— This method [[L1H17, |38} 158, 161463 trains a dense model followed by
iterative cycles of pruning and re-training, which shows a greater capacity to regain lost quality.

* From-scratch with learned pruning pattern— This pruning recipe [[L1}164] establishes the sparsity pattern
based on pretrained dense model and subsequently trains a sparse model from scratch.

» From-scratch while learning sparsity pattern— This approach [55} 58 |65H69] trains a sparse model from
scratch while concurrently learning the sparsity mask.

(3) Sparsity pattern. We broadly categorize sparsity patterns into following groups:

Recent studies for dense models [49] [51]] have shown that the early stage of training (critical region) is imperative in the
quality of training recipes.

m@

ﬂﬁ?ﬁ _

a5

? ? 2

3] 3

& & &

K]] T

3 3 s

= * X, X * X, Xy

3 8 8

& & &

o E T -7

Z E :

S S] - ~

k4 w, . 8) Wi & Wi 9OV, 7? w) Wm
(a) Dense Tralnlng (b) Sparsification (c) Fine-Tuning (d) Sparse Training

Fig. 1: The computation flow of (a) dense training, (b) sparsification, (c) fine-tuning, and (d) sparse training
(e.g. SR-STE). W represents a pruned matrix that is computed by element-wise multiplication (®) of W and
its sparsification mask (M). Sparse training recipes, such as SR-STE, introduce a “sparse refining” regularizer
(R) to adjust the gradient terms for pruned elements.

©
—

Backward Pass ~ Forward Pass
Backward Pass ~ Forward Pass

Fig. 2: An overview of different sparse training recipes (a) SR-STE [22], (b, ¢) proposed decaying mechanisms
in this work. (b) indicates decaying binary mask values for pruned weights (MDGF), whereas (c) gradually
change the N:M sparsity patters at different intervals (SDGF).

* Unstructured Sparsity refers to the process of pruning a model without imposing any constraints on the
sparsity pattern [[13,|36]53-55]]. This sparsity pattern is known to be able to prune the model size to an order
of magnitude smaller while retaining a similar model quality as its dense counterpart at the cost of increased
runtime overhead.

» Coarse-grained Structured Sparsity enforces coarse-grained sparsity patterns, including techniques like fil-
ter/channel pruning [14} 70, 71] and block-wise pruning [35,162}[71}[72]]. By skipping the entire computation
of a tensor, this sparsity pattern often yields speedup in natively-dense accelerators such as GPUs and TPUs.
Nevertheless, this trade-off often results in a reduction in model quality.

* Fine-grained Structured N:M Sparsity prunes (M-N) out of M consecutive elements. Several preliminary
studies rely on special threading and grouping techniques [16] or specialized sparse accelerators [40]
to exploit this fine-grained sparsity pattern. With the inclusion of 2:4 GEMM support in GPU Ampere
architecture [34], recent work starts to investigate effective training recipes for N:M sparsity patterns to
harness the existing accelerators [22 146-48]].

90M) Wit

“w) 9(W) Went |

(@) SR-STE (b) Mask Decay Gradient Flow (MoGr) (c) Structure Decay Gradient Flow (SoGr)

Other related work. Other work has also investigated N:M structured sparsity in attention-based models.
[Figure 2fa) demonstrates the weight update scheme for the forward and backward pass of SR-STE [22].
SparseGPT [50] introduces a post-training sparsification recipe tailored for GPT-family models. SparseGPT
shows on-par model quality with up to 50% weight pruning under unstructured and N:M structured sparsity.
Finally, selective weight decay (SWD) [73] is a pruning method based on Lagrangian smoothing, which
penalizes weights that are selected for pruning. However, SWD neither explores attention models nor provides
training recipes for N:M structured sparsity.

3. Decaying-based Sparse Training Recipes

This section covers the class of decaying-based training recipes for fine-grained N:M sparsity. The main
premise of these recipes is to allow the gradient to flow through weight tensors in a controlled way to prevent
induced noise in the gradients. We broadly classify the proposed decaying-based training recipes into: (a)
“Mask Decay Gradient Flow” (MDGF) and (b) “Structure Decay Gradient Flow” (SDGF), each with sub-
variants which we discuss in details below. In contrast to [22], we intentionally refrain from modifying the
gradient update rules in either of these categories. Instead, we use different update rules for sparsity pattern or
sparsity mask tensor, facilitating unimpeded gradient flow during the entire sparse training process.

Implementation. In order to implement these methods, we employ the process of pruning dense weight
tensors (W;) to generate sparse weight tensors (W,), adhering to the following rule during the forward pass:

W = F(W, N, M, ®, 5,)

Here © represents the Hadamard product. ®(-) and D(-) calculate a decaying-based binary mask and decay
mask factor, respectively. (j) denotes the training step count. Each function’s implementations establish
distinct decaying-based training recipes. ®(-) calculates a binary mask that matches the dimensions of the
input weight tensor (W). The location of Os and 1s in the binary mask refers to pruned and unpruned weights,
respectively. In fine-grained N:M structured sparsity with magnitude pruning, ®(-) assigns a value of 1 to
the N weight tensor elements with the highest absolute magnitude within a contiguous block of M elements.
Simultaneously, it enforces all the other elements with the block to be set to 0. In addition, D(-) calculates the
decaying factor for binary mask according to the target decaying-based training recipe. It should be noted that
([®(W, N, M, j) + D(j)(1 — ®(W, N, M, 5))] is not a sparse matrix during intermediate steps. However, as
D(j) decays to 0 over the course of training, (W) ultimately equals (W - ®(W, N, M, 5)), which is sparse.

@ Mask Decay Gradient Flow (MDGF). In the first training recipe (b), we propose the use of
a diminishing value ranging from 1 to 0, as opposed to the commonly-used binary pruning mask (e.g., “0”
— pruned and “1” — dense). Note that for the mask-decay training recipes the function ®(-) produces a
mask tensor either with all ones (dense training) or with a sparsity pattern following target N:M fine-grained
structured sparsity. In the initial epochs, we use a mask comprising solely of ones and assign a constant value
of 1 to D(-), i.e., dense training.

Upon staring sparse training phase, D(-) produces gradually diminishing floating-point values between 1 and
0. The output of function D(-) depends on current decaying interval. Using a diminishing decaying factor
enables gradient flow for both pruned and unpruned weights. This is in contrast to prior work in which D(-) is
null which may cause instability in the training process. We propose two new implementations for D(-):

* MDGE-Linear uses D(j) = maz(1 — 5, x j,0) that reduces the decay mask values linearly with respect to
training steps.

» MDGF-Exponential, as its name implies, we use D(j) = e~#7*J indicating an exponential decrease in the
mask decay value relative to the ongoing training step.

The value of 3/, determines the rate of decay. To ensure a binary mask value for the target N:M sparsity
pattern, after sufficient decaying intervals, D(-) approaches zero. After reaching the target N:M sparsity
pattern, we proceed with few additional training epochs to restore the model accuracy. We postulate that using
non-binary pruning mask values facilitates the smooth propagation of gradients in pruned weights, resulting in
more stable sparse training. For practical use, we recommend setting the decay rate such that the decay factor
reaches zero when approximately 70% of the training budget is completed, allowing for sufficient fine-tuning
of the final sparse weights.

@ Structure Decay Gradient Flow (SDGF) SDGEF decays the structure of the pruning mask, e.g. gradually
altering the sparsity level, e.g. S . In contrast to MDGF, this method strictly confines the pruning
mask values to either 1 or 0, e. g D() = 0 We propose two alternative implementations of ®(+), (a) Stepwise
and (b) Geometric.

The SDGF-Stepwise starts by inducing M-1:M structured sparsity. Subsequently, it gradually increase the
level of sparsity following 2Md : M formulation in which d denotes the index of the decaying interval, until

M —— N. For example, to retain a target sparsity level of 1:8, the method applies the following sparsity

2d
patterns at different decaying interval £ — % +— 2 — L.

The core idea of SDGF-Geometric is to maintain a constant ratio of % throughout successive decay intervals
by adjusting the values of N and M in proportion to each other. In all experiments, we configure ®(-) to be

’“;dM k XN . The value of k is set to 16, unless specifies otherwise. We empirically find that k£ > 16 offers

negligib]e improvements in terms of model quality. For example for a target spars1ty of 1:8, we induce the

following sparsity patterns at each decaying interval, - 128 — % — % — 126 — g. For both recipes, we

evenly partition the total sparsification epochs throughout the decaying intervals. Fundamentally, this approach

T
—— SR-STE
MDGF-Exponential

—— SR-STE

0.8 3 MDGF-Exponential
c
0.7 £810°°
= s
+— 0.6
505 Z
= g
0.4 -
T -6
0.3 © 10
(<]
0.2 e
0.1
0 20 40 60 80 0 2 4 6 8 10 12
Steps t(1e3) Steps t(1e3)
(a) Variance of AdamW Second Moment (b) Gradient Variance

Fig. 3: Trends for different indicators of gradient values during training. Data from ViT-tiny trained on
CIFAR-10 with 1:16 sparsity pattern. (a) and (b) show the running average of the variance of AdamW second
moment and gradient variance, respectively.

follows a hypothesis akin to MDGF. Enabling the flow of gradients of pruned weights throughout the model
potentially leads to higher model accuracy.

