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ABSTRACT

Model-free deep reinforcement learning (RL) algorithms have been demonstrated
on a range of challenging decision making and control tasks. However, these
methods typically suffer from two major challenges: very high sample complexity
and brittle convergence properties, which necessitate meticulous hyperparameter
tuning. Both of these challenges severely limit the applicability of such methods
to complex, real-world domains. In this paper, we propose soft actor-critic, an off-
policy actor-critic deep RL algorithm based on the maximum entropy reinforce-
ment learning framework. In this framework, the actor aims to maximize expected
reward while also maximizing entropy—that is, succeed at the task while acting as
randomly as possible. Prior deep RL methods based on this framework have been
formulated as either off-policy Q-learning, or on-policy policy gradient methods.
By combining off-policy updates with a stable stochastic actor-critic formulation,
our method achieves state-of-the-art performance on a range of continuous control
benchmark tasks, outperforming prior on-policy and off-policy methods. Further-
more, we demonstrate that, in contrast to other off-policy algorithms, our approach
is very stable, achieving very similar performance across different random seeds.

1 INTRODUCTION

Model-free deep reinforcement learning (RL) algorithms have been applied in a range of challenging
domains, from games (Mnih et al., 2013; Silver et al., 2016) to robotic control (Schulman et al.,
2015). The combination of RL and high-capacity function approximators such as neural networks
holds the promise of automating a wide range of decision making and control tasks, but widespread
adoption of these methods in real-world domains has been hampered by two major challenges.
First, model-free deep RL methods are notoriously expensive in terms of their sample complexity.
Even relatively simple tasks can require millions of steps of data collection, and complex behaviors
with high-dimensional observations might need substantially more. Second, these methods are often
brittle with respect to their hyperparameters: learning rates, exploration constants, and other settings
must be set carefully for different problem settings to achieve good results. Both of these challenges
severely limit the applicability of model-free deep RL to real-world tasks.

One cause for the poor sample efficiency of deep RL methods is on-policy learning: some of the most
commonly used deep RL algorithms, such as TRPO (Schulman et al., 2015) or A3C (Mnih et al.,
2016), require new samples to be collected for each gradient step on the policy. This quickly be-
comes extravagantly expensive, as the number of gradient steps to learn an effective policy increases
with task complexity. Off-policy algorithms instead aim to reuse past experience. This is not directly
feasible with conventional policy gradient formulations (Schulman et al., 2015; Mnih et al., 2016),
but is relatively straightforward for Q-learning based methods (Mnih et al., 2015). Unfortunately,
the combination of off-policy learning and high-dimensional, nonlinear function approximation with
neural networks presents a major challenge for stability and convergence (Bhatnagar et al., 2009).
This challenge is further exacerbated in continuous state and action spaces, where a separate actor
network is typically required to perform the maximization in Q-learning. A commonly used algo-
rithm in such settings, deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015), provides
for sample-efficient learning, but is notoriously challenging to use due to its extreme brittleness and
hyperparameter sensitivity (Duan et al., 2016; Henderson et al., 2017).
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We explore how to design an efficient and stable model-free deep RL algorithm for continuous
state and action spaces. To that end, we draw on the maximum entropy framework, which aug-
ments the standard maximum reward reinforcement learning objective with an entropy maximiza-
tion term (Ziebart et al., 2008; Toussaint, 2009; Rawlik et al., 2012; Fox et al., 2016; Haarnoja et al.,
2017). Maximum entropy reinforcement learning alters the RL objective, though the original objec-
tive can be recovered by using a temperature parameter (Haarnoja et al., 2017). More importantly,
the maximum entropy formulation provides a substantial improvement in exploration and robust-
ness: as discussed by Ziebart (2010), maximum entropy policies are robust in the face of modeling
and estimation errors, and as demonstrated by Haarnoja et al. (2017), they improve exploration by
acquiring diverse behaviors. Prior work has proposed model-free deep RL algorithms that perform
on-policy learning with entropy maximization (O’Donoghue et al., 2016), as well as off-policy meth-
ods based on soft Q-learning and its variants (Schulman et al., 2017; Nachum et al., 2017a; Haarnoja
et al., 2017). However, the on-policy variants suffer from poor sample complexity for the reasons
discussed above, while the off-policy variants require complex approximate inference procedures in
continuous action spaces.