4. Impact of Gradient Flow in Sparsification

To better understand the impact of gradient flow while sparififying the weights, we follow the insight that
when the decaying variance of the noisy gradient is large, the algorithm might spend much time bouncing
around, leading to slower convergence and worse performance [52]]. Through MDGF and SDGF, we allow a
smoother and more stable gradient flow during backpropagation compared to SR-STE, thereby reducing the
noise introduced by high-sparsity constraints.

In order to observe the effect of proposed decay methods, we conducted an empirical analysis to compare
the gradient values of MDGF-Exponential and SR-STE [22]. We created a compact version of ViT with
three encoder layers, each with three attention heads, and an embedding size of 192. We trained this model
on CIFAR-10 [74] for 200 epochs with batch size 64 with AdamW optimizer. To understand the impact of
sparsification, we collect and analyze two different metrics, namely second moment and gradient variance.
These values are an indication of how effective the gradient estimations are for training [75H77].

4.1. Analysis of Second Moment Estimates

[3(a)] shows the variance of the second moment term (exponential moving average of squared gradient values)
for Feed-Forward (FF) layers in the model. We observe that in MDGF, the variance steadily decreases in
magnitude, whereas in SR-STE, the variance stays at the relatively high level even at the later stages of training.
Prior study [7/5H77] correlate lower variance of the second moment with faster convergence rate during training
and better model accuracy. This suggests that the gradient noise induced by SR-STE have negative impact on
the convergence of the model and model accuracy.

4.2. Analysis of Gradient Noise

[Figure 3|b) shows the variance of absolute back-propagation gradients. These values can be interpreted as
the amount of noise in the gradient estimates. Similar to the previous study, we collect the gradients of
Feed-Forward(FF) layer in tiny-ViT. We observe that in MDGF, the variance of gradients decreases quickly,
whereas in SR-STE, the variance of gradients has a lower slope (e.g. taking a larger number of steps). When the
variance of the gradient is higher, the optimizer spends time bouncing around, leading to slower convergence
and lower performance [51}152]]. The variance for MDGF-exponential comes down rather quickly thus the
gradients are less noisy compared to SR-STE. This would result in higher accuracy for MDGF-Exponential.
When observing the final validation accuracy of the two runs, we confirm our intuitive conclusions as the
SR-STE accuracy is lower compared to MDGF-Exponential accuracy.

Table 1: The compute and memory contributions of the three major layers in Transformers. These estimations
are made for ViT-Base. The FF layers account for around 64% of overall FLOPs and 66.6% of parameters. We
use sequence length 196 to read image of 224x224.

Einsum (Logit & Attend) Projections (Q/K/V/O) Feed Forward (FF1/FF2)

(T)FLOPS 1.42 (4%) 11.1 (32%) 22.20 (64%)
Params (MB) 0.0 (0%) 28.31 (33.3%) 56.62 (66.6%)

5. Experiment

In this section, we evaluate the effectiveness of various training recipes for N:M fine-grained structured
sparsity in a range of attention-based models and tasks, such as image classification, language translation and
understanding. Motivated by the relatively substantial contribution of FF layers (Table I)) in total FLOPs

Table 2: ImageNet-1K Top-1 validation accuracy on ViT-Base across different N:M sparsity patterns and
training recipes.

Sparse Target ‘ Dense ‘ SR-STE ~ MDGF-Linear ~ MDGF-Exponential ~ SDGF-Stepwise ~ SDGF-Geometric
2:4 (FF) 76.389 717.761 77.613 76.381 77.081 77.363
1:4 (FF) 76.389 78.782 78.512 78.579 77.357 78.347
1:8 (FF) 76.389 77.869 78.019 78.009 77.025 78.175
1:16 (FF) 76.389 75.637 76.594 77.325 75.923 76.869
1:32 (FF) 76.389 73.056 75.807 76.068 74.394 74.910
1:128 (FF) 76.389 72.069 74.012 74.180 71.725 69.801
1:4 (FF) + 1:4 (QK) 76.389 78.145 71.755 78.113 77.163 78.229
1:8 (FF) + 1:8 (QK) 76.389 75.527 76.473 77.349 76.617 76.334
1:8 (FF) + 1:4 (QK) 76.389 78.144 78.025 78.273 77.163 76.839
1:8 (FF) + 1:4 (QKV) | 76.389 78.222 78.319 78.319 77.309 78.213

(~64%) and parameter count (~66.6%), we center our experiments around sparsification of these layers within
the encoder and decoder blocks. In addition, we conduct experiments on the pruning of projection layers
(Q/X/V) for a variant of ViT-Base [78]], a variant of SwinV2-Base [79]], and T5X-Base [1]]. For ViT-Base,
we use fixed-size patches (resolution 16 x 16) on images with resolution 224. In SwinV2-Base, we employ
window sizes of 8 x8 on images with resolution 256. For image classification tasks, we branched (commit:
1304589) our implementation from PyTorch Image Models [80] and use NVIDIA A100 GPUs for training
on ImageNet-1K dataset [81]. For T5X-Base, we extend the official Google T5X release (commit: |[d3d3cbf)
with sparsification training recipes and use Google TPUv3. We train these models from scratch using different
training recipes across different patterns of N:M fine-grained structured sparsity. SR-STE [22]] serves as the
baseline sparse training recipe to assess the effectiveness of the proposed training recipes in terms of model
accuracy. [Appendix C|have details about training hyperparameters, dataset details, and evaluation metrics.

5.1. Image Classification — ViT-Base and SwinV2

ViT-Base model quality. presents Top-1 validation accuracy for variations of N:M sparsity in
ViT-Base, with the highest accuracy model indicated in bold. The “Sparse Target” column signifies the
intended level of N:M sparsity. For example, a sparsity target of 1:32 indicates that sparse tensors exhibit at
most one non-zero for every 32 contiguous elements. In low sparsity scenarios (e.g., 2:4 and 1:4), both MDGF
and SR-STE demonstrate comparable performance. Nevertheless, with increases in either sparsity degree (e.g.,
1:8 and higher) or the number of sparse layers, e.g., 1:4 (FF) + 1:4 (QK), employing SR-STE is detrimental to
model quality. In contrast, the proposed decaying-based training recipes, MDGF and SDGF, yield the highest
accuracy.

Interestingly, when aiming for a sparsity target of 1:32 (approximately 97%), MDGF-Exponential showcases a
mere 0.3% reduction in accuracy compared to a fully dense model (76.389 vs. 76.068). Additionally, we notice
that the model accuracy increases at modest sparsity degrees, specifically in 2:4/1:4/1:8 (FF) patterns, resulting
in an improvement of up to A(Acc) = +2.4% in 1:4 (FF). The increase in model accuracy, demonstrated in
M(a)l can be attributed to Occam’s Hill, wherein the positive impact of sparsity as a means of regularization is
elucidated [82} 83]]. The performance of MDGF-Exponential training recipe is comparable to that of SR-STE

https://github.com/huggingface/pytorch-image-models/commit/130458988a61c961cd78eb95c427472af5a26e50
https://github.com/google-research/t5x/commit/d3d3cbfc5c204244393f625b11d56f64f1138dbd

79% 2.00x 78% =
5 > —— Dense 1.6%
B 78%] » O 7% SRSTE 37.8%]
3 & |isx &3 —_ - i
8 7% % e} 8 74% SDGF-Geometric
< -2 z <
T 76% i £ L%
g L 150x € o
= 75% = 2% jou
® —— Dense o o'”
Z 74% SR-STE 3 3
O 3 125 @ 9 68%
& o, || — MDGF-Exponential ® g

A

£ —— Inference FLOPs w.r.t Dense = 66%

72% 5% 20% 40% 60% 80% 100% 0% 0% 20% 40% 60% 80% 100%

Sparsity Ratio Normalized Iso-Training FLOPs

(a) Accuracy vs. Sparsity ratio showing Occam’s hill. (b) Accuracy vs % of training epochs.

Fig. 4: ViT-Base trained on ImageNet-1K with different sparsity patterns and targets. (a) shows the Occam’s
hill where sparsity improves the model accuracy. The dashed red line shows the reduction in inference FLOPs
at different sparsity ration. At high sparsity regime (>80%) MDGTF yields better accuracy than SR-STE
and (b) demonstrates model accuracy across training recipes (dense and sparse) at different training FLOPs.
The vertical line indicates the proposed decaying method is better (1.6%) than dense model at given training
FLOPS. The vertical line shows that the decaying based method reaches to dense model accuracy at 37.8%
less training FLOPs.

in low-sparsity scenarios. However, the proposed MDGF-Exponential recipe far surpasses SR-STE when
confronted with high-sparsity patterns.

As commercially available accelerator can not support /\
high-sparsity patterns. In order to assess the potential 78 — S.pza‘r‘?;th)' Config
performance benefits by comparing the savings in in- & * L:A(FF)
> ° A 1:8(FF)
ference FLOPs as well as memory usage. g6 m 116
. . . 3 1:32(FF
visualizes the trade-off between accuracy and infer- § :1:128(FF)
ence FLOPs across range of sparsity configurations 3 Recipe
. . L 74 - MDGF-Exp
and recipes. The results show that MDGF-Exponential SR-STE
with sparsity 1:16 provides similar accuracy as SR- @ Pareto Curve
STE 2:4 with 60% fewer inference FLOPs and 30% s s 5 5T 52
fewer parameters. provides the details of Inference FLOPS(G)

FLOPs calculations.
Fig. 5: FLOP vs. Accuracy for ViT-Base+ImageNet-

SwinV2-Base model quality. 1K.

demonstrate Top-1 validation accuracy for SwinV2-Base. Similar to ViT-Base, we observe that the
decaying-based algorithms outperforms SR-STE across various N:M sparsity patterns. In 1:4 and 1:8 (35),
SDGF-Geometric yields the highest Top-1 validation accuracy. Whereas, in high-sparsity patterns, MDGF-
Exponential demonstrates superior performance compared to SR-STE. To summarize, the results from the
two image classification models demonstrate that the proposed training recipes, MDGF and SDGF, which
incorporate decaying-based approaches for N:M fine-grained structured sparsity, yield superior performance
compared to SR-STE.

Table 3: ImageNet-1K Top-1 validation accuracy on SwinV2-Base across different N:M sparse patterns and
training recipes.

Sparse Target ‘ Dense ‘ SR-STE =~ MDGF-Exponential SDGF-Stepwise SDGF-Geometric
1:4 (FF) 83.45 82.355 82.491 82.267 82.469
1:8 (FF) 83.45 81.437 81.466 81.382 81.382
1:16 (FF) 83.45 80.154 80.542 80.386 80.274
1:32 (FF) 83.45 78.972 79.545 76.480 79.277
1:8 (FF) + 1:8(QK) 83.45 81.441 81.550 81.218 81.438

5.2. Language Understanding — T5X-Base

We also analyze the efficacy of the proposed decaying-based training recipes for the language understanding
task. We employ a dense pre-trained T5X-Base model trained on the C4 dataset with a span-corruption

objective [[1]. The dense pre-trained model undergoes fine-tuning using the GLUE dataset [84]] with various
training recipes for N:M structured sparsity. depicts the overall score, summarized across eight
different GLUE tasks. We observer a consistent trend where SDGF outperforms SR-STE at high-sparsity
patterns and increasing number of sparse layers. Notably, we observe a relative difference of A = +5.3in 1:8
(FF) + 1:8 (QKV) sparsity pattern. [Appendix Aland[Appendix B|provide details about the T5X-Base model,
per-task evaluation metrics, and additional ablation studies.

Table 4: The GLUE overall score on the sparsified T5X-Base model across different N:M sparse training
recipes and patterns.

Model ‘ Sparsity Target | Dense | SR-STE SDGF-Stepwise SDGF-Geometric
T5X-Base 1:4 (FF) 86.2 84.1 83.7(A = —0.4) 83.4
T5X-Base 1:32 (FF) 86.2 79.4 80.9 (A = +1.5) 79.3
T5X-Base | 1:8(FF)+ 1:8 (QK) | 86.2 758 80.7(A = +4.9) 76.8
T5X-Base | 1:8(FF)+ 1:4(QKV) | 86.2 78 80.3 (A = +2.3) 78.9
T5X-Base | 1:8 (FF)+ 1:8 (QKV) | 86.2 742 7195(A = +5.3) 75.8

5.3. Language Translation — Enc-Dec
Table 5: The translation accuracy on WMT task across different N:M sparsity patterns and training recipes.

Model | Sparsity Target | Dense | SR-STE SDGF-Stepwise ~ MDGF-Exponential
Enc-Dec (WMT) 1:16 0.747 0.709 0.717 0.717
Enc-Dec (WMT) 1:32 0.747 0.707 0.713 0.714
Enc-Dec (WMT) 1:64 0.747 0.707 0.710 0.711
Enc-Dec (WMT) 1:128 0.747 0.707 0.708 0.711

Finally, we compare the performance of different sparse training recipes on WMT language translation
task [85]]. For that, we use an encoder-decoder transformer-based model [[86] each with six layers and 16
heads, which is relatively smaller than T5X-Base. outlines the details about this model and the training
hyperparameters.

[Table 5|demonstrates the accuracy results across range of sparsity patterns and training recipes. We observe that
SDGF and MDGEF collectively outperform SR-STE across various N:M structured sparsity patterns. However,
we note that the difference in accuracy achieved through different training recipes is relatively smaller. This
can be attributed to the model size (6 layers vs. 12 layers in T5X-Base), as well as the nature of the translation
task, which appears to be less sensitive to sparsity patterns and training recipe

5.4. Recipe impact for CNNs.

While the primary focus of this work is on evaluating sparse training recipe for transformer models, for the
sake of completeness, we also test the efficacy of our recipe on CNNs. We train ResNet-50 following two
sparse training recipes (SR-STE and MDGF-Exponential) and across different sparse patterns (2:8, 1:8). We
pruned all the convolution layers and evaluate Top-1 validation accuracy on CIFAR-10. shows a
similar pattern, decaying-based sparse training recipes outperform SR-STE in both cases.

Table 6: ResNet-50 Top-1 validation accuracy.

Sparse Target | Dense | SR-STE ~ MDGF-Exponential
2:8 ‘ 85.09 ‘ 83.33 83.60

1:8 85.09 80.78 82.48

5.5. Baseline Comparison

Table 7: Comparing various sparsification techniques by fine-tuning T5X on GLUE dataset.
Sparse Target | SR-STE [22] | SNIP [53] | IDP [87] | MDGF-Exponential
1:32 (FF) | 79.4 | 795 | 806 | 80.9

SR-STE is our primary baseline in our evaluations as it has shown good results in low-sparsity regions [2:4,1:4]
and is considered SOTA for N:M training. We also compared against other techniques like Inherited Dynamic

*Model accuracy is less affected as we increase the sparsity level beyond 1:32.

Pruning (IDP) [87], and SNIP: Single-shot Network Pruning [53]. compares the results on T5X with
GLUE dataset. We also tried to test against LBC [88]] but could not recreate the results shown in the paperE]

5.6. Inference speedup on Real Hardware.

Current SOTA hardware accelerates sparsity at a 2:4 ratio. However, adopting higher sparsity levels can enable
even faster inference, even without dedicated hardware support for such patterns. This acceleration primarily
arises from reduced memory movement in memory-bound kernels.

To evaluate end-to-end acceleration on GPUs, we measure the runtime of the ViT-Large [18]] inference stage
across various N:M sparse patterns, using the dense implementation as a baseline. We induce N:M sparse
patterns only in the FF layers. Our results demonstrate substantial benefits from N:M sparsity, even for patterns
beyond 2:4, during end-to-end model inference. [Table 8| presents the speedups achieved on V100 and A100
GPUs for different N:M sparsity patterns compared to dense ViT implementations. It is important to emphasize
that these gains primarily stem from reduced memory movement and optimizations via custom cuSPARSE
APIs. Furthermore, we report standalone acceleration for sparse FFN kernels in

Table 8: Speedup of ViT Inference with various sparsity amounts in FF layers.

Hardware | Dense 2:4 1:4 1:8 1:16 1:32 1:128

V100 1.0 1.542 2202 3.019 3.460 3.558 3.380
A100 1.0 1.953 2.614 2958 3.014 3.129 3.259

6. Limitations and Future Works

This work explores effective high-ratio sparsity for self-attention models. While we evaluate MDGF and
SDGF in isolation, combining them across training regions may yield better model quality. Our key finding
is that high sparsity degrades gradient estimation, which we mitigate by progressively tightening gradient
flow—a simple yet effective strategy across various models and datasets.

However, our approach has limitations. First, while empirically effective, it lacks a strong theoretical foundation
explaining why gradient decay alleviates sparsity effects. Future work could provide a rigorous analysis.
Second, our method focuses on structured sparsity at training time and may not extend to dynamic scenarios
like KV cache compression in autoregressive models. Adapting it to such contexts remains an open challenge.
Further, applying our techniques to autoregressive models, which suffer from high inference costs and memory
constraints, is a promising direction. A deeper evaluation in this setting could enhance their impact and utility.

7. Conclusion

We study the efficacy of recent sparsity recipes for N:M sparsity across transformer-based models and find that
conventional methods introduce significant gradient noise at high sparsity (>75%). To address this, we propose
decaying-based training recipes, with MDGF-Exponential achieving state-of-the-art accuracy—improving
vision models by 2% and language models by 5% at high sparsity. Our results highlight the critical role
of gradient flow, especially in early training. For same training FLOPs, our approach improves accuracy
by 2%. Additionally, MDGF-Exponential (1:16) matches SR-STE (2:4) accuracy while reducing inference
FLOPs by 60% and parameters by 30%. Finally, real hardware tests show up to 3.38 x speedup over dense
implementations. The source code is open sourced and available in github,

8. Acknoledgement

We are deeply grateful to Cliff Young and Vincent Vanhoucke for their valuable feedback and thoughtful
review of this paper. We further recognize the extended team at Google DeepMind, who enabled and supported
this research direction. We thank numerous anonymous reviewers for their feedback which helped in making
this work stronger. This work was supported in part by CoCoSys, one of seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA.

“We have contacted the authors but cannot solve the issue.

https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity

Bibliography

[1] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv preprint arXiv:1910.10683, 2019.

[2] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. |(OPT: Open
Pre-trained Transformer Language Models. arXiv preprint arXiv:2205.01068, 2022.

[3] OpenAl. GPT-4 Technical Report, 2023.

[4] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. |Llama 2: Open Foundation and
Fine-Tuned Chat Models. arXiv preprint arXiv:2307.09288, 2023.

[5] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, et al. (Gemini: A Family of Highly Capable Multimodal Models!
arXiv preprint arXiv:2312.11805, 2023.

[6] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. (Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. In AAAI 2020.

[7] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-BERT: Integer-only
BERT Quantization. arXiv preprint arXiv:2101.01321, 2021.

[8] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8 BERT: Quantized 8Bit BERT. arXiv
preprint arXiv:1910.06188, 2019.

[9] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu. TernaryBERT:
Distillation-aware Ultra-low Bit BERT. arXiv preprint arXiv:2009.12812, 2020.

[10] Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. SLiM: One-shot Quantized
Sparse Plus Low-rank Approximation of LLMs. arXiv preprint arXiv:2410.09615, 2025.

[11] Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The Difficulty of Training Sparse Neural
Networks. arXiv preprint arXiv:1906.10732, 2019.

[12] Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. arXiv preprint arXiv:1510.00149, 2015.

[13] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic Network Surgery for Efficient DNNs. In NeurIPS,
2016.

[14] Yihui He, Xiangyu Zhang, and Jian Sun. (Channel Pruning for Accelerating Very Deep Neural Networks.
In ICCV, 2017.

[15] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning Convolutional Neural
Networks for Resource Efficient Inference. arXiv preprint arXiv:1611.06440, 2016.

[16] Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang, and Lanshun Nie. Balanced Sparsity for Efficient
DNN Inference on GPU. In AAAI, 2019.

[17] Michael Zhu and Suyog Gupta. To Prune, or not to Prune: Exploring the Efficacy of Pruning for Model
Compression, arXiv preprint arXiv:1710.01878, 2017.

[18] Tian Jin, Ahmed Imtiaz Humayun, Utku Evci, Suvinay Subramanian, Amir Yazdanbakhsh, Dan Alistarh,
and Gintare Karolina Dziugaite. The Journey Matters: Average Parameter Count over Pre-training
Unifies Sparse and Dense Scaling Laws. In ICLR, 2025.

[19] Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, and Maryam Mehri Dehnavi. SLoPe: Double-
Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs. In ICLR, 2025.

[20] Simla Burcu Harma, Ayan Chakraborty, Elizaveta Kostenok, Danila Mishin, Dongho Ha, Babak Falsafi,
Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Subramanian, et al. Effective Interplay Between Sparsity
and Quantization: From Theory to Practice. In ICLR, 2025.

[21] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge Distillation: A Survey.
International Journal of Computer Vision, 2021.

[22] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng
Li. Learning N:M Fine-grained Structured Sparse Neural Networks from Scratch. In /CLR, 2021.

[23] Eric Qin, Geonhwa Jeong, William Won, Sheng-Chun Kao, Hyoukjun Kwon, Sudarshan Srinivasan,
Dipankar Das, Gordon E Moon, Sivasankaran Rajamanickam, and Tushar Krishna. Extending Sparse

10

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/1909.05840
https://arxiv.org/abs/2101.01321
https://arxiv.org/abs/2101.01321
https://arxiv.org/abs/1910.06188
https://arxiv.org/abs/2009.12812
https://arxiv.org/abs/2009.12812
https://arxiv.org/pdf/2410.09615
https://arxiv.org/pdf/2410.09615
https://arxiv.org/abs/1906.10732
https://arxiv.org/abs/1906.10732
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1608.04493
https://arxiv.org/abs/1707.06168
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1811.00206
https://arxiv.org/abs/1811.00206
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://arxiv.org/pdf/2501.12486
https://arxiv.org/pdf/2501.12486
https://arxiv.org/pdf/2405.16325
https://arxiv.org/pdf/2405.16325
https://arxiv.org/pdf/2405.20935
https://arxiv.org/pdf/2405.20935
https://arxiv.org/abs/2006.05525
https://arxiv.org/abs/2102.04010
https://arxiv.org/abs/2103.10452
https://arxiv.org/abs/2103.10452

Tensor Accelerators to Support Multiple Compression Formats. In /PDPS, 2021.

[24] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K Gupta, and Hadi Esmaeilzadeh.
Snapea: Predictive Early Activation for Reducing Computation in Deep Convolutional Neural Networks.
In ISCA, 2018.

[25] Yunjie Pan, Jiecao Yu, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke. BitSET: Bit-Serial Early
Termination for Computation Reduction in Convolutional Neural Networks. ACM Transactions on
Embedded Computing Systems, 2023.

[26] Song Han, Jeff Pool, John Tran, and William Dally. Learning both Weights and Connections for Efficient
Neural Network. In NeurIPS, 2015.

[27] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. Emergent Abilities of Large Language Models. TMLR, 2022.

[28] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long Sequences with Sparse
Transformers. arXiv preprint arXiv:1904.10509, 2019.

[29] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The Long-Document Transformer. arXiv
preprint arXiv:2004.05150, 2020.

[30] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient Content-based Sparse
Attention with Routing Transformers. TACL, 2021.

[31] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient Transformer. arXiv
preprint arXiv:2001.04451, 2020.

[32] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient Transformers: A Survey. ACM
Comput. Surv., dec 2022.

[33] Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech Gajewski,
Henryk Michalewski, and Jonni Kanerva. Sparse is Enough in Scaling Transformers| In NeurIPS, 2021.

[34] Nvidia. NVIDIA Ampere Architecture Whitepaper. https://images.nvidia.com/aem-dam/en-zz/
Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf, 2021.

[35] Xiaolong Ma, Sheng Lin, Shaokai Ye, Zhezhi He, Linfeng Zhang, Geng Yuan, Sia Huat Tan, Zhengang
Li, Deliang Fan, Xuehai Qian, Xue Lin, Kaisheng Ma, and Yanzhi Wang. Non-Structured DNN Weight
Pruning — Is It Beneficial in Any Platform? IEEE transactions on neural networks and learning systems,
2021.

[36] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing Rewinding and Fine-tuning in Neural
Network Pruning. In /ICLR, 2020.

[37] Mingbao Lin, Liujuan Cao, Shaojie Li, Qixiang Ye, Yonghong Tian, Jianzhuang Liu, Qi Tian, and
Rongrong Ji. Filter Sketch for Network Pruning. TNNLS, 2021.

[38] Noah Gamboa, Kais Kudrolli, Anand Dhoot, and Ardavan Pedram. Campfire: Compress-
ible, Regularization-Free, Structured Sparse Training for Hardware Accelerators. arXiv preprint
arXiv:2001.03253, 2020.

[39] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. Sparse Tensor Core: Algorithm and Hardware
Co-design for Vector-wise Sparse Neural Networks on Modern GPUs. In MICRO, 2019.

[40] Hyeong-Ju Kang. Accelerator-Aware Pruning for Convolutional Neural Networks. IEEE Transactions
on Circuits and Systems for Video Technology, 2019.

[41] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan,
Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally. SCNN: An Accelerator for|
Compressed-Sparse Convolutional Neural Networks. In ISCA, 2017.

[42] Z. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina. S2TA: Exploiting Structured Sparsity for Energy-
Efficient Mobile CNN Acceleration. In HPCA, 2022.

[43] Geonhwa Jeong, Sana Damani, Abhimanyu Rajeshkumar Bambhaniya, Eric Qin, Christopher J. Hughes,
Sreenivas Subramoney, Hyesoon Kim, and Tushar Krishna. VEGETA: Vertically-Integrated Extensions
for Sparse/Dense GEMM Tile Acceleration on CPUs. In HPCA, 2023.

[44] Abhimanyu Rajesh Bambhaniya, Amir Yazdanbakhsh, Suvinay Subramanian, and Tushar Krishna.
Accelerating Attention Based Models via HW-SW Co-Design using Fine-Grained Sparsification. In
Architecture and System Support for Transformer Models (ASSYST@ ISCA 2023), 2023.

[45] Eric Qin, Raveesh Garg, Abhimanyu Bambhaniya, Michael Pellauer, Angshuman Parashar, Sivasankaran
Rajamanickam, Cong Hao, and Tushar Krishna. Enabling Flexibility for Sparse Tensor Acceleration via

11

https://arxiv.org/abs/2103.10452
https://arxiv.org/abs/2103.10452
https://arxiv.org/abs/2103.10452
https://ieeexplore.ieee.org/abstract/document/8416863
https://dl.acm.org/doi/full/10.1145/3609093?casa_token=mH4lUT1joRsAAAAA%3Aa5nu9xUV7K_NJZv5rN73reDjKlcVlz2E85niypaNdxsvBaBjfKwmb_x3_4zdmSOkoyTdPdn0zwWyFA
https://dl.acm.org/doi/full/10.1145/3609093?casa_token=mH4lUT1joRsAAAAA%3Aa5nu9xUV7K_NJZv5rN73reDjKlcVlz2E85niypaNdxsvBaBjfKwmb_x3_4zdmSOkoyTdPdn0zwWyFA
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://openreview.net/forum?id=yzkSU5zdwD
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=-b5OSCydOMe
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://arxiv.org/abs/1907.02124
https://arxiv.org/abs/1907.02124
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2001.08514
https://arxiv.org/abs/2001.03253
https://arxiv.org/abs/2001.03253
https://dl.acm.org/doi/abs/10.1145/3352460.3358269
https://dl.acm.org/doi/abs/10.1145/3352460.3358269
https://arxiv.org/abs/1804.09862
https://people.csail.mit.edu/emer/media/papers/2017.06.isca.scnn.pdf
https://people.csail.mit.edu/emer/media/papers/2017.06.isca.scnn.pdf
https://ieeexplore.ieee.org/abstract/document/9773187?casa_token=5X0ut2Vb6SkAAAAA:9fJYtPiWJRrodZxFACaEkOmMGcNvwHXxQPDGbV8LuyoFD5VpVvwbBOW3b7F-nCYjjzK4cQGJUsbmRA
https://ieeexplore.ieee.org/abstract/document/9773187?casa_token=5X0ut2Vb6SkAAAAA:9fJYtPiWJRrodZxFACaEkOmMGcNvwHXxQPDGbV8LuyoFD5VpVvwbBOW3b7F-nCYjjzK4cQGJUsbmRA
https://arxiv.org/pdf/2302.08687
https://arxiv.org/pdf/2302.08687
https://openreview.net/pdf?id=xd5qPRXLl7
https://arxiv.org/pdf/2201.08916
https://arxiv.org/pdf/2201.08916

Heterogeneity, 2022.

[46] Jeff Pool and Chong Yu. (Channel Permutations for N: M Sparsity. NeurIPS, 2021.

[47] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating Sparse Deep Neural Networks, arXiv preprint arXiv:2104.08378,
2021.

[48] Nvidia. NVIDIA ASP (Automatic Sparsity). https://github.com/NVIDIA/apex/tree/master/apex/
contrib/sparsity, 2021.

[49] Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
Yazdanbakhsh. STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition. In
ICML, 2023.

[50] Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models Can Be Accurately Pruned in
One-Shot, 2023.

[51] Rie Johnson and Tong Zhang. |Accelerating Stochastic Gradient Descent Using Predictive Variance
Reduction. In NeurIPS, 2013.

[52] Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance Reduction for Stochastic Gradient
Optimization, In NeurlPS, 2013.

[53] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. [SNIP: Single-shot Network Pruning based
on Connection Sensitivity. In ICLR, 2019.

[54] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks. In /ICLR, 2019.

[55] Trevor Gale, Erich Elsen, and Sara Hooker. The State of Sparsity in Deep Neural Networks. arXiv
preprint arXiv:1902.09574, 2019.

[56] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the Value of|
Network Pruning. arXiv preprint arXiv:1810.05270, 2018.

[57] Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Alexander Binder, Simon Wiedemann, Klaus-
Robert Miiller, and Wojciech Samek. Pruning by Explaining: A Novel Criterion for Deep Neural Network
Pruning. Pattern Recognition, 2021.

[58] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery!
Making all tickets winners. In ICML, 2020.

[59] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. NeurlIPS, 1989.

[60] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance Estimation for|
Neural Network Pruning. In CVPR, 2019.

[61] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring Sparsity in Recurrent
Neural Networks. arXiv preprint arXiv:1704.05119, 2017.

[62] Sharan Narang, Eric Undersander, and Gregory Diamos. Block-Sparse Recurrent Neural Networks!.
arXiv preprint arXiv:1711.02782, 2017.

[63] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast Sparse ConvNets. In CVPR, 2020.

[64] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning Neural
Networks at Initialization: Why are We Missing the Mark? arXiv preprint arXiv:2009.08576, 2020.

[65] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering Neural Wirings. In NeurIPS,
2019.

[66] Tim Dettmers and Luke Zettlemoyer. Sparse Networks from Scratch: Faster Training without Losing
Performance. arXiv preprint arXiv:1907.04840, 2019.

[67] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In ICML, 2020.

[68] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep Rewiring: Training
very Sparse Deep Networks, In ICLR, 2018.

[69] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu, and
Antonio Liotta. [Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity
Inspired by Network Science. Nature communications, 2018.

[70] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for Efficient
ConvNets. arXiv preprint arXiv:1608.08710, 2016.

[71] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning Structured Sparsity in Deep
Neural Networks. NeurIPS, 2016.

12

https://arxiv.org/pdf/2201.08916
https://arxiv.org/pdf/2201.08916
https://arxiv.org/pdf/2201.08916
https://proceedings.neurips.cc/paper_files/paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html
https://arxiv.org/abs/2104.08378
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://arxiv.org/abs/2302.01172
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://papers.nips.cc/paper_files/paper/2013/hash/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/9766527f2b5d3e95d4a733fcfb77bd7e-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/9766527f2b5d3e95d4a733fcfb77bd7e-Abstract.html
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1912.08881
https://arxiv.org/abs/1912.08881
https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/1911.11134
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=17c0a7de3c17d31f79589d245852b57d083d386e
https://arxiv.org/abs/1906.10771
https://arxiv.org/abs/1906.10771
https://arxiv.org/abs/1704.05119
https://arxiv.org/abs/1704.05119
https://arxiv.org/abs/1711.02782
https://arxiv.org/abs/1911.09723
https://arxiv.org/abs/2009.08576
https://arxiv.org/abs/2009.08576
https://arxiv.org/abs/1906.00586
https://arxiv.org/abs/1907.04840
https://arxiv.org/abs/1907.04840
https://arxiv.org/abs/2002.03231
https://arxiv.org/abs/1711.05136
https://arxiv.org/abs/1711.05136
https://www.nature.com/articles/s41467-018-04316-3
https://www.nature.com/articles/s41467-018-04316-3
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1608.03665
https://arxiv.org/abs/1608.03665

[72] Scott Gray, Alec Radford, and Diederik P Kingma. GPU Kernels for Block-Sparse Weights. arXiv
preprint arXiv:1711.09224, 3:2, 2017.

[73] Hugo Tessier, Vincent Gripon, Mathieu Léonardon, Matthieu Arzel, Thomas Hannagan, and David
Bertrand. Rethinking Weight Decay for Efficient Neural Network Pruning, Journal of Imaging, 2022.

[74] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features from Tiny Images.
Technical report, Citeseer, 2009.

[75] Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. |1-bit Adam: Communication Efficient Large-scale Training with
Adam’s Convergence Speed. In ICLR, 2021.

[76] Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He. Maximizing communica-+
tion Efficiency for Large-scale Training via 0/1 Adam. arXiv preprint arXiv:2202.06009, 2022.

[77] Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and Yuxiong He. |1-bit LAMB:
Communication Efficient Large-scale Large-batch Training with LAMB’s Convergence Speed. In HiPC,
2022.

[78] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. |/An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR, 2021.

[79] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang,
Li Dong, Furu Wei, and Baining Guo. |Swin Transformer V2: Scaling Up Capacity and Resolution. In
CVPR, 2022.

[80] Ross Wightman. PyTorch Image Models. https://github.com/rwightman/pytorch-image-models,
2019.

[81] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009.

[82] Carl Rasmussen and Zoubin Ghahramani. Occam’s Razor. NeurIPS, 2001.

[83] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. |Sparsity in Deep
Learning: Pruning and Growth for Efficient Inference and Training in Neural Networks, 2021.

[84] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. arXiv preprint
arXiv:1804.07461, 2019.

[85] Ondrej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi. Findings of the 2017 Conference on Machine
Translation (WMT17). In Proceedings of the Second Conference on Machine Translation, Volume 2:
Shared Task Papers, 2017.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is All You Need. In NeurIPS, 2017.

[87] Chao Fang, Aojun Zhou, and Zhongfeng Wang. An Algorithm—Hardware Co-Optimized Framework for
Accelerating N:M Sparse Transformers. TVLSI, 2022.

[88] Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong Ji.
Learning Best Combination for Efficient N:M Sparsity. In NeurIPS, 2022.

[89] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, 2019.

[90] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. |CuPy: A NumPy-
Compatible Library for NVIDIA GPU Calculations. In NeurlIPS, 2017.

[91] dot — sparse 0.15.3 documentation. |https://sparse.pydata.org/en/0.15.3/generated/sparse.dot.html,
2018. (Accessed on 12/02/2024).

13

https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://arxiv.org/abs/2011.10520
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://proceedings.mlr.press/v139/tang21a.html
https://proceedings.mlr.press/v139/tang21a.html
https://arxiv.org/abs/2202.06009
https://arxiv.org/abs/2202.06009
https://proceedings.mlr.press/v139/tang21a.html
https://proceedings.mlr.press/v139/tang21a.html
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2111.09883
https://github.com/rwightman/pytorch-image-models
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848
https://proceedings.neurips.cc/paper/2000/hash/0950ca92a4dcf426067cfd2246bb5ff3-Abstract.html
https://arxiv.org/abs/2102.00554
https://arxiv.org/abs/2102.00554
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://aclanthology.org/W17-4717/
https://aclanthology.org/W17-4717/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2208.06118
https://arxiv.org/abs/2208.06118
https://arxiv.org/pdf/2206.06662
https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/1810.04805
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://sparse.pydata.org/en/0.15.3/generated/sparse.dot.html

A. Ablations Studies

This section shows the various ablation studies we performed during our experiments.

A.1. Effect of dense training steps (d)

Both our proposed methods, MDGF and SDGF include a dense training phase. We do an ablation study
on different amounts of dense training steps(% of total steps) in We perform this study on the
language translation model (more implementation details in section [§C.2.4)) trained on WMT-17. We found
that changing the dense step between 1.25% - 10% of the total training steps does not observably change the
accuracy performance. However, empirically, we found that the dense training phase is still essential. The
model cannot achieve as competitive accuracy without few epochs of dense training.

Table 9: Ablation: The effect of number of dense training steps (d).

Accuracy MDGF-Linear SDGF-Stepwise

Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

1.25% 0.7155 0.7134 0.7106 ~ 0.7100 0.7157 0.7134 0.7108 0.7106
25% 07160 0.7127 0.7110 0.7093 0.7160 0.7136 0.7117 0.7100
5% 0.7157 07137 0.7103 0.7094 0.7164 0.7141 0.7107 0.7098
10% 0.7156 0.7126 0.7107 0.7104 0.7165 0.7128 0.7115 0.7107

Dense steps (d)

A.2. Effects of fine-tuning steps (s)

We also have a sets of study on number of fine-tuning steps in[Table T0] We perform this study on the language
translation model (more implementation details in section [§C.2.4) trained on WMT-17. We found that for all
of our proposed methods, the fine-tuning steps between 10% - 20% of the total training steps do not observably
change the accuracy performance. However, empirically, we also found few steps of fine-tuning at the end are
essential to recovering the accuracy.

Table 10: Ablation: The effect of number of fine-tuning steps (s).

Accuracy MDGF-Linear SDGF-Stepwise

Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

10% 0.7153 0.7130 0.7107 0.7098 0.7160 0.7125 0.7095 0.7072
20% 0.7161 0.7132 0.7106 0.7097 0.7121 0.7093 0.7081 0.7065

Fine-tuning steps (s)

A.3. Effect of (3) in MDGF-Linear

We also study on effect of decay rate on model’s accuracy in|Table 11} We do experiments with varying 3* for
ViT-Base trained on Imagenet-1k for different sparsity targets.

We observe that a higher decay rate is beneficial at low sparsity targets (2:4,1:4), but for targets higher than
1:8, we found lower decay rate works better.

Table 11: Ablation: The effect of mask decay rate (5°) for MDGF-Linear.

Sparsity Target 2:4 1:4 1:8
0.0002 ‘ 77495 78.448 78.019

o t
Mask decay rate (5%) "o 001 | 77.613 78512 76.4075

B. Detailed Results for T5X-Base Sparsification on GLUE Dataset

We compared sparsification methods N:M block sparsification against state-of-the-art technique, SR-STE on.
TS5 model uses a span-based masked language modeling (MLM) objective. T5 models were introduced in [1]]
and the updated models are available at T5SX-github. We train a pre trained t5x-base model on GLUE dataset
[84].

14

https://github.com/google-research/t5x

The main paper shows a snapshot of the performance across various sparsity targets using the overall score as
metric. [Table 12] presents all 9 scores for each sparsification technique and sparsity target.

Table 12: GLUE full score using various T5X-base with different N:M sparse targets and various sparsification
techniques.

| | overallscore CoLA MNLImatched ~ MNLI mismatched MRPC QNLI QQP RTE SST2 STS-B
Dense | - | 862 589 87.2 87 924/892(90.8) 936 92.0/89.2(906) 823 95 90.1/90.0 (90.0)
SR-STE (Zero Dense) 14 83.1 418 85.2 853 92.8/90.0(914) 923 91.8/889(903) 791 936 89.5/89.2(89.3)
SR-STE (10K Dense) 14 84.1 48.1 85.7 85.6 924/895(91.0) 921 91.8/89.0(90.4) 827 936 87.9/87.7(87.8)
MDGF-Stepwise (10K Dense) 14 83.7 488 85.3 85.4 92.4/892(90.8) 923 91.8/89.0(904) 805 935 86.5/86.3(86.4)
MDGF-Geometric (Zero Dense) 14 83.3 484 85.3 853 92.0/89.0(90.5) 918 91.8/889(903) 78 928 87.3/87.4(87.3)
MDGF-Geometric (10K Dense) 14 83.4 472 85.4 853 92.6/89.7(9L1) 92 91.8/89.0(90.4) 798 929 86.7/86.4(86.5)
SR-STE (Zero Densc) 1:32 77.1 19 813 81.3 90.9/87.0(89.0) 869 90.6/87.4(89.0) 7I.I 899 86.7/86.8(86.8)
SR-STE (10K Dense) 1:32 79.4 294 822 82.6 91.5/88.5(90.0) 89.6 912/882(89.7) 726 914 87.1/87.2(87.2)
MDGF-Stepwise (10K Dense) 1:32 80.9 383 83.6 83.7 92.5/89.7(91.1) 905 9L5/885(90.0) 744 912 852/850(85.1)
MDGF-Geometric (Zero Dense) 1:32 776 202 813 81.6 91.8/88.5(90.1) 872 90.8/87.7(892) 733 90. 85.8/855(85.6)
MDGF-Geometric (10K Dense) 1:32 79.3 292 823 82.9 91.3/88.0(89.6) 904 91.3/883(89.8) 733 90.5 85.4/854(854)
SR-STE (Zero Dense) 1:8(FF) + 1:3(QK) 744 157 772 77.6 80.9/85.8(87.8) 83.6 89.7/86.2(87.9) 675 882 84.1/83.9(84.0)
SR-STE (10K Dense) 1:8(FF) + 1:8(QK) 75.8 19.9 786 79.4 89.7/86.0(87.9) 84 90.1/86.7(884) 70 894 84.5/84.2(84.4)
MDGF-Stepwise (10K Dense) 1:8(FF) + 1:3(QK) 80.7 38.7 83.1 832 90.9/87.7(89.3) 899 91.2/882(89.7) 762 919 84.5/84.5(84.5)
MDGF-Geometric (Zero Dense) | 1:8(FF) + 1:8(QK) 75.8 216 78.8 79 90.0/86.0(88.0) 836 90.1/866(883) 697 889 84.0/83.9(83.9)
MDGF-Geometric (10K Dense) | 1:8(FF) + 1:8(QK) 76.8 223 80.7 80.9 89.8/858(87.8) 863 90.5/87.4(89.0) 70 91.1 83.7/83.4(83.6)
SR-STE (Zero Dense) 1:8(FF) + 1:8(QKV) 732 13.5 76.3 764 80.0/84.6(86.8) 832 89.5/859(87.7) 639 87 843/84.2(842)
SR-STE (10K Dense) 1:8(FF) + 1:8(QKV) 742 16.1 717 776 88.5/84.1(863) 829 89.9/86.3(88.1) 664 888 84.4/84.2(84.3)
MDGF-Stepwise (10K Dense) 1:8(FF) + 1:8(QKY) 79.5 33 823 823 91.3/87.7(89.5) 892 91.0/88.0(895) 744 9L1 84.5/84.8(84.6)
MDGF-Geometric (Zero Dense) | 1:8(FF) + 1:8(QKV) 755 22.1 786 787 90.5/86.8(88.6) 834 90.0/865(882) 679 882 84.2/84.2(84.2)
MDGF-Geometric (10K Dense) | 1:8(FF) + 1:8(QKV) 75.8 19.5 79.4 79.6 80.4/853(873) 845 902/86.8(88.5 704 898 833/83.0(83.2)
SR-STE (Zero Dense) 1:8(FF) + 1:4(QKV) 75.1 15 784 79 90.5/86.8(88.6) 842 90.1/86.6(88.4) 679 884 86.2/86.1(86.2)
SR-STE (10K Dense) 1:8(FF) + 1:4(QKV) 78 245 812 81.6 911/87.7(89.4) 87.1 90.6/87.3(89.0) 722 909 85.8/858(85.8)
MDGF-Stepwise (10K Dense) L:8(FF) + 1:4(QKV) 80.3 36.4 832 834 90.9/87.3(89.1) 903 91.3/883(89.8) 747 909 85.2/850(85.1)
MDGF-Geometric (Zero Dense) | 1:8(FF) + 1:4(QKV) 76.8 202 80.5 80.8 91.3/87.7(89.5) 854 90.3/87.0(88.6) 708 904 84.9/84.9(849)
MDGF-Geometric (10K Dense) | 1:8(FF) + 1:4(QQKV) 789 27.7 82.4 824 91.3/87.7(89.5) 888 91.0/88.1(89.6) 744 913 845/84.5(845)

Here is an itemized list of nine tasks used in the GLUE dataset, along with brief descriptions of each:

* CoLA (Corpus of Linguistic Acceptability): Classify whether a given sentence is grammatically
acceptable or not.

* MNLI (Multi-Genre Natural Language Inference): Classify the relationship between a given
premise and hypothesis as entailment, contradiction, or neutral. We use the standard test set, for
which we obtained private labels from the authors, and evaluate on both the matched (in-domain) and
mismatched (cross-domain) sections.

* MRPC (Microsoft Research Paraphrase Corpus): Determine whether a pair of sentences express
the same meaning or not.

* QNLI (Question-answering Natural Language Inference): Determine whether a given question
can be answered correctly using a given sentence.

* QQP (Quora Question Pairs): Determine whether a pair of questions from Quora are semantically
equivalent or not.

* RTE (Recognizing Textual Entailment): Classify the relationship between a given premise and
hypothesis as entailment or not.

* SST-2 (Stanford Sentiment Treebank): Determine the sentiment of a given sentence as either
positive or negative.

* STS-B (Semantic Textual Similarity Benchmark): Calculate the similarity score between two
sentences on a scale from O to 5.

These tasks cover various aspects of language understanding, including sentence acceptability, sentiment
analysis, paraphrase detection, textual similarity, natural language inference, question-answering, and co-
reference resolution.

IFigure /| shows the accuracy vs. fine-tuneing step curve for each of the 9 benchmarks of GLUE.

15

C. Detailed Experimental Settings

C.1. Datasets
C.1.1. ImageNet-1K

ImageNet-1K [81]] is a large-scale image classification task, known as one of the most challenging image
classification benchmarks. It consists of more than 1.2 million training images and 50K validation images
with a size of 224x224 pixels, each with 3 channels. Each image is labeled as one of the 1K classes. We use
this dataset for studies in Section 4.1 of the main paper. For ViT and SwinV2 experiments, we use a patch size
of 16. This converts the 224x224 pixel image into an input of sequence length 224/16 = 224/16 = 196.

Evaluation metrics. All reported results follow standard Top-1 validation accuracy.

C.1.2. CIFARI10

CIFAR-10 [[74] is a smaller-scale image classification dataset consisting of 10 classes. Each class has 6000
color images of 32x32 pixels in size.

Evaluation metrics. All reported results to follow standard Top-1 accuracy.

C.1.3. GLUE

The General Language Understanding Evaluation (GLUE) [84] benchmark is a collection of resources for
training, evaluating, and analyzing natural language understanding systems. GLUE consists of: A benchmark
of nine sentence- or sentence-pair language understanding tasks built on established existing datasets and
selected to cover a diverse range of dataset sizes, text genres, and degrees of difficulty, shows the
overall score for each sparsity target using different sparsification methods.

Evaluation metrics. All reported results in the main paper use the overall average score.

C.14. WMT

WMT-17 (English-German) [85] is a key benchmark in machine translation research. They hold several
translation datasets across different languages. The training set consists of about 4.5 million bilingual sentence
pairs from WMT 2014.

Evaluation metrics. We calculate accuracy by comparing the translated output to the correct translation in the
validation datasets.

C.2. Hyperparameters for Different Models
C.2.1. Image Classification — Vision Transformers (ViT)

We train the ViT-Base model on ImageNet-1k with hyperparameters presented in We follow the
hyperparameter setting in [80] for all ViT experiments. We also use the same hyperparameters to train ViT-Tiny
model (3 layers, 3 attention head per layer, Embedding dimension: 192) on CIFAR-10 for initial experiments
in Section 3.2 for analysing the trends of weights, gradients and optimizer moments and comparing those with
SR-STE.

The detailed list of all hyperparameters can be found at hyperparaters.yaml. For ViT-Base, the training phase
takes ~ 44 hours on 16 - A100 GPUs.

shows the Top-1 and Top-5 accuracy trends for training ViT to various sparsity targets with different
sparsification techniques. We observe generally, MDGF and SDGF are better than SR-STE, especially for
high-sparsity targets.

16

https://anonymous.4open.science/r/n_m_decay_1605-E77F/vit_base_training.yaml

Table 13: Hyperparameters used for training ViT on ImageNet-1K.

Batch Size 256
Training Epoches 350
Learning Rate le-3
LR Warmup Epoches 15
LR Decay schedular Cosine
Decay Rate 0.1
Decay Epoches 100
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

C.2.2. Image Classification — Swin Transformer V2 (SwinV2)

We train the SwinV2-Base model on imagenet-1k with hyperparameters presented in We follow the
hyperparameter setting in [79] for all SwinV2 experiments.

Table 14: Hyperparameters used for training SwinV2 on ImageNet-1K.

Batch Size 128
Training Epoches 350
Learning Rate le-3
LR Warmup Epoches 20
LR Decay schedular Cosine
Decay Rate 0.1
Decay Epoches 30
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

The detailed model configuration is the same as present in the original Microsoft research GitHub repo,
SwinV2-base.yaml The detailed list of all hyperparameters was taken from config.yaml. For SwinV2-Base,
the training phase takes ~ 54 hours on 16 - A100 GPUs.

C.2.3. Language Understanding — T5X

We train the T5X-Base model on GLUE dataset with hyperparameters presented in We follow the
hyperparameter setting in [[1] for all T5X training experiments.

The detailed model configuration is the same as present in the original Google research GitHub repo,
T5X model T5X-Base’s training phase takes ~ 22 hours on 8 x Google Cloud TPUvV3 cores.

Table 15: Hyperparameters used for training T5X on GLUE.

Batch Size 128
Training Steps 100k
Learning Rate le-3
LR Warmup Steps 1000
LR Decay schedular Constant
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

C.2.4. Language Translation Model — Enc-Dec

We train an encoder-decoder-based model on WMT-17 with hyperparameters presented in The
model is inspired by the attention paper [86]]. We follow the hyperparameter setting in [89] to train all models.
The training phase takes ~ 8 hours on 32 - Google Cloud TPU v3 cores.

17

https://github.com/microsoft/Swin-Transformer/blob/main/configs/swinv2/swinv2_base_patch4_window16_256.yaml
https://github.com/microsoft/Swin-Transformer/blob/d19503d7fbed704792a5e5a3a5ee36f9357d26c1/config.py
https://github.com/google-research/t5x

ImageNet Top-1Accuracy

ImageNet Top-5 Accuracy

—

Table 16: Model configurations and hyperparameters for training model on WMT.

Number of Encoder Layers 6
Number of Decoder Layer 6
Hidden Dimension Size 1024
Feed-Forward Dimension Size 4096
Number of Attention Heads 16
Max Sequence Length 256
Training Dataset WMT-17
Testing Dataset WMT-14
Batch Size 512
Training Steps 200K
Learning Rate 0.0625
LR Warmup Steps 1000
Decay Factor 0.5
Optimizer Adam
Optimizer coefs betal = 0.9, beta2 =0.92
80% 80%
70% 3 70%
i
60% 3 60%
O
50% < 50%
Dense T Dense s Dense
40% SR-STE §-40/° SR-STE SR-STE
30% MDGF-Linear 5 0% MDGF-Linear ot MDGF-Linear
20% MDGF-Exponential % 20% MDGF-Exponential MDGF-Exponential
10% SDGF-Stepwise Q 10% SDGF-Stepwise o SDGF-Stepwise
SDGF-Geometric £ SDGF-Geometric SDGF-Geometric
0% 0%
(o] 50 100 150 200 250 300 350 o] 50 100 150 200 250 300 350 o] 50 100 150 200 250 300 350
Epochs Epochs Epochs
(a) 1:8 FF (Top-1 Accuracy) (b) 1:32 FF (Top-1 Accuracy) (c) 1:8 FF+QK (Top-1 Accuracy)
oy oy
80% © 80% © 80%
3 3
3 3
60% < 60% < 60%
Dense Lg_ Dense "; Dense
0% SR-STE S 0% SR-STE S 0% SR-STE
MDGF-Linear k! MDGF-Linear ° MDGF-Linear
20% MDGF-Exponential Z 20% MDGF-Exponential Z 20% MDGF-Exponential
: SDGF-Stepwise 2 SDGF-Stepwise o7 SDGF-Stepwise
SDGF-Geometric E SDGF-Geometric § SDGF-Geometric
0% 0% 0%
0 50 100 150 200 250 300 350 [o] 50 100 150 200 250 300 350 o] 50 100 150 200 250 300 350
Epochs Epochs Epochs
(d) 1:8 FF (Top-5 Accuracy) (e) 1:32 FF (Top-5 Accuracy) (f) 1:8 FF+QK (Top-5 Accuracy)

. 6: Training Epochs vs Accuracy graph for different sparsity targets. We train ViT-Base on ImageNet-1K.

18

eval/matthews_corrcoef

Dense
SR-STE (0 Dense)_1:4 (FF)
SR-STE (10K Dense),

SDGF-Geometric (10K Dense)_1:4 (FF)
MDGF-Exponential (10K Dense)_1:4 (FF)

Dense

SR-STE (0 Dense)_1:4 (FF)

SR-STE (10K Dense)_1:4 (FF)
SDGF-Stepwise (10K Dense)_1:4 (FF)
SDGF-Geometric (0 Dense)_1:4 (FF)
SDGF-Geometric (10K Dense)_1:4 (FF)
MDGF-Exponential (10K Dense)_1:4 (FF)

—— SDGF-Geometric (10K Dense)_]

Dense
SR-STE (0 Dense)_1:4 (FF)
SR-STE (10K Dense)_1:4 (FF)

—— SDGF-Stepwise (10K Dense)_1:4 (FF)

SDGF-Geometric (0 Dense)_1:4 (FF)
(FF)
MDGF-Exponential (10K Dense)_1:4 (FF)

eval/accuracy

60
M 87 A 87.0 [
50 A A
ESZa~ AN \(\/\/\/V\ /\\/\j\/\ 8635
! AN AV Vv
o IV Asm N O 386 VV v ool | VV'\V ava\
o o V2N
> 5 85.5 \\
o
» g1 8 ol [N0 xk\N&f/@\ JiAq
3 Ss [WAV oA
20 s A E 845 VIN/ V™
e gl \
\\/R B0y
0 / 51 835 /\/AV/\
o 83.0
1.00 101 1.02 1.03 1.04 1.05 1.00 101 102 1.03 1.04 1.05 1.00 1.01 1.02 1.03 104 1.05
Finetuning Steps 1e6 Finetuning Steps 1le6 Finetuning Steps les
cola mnli_matched mnli_mismatched
— Dense —— Dense
~—— SR-STE (0 Dense)_1:4 (FF) ~—— SR-STE (0 Dense)_1:4 (FF) —— Dense .
- SR.STE (10K Dense)_1:4 (FF) —— SR.STE (10K Dense)_1:4 (FF) bt A
—— SDGF-Stepwise (10K Dense)_1:4 (FF) —— SDGF-Stepwise (10K Dense)_1:4 (FF) SD.GF SI Enlste)l'gl). (’1_4 -
—— SDGF-Geometric (0 Dense)_1:4 (FF) —— SDGF-Geometric (0 Dense)_1:4 (FF) o, 0D e"sTL 4 ‘éF)'
— SDGF-Geometric (10K Dense)_1:4 (FF) —— SDGF-Geometric (10K Dense)_1:4 (FF) D eosbesdi (m:;:\;e) 4 (FF)
~— MDGF-Exponential (10K Dense)_1:4 (FF) ~—— MDGF-Exponential (10K Dense)_1:4 (FF) T VDGF Expanential (10K Dense) 1:4 (FF)
90 23 ‘ 935 1)
w I TANN A 0301/ \F\'m E\/\ A
A4 1 !
N 91 Go2s
o o
o VvV s A 3 920 | WA /V ﬁ /\J \ A
= %0 o iva
E VIV g
84) L A__A
89 T V !
H
91.0
o ag | VWV
905
801} 8711 I
90.0
1.00 1.01 1.02 1.03 1.04 1.05 1.00 1.01 1.02 1.03 1.04 1.05 1.00 101 1.02 1.03 104 1.05
Finetuning Steps 1le6 Finetuning Steps 1le6 Finetuning Steps 1le6
mrpc mrpc qnli

19

Fig. 7: Per-task evaluations for T5X-Base model finetuned on the GLUE dataset for SOK steps.

D. FLOPS Calculation

Vit-Base

(coert |
Fig. 8: Operations for ViT base model. For sake of brevity, we only include the operators that take significant
runtime. Parameter dimensions are mentioned in blue text near the corresponding operators.

Query(Q)

Logit (L)

Out-Proj
(©)

Key (K)

Attend (A)

Value (V) [D, 4D] [4D, D]

shows various operators in ViT base model. The breakdown of flops, shows that FF accounts
for majority of the FLOPS and thus would be our main avenue of sparsification.

| FLOPS (G) | Q/K/V/O | L/A | FFI/FF2 |

| Dense | 277 | 07| 111
Table 17: Operator wise FLOPS breakdown for ViT-base.

We calculate the total number of flops for the model as follows.

FLOPS,,t = FLOPSsy + FLOPSpp * Spp
FLOPSgy = FLOPSQ + FLOPSkg + FLOPSy + FLOPS, + FLOPS 4, + FLOPSp
FLOPSpr = FLOPSpp1 + FLOPSppa

FLOPSs 4 is number of flops in self-attention layers which consists of QKV generation, 2 einsums (Logit
and Attend) and output projection(O).

FLOPSFprp is number of flops of the 2 feed-forward layers.
Using these equations, We list the total FLOPS of ViT-base for various sparsity targets in

\ Sparsity : Spp | FLOPSs4 | FLOPSpp | FLOPS;,; |
Dense : 1.0 12.51 22.19 34.71
2:4 (FF):0.5 12.51 11.1 23.61
1:4 (FF) : 0.25 12.51 5.55 18.06
1:8 (FF) : 0.125 12.51 2.77 15.29
1:16 (FF) : 0.0625 12.51 1.39 13.90
1:32 (FF) : 0.03125 12.51 0.69 13.20
1:128 (FF) : 0.0078125 12.51 0.17 12.69

Table 18: FLOPS(G) calculation for various level of sparsity in ViT-Base.

E. Sparse Matmuls speedup on Real Hardware.
We have conducted additional experiments showcasing the benefits of other N:M sparsity forms in performing
sparse matrix multiplications on hardware without compute support for N:M (!= 2:4) acceleration.

We performed these experiments using real hardware, specifically V100, A100, and GH200. We used cupy [90]
library along with the spmatrix.dot [91]] function for sparse computation. We measured the run-time (after a
few iterations of warm-up) of different feedforward kernels of ViT.

20

shows the speedup of running VIT FFN kernels on different hardware. As shown, different forms of
N:M sparsity offer speedup over default 2:4 structured sparsity (up to 8.62 on V100, 5.87 on A100 and 4.16 on

H100).

These results further support our claim on the benefits of N:M sparsity variants in delivering performance.
Note that the benefits of non-2:4 kernels can be primarily attributed to memory savings, reduction in the data
communication, and customized cusparse API. We also included nsys profiler logs to ensure the
benefits originate from both memory savings and customized cusparse kernel.

Table 19: Average Speedup across FF1 and FF2 compared to 2:4 for different sparsity levels.

Hardware \ 24 14 1:8 1:16 1:32 1:128
V100 1.0 1.83 3.05 525 764 8.62
A100 1.0 1.85 296 401 4.82 5187

GH200 1.0 1.80 258 322 365 4.6

- B7.4% Kemels

Fig. 9: Nsys profiler log for running N:M hardware on A100.

¥ 14.3% sorti32_by_key_merge_core

» 12.6% sorti32_by_key_local_core

» 10.2% DeviceMergeSoriMergeKeme!

» 10.2% DeviceMergeSortPartitionkes mel

b 9.4% cusparselinclusive_localsean_core

+ 9.3% cusparselinclusive_scan_domina_v1_e:
+ B.6% cusparselinclusive_scan_merge_core
» 8.2% DeviceMergeSortBlockSortKemel

» 2.9% load_balancing_kernel

» 127%cupy_take

» 1.2% DeviceReducexemel

» 1.1% cupy_copy__int32_int32

b 1.0% DeviceReduceSIngleT lekemel

+ 0.9% cupy_copy_float32_float32

» 126% Memary

21

	. Introduction
	. Background and Related Works
	. Computation Flow of Sparse Training Recipes

	. Decaying-based Sparse Training Recipes
	. Impact of Gradient Flow in Sparsification
	. Analysis of Second Moment Estimates
	. Analysis of Gradient Noise

	. Experiment
	. Image Classification
	. Language Understanding T5X-Base
	. Language Translation Enc-Dec
	. Recipe impact for CNNs.
	. Baseline Comparison
	. Inference speedup on Real Hardware.

	. Limitations and Future Works
	. Conclusion
	. Acknoledgement
	Bibliography
	. Ablations Studies
	. Effect of dense training steps .
	. Effects of fine-tuning steps .
	. Effect of

	. Detailed Results for T5X-Base Sparsification on GLUE Dataset
	. Detailed Experimental Settings
	. Datasets
	. ImageNet-1K
	. CIFAR10
	. GLUE
	. WMT

	. Hyperparameters for Different Models
	. Image Classification Vision Transformers (ViT)
	. Image Classification Swin Transformer V2 (SwinV2)
	. Language Understanding T5X
	. Language Translation Model Enc-Dec

	. FLOPS Calculation
	. Sparse Matmuls speedup on Real Hardware.