In this paper, we demonstrate that we can devise an off-policy maximum entropy actor-critic algo-
rithm, which we call soft actor-critic, which provides for both sample-efficient learning and stability.
This algorithm extends readily to very complex, high-dimensional tasks, such as the 21-DoF Hu-
manoid benchmark (Duan et al., 2016), where off-policy methods such as DDPG typically struggle
to obtain good results (Gu et al., 2016), while avoiding the complexity and potential instability as-
sociated with approximate inference in prior off-policy maximum entropy algorithms based on soft
Q-learning (Haarnoja et al., 2017). In particular, we present a novel convergence proof for policy
iteration in the maximum entropy framework. We then introduce a new algorithm based on an ap-
proximation to this procedure that can be practically implemented with deep neural networks, which
we call soft actor-critic. We present empirical results that show that soft actor-critic attains a sub-
stantial improvement in both performance and sample efficiency over both off-policy and on-policy
prior methods.

2 RELATED WORK

Our soft actor-critic algorithm incorporates three key ingredients: an actor-critic architecture with
separate policy and value function networks, an off-policy formulation that enables reuse of previ-
ously collected data for efficiency, and entropy maximization to enable stability and exploration. We
review prior works that draw on some of these ideas in this section. Actor-critic algorithms are typi-
cally derived starting from policy iteration, which alternates between policy evaluation—computing
the value function for a policy—and policy improvement—using the value function to obtain a better
policy (Barto et al., 1983; Sutton & Barto, 1998). In large-scale reinforcement learning problems,
it is typically impractical to run either of these steps to convergence, and instead the value function
and policy are optimized jointly. In this case, the policy is referred to as the actor, and the value
function as the critic. Many actor-critic algorithms build on the standard, on-policy policy gradient
formulation to update the actor (Peters & Schaal, 2008), and many of them also consider the entropy
of the policy, but instead of maximizing the entropy, they use it as an regularizer (Schulman et al.,
2015; Mnih et al., 2016; Gruslys et al., 2017). This tends to improve stability, but results in very
poor sample complexity.

There have been efforts to increase the sample efficiency while retaining the robustness prop-
erties by incorporating off-policy samples and by using higher order variance reduction tech-
niques (O’Donoghue et al., 2016; Gu et al., 2016). However, fully off-policy algorithms still at-
tain better efficiency. A particularly popular off-policy actor-critic method, DDPG Lillicrap et al.
(2015), which is a deep variant of the deterministic policy gradient (Silver et al., 2014) algorithm,
uses a Q-function estimator to enable off-policy learning, and a deterministic actor that maximizes
this Q-function. As such, this method can be viewed both as a deterministic actor-critic algorithm
and an approximate Q-learning algorithm. Unfortunately, the interplay between the deterministic
actor network and the Q-function typically makes DDPG extremely difficult to stabilize and brit-
tle to hyperparameter settings (Duan et al., 2016; Henderson et al., 2017). As a consequence, it is
difficult to extend DDPG to very complex, high-dimensional tasks, and on-policy policy gradient
methods still tend to produce the best results in such settings (Gu et al., 2016). Our method instead
combines off-policy actor-critic training with a stochastic actor, and further aims to maximize the
entropy of this actor with an entropy maximization objective. We find that this actually results in
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a substantially more stable and scalable algorithm that, in practice, exceeds both the efficiency and
final performance of DDPG.

Maximum entropy reinforcement learning optimizes policies to maximize both the expected return
and the expected entropy of the policy. This framework has been used in many contexts, from
inverse reinforcement learning (Ziebart et al., 2008) to optimal control (Todorov, 2008; Toussaint,
2009; Rawlik et al., 2012). In guided policy search (Levine & Koltun, 2013), maximum entropy
distribution is used to guide policy learning towards high-reward regions. More recently, several
papers have noted the connection between Q-learning and policy gradient methods in the framework
of maximum entropy learning (O’Donoghue et al., 2016; Haarnoja et al., 2017; Nachum et al.,
2017a; Schulman et al., 2017). While most of the prior works assume a discrete action space,
Nachum et al. (2017b) approximate the maximum entropy distribution with a Gaussian and Haarnoja
et al. (2017) with a sampling network trained to draw samples from the optimal policy. Although
the soft Q-learning algorithm proposed by Haarnoja et al. (2017) has a value function and actor
network, it is not a true actor-critic algorithm: the Q-function is estimating the optimal Q-function,
and the actor does not directly affect the Q-function except through the data distribution. Hence,
Haarnoja et al. (2017) motivates the actor network as an approximate sampler, rather than the actor
in an actor-critic algorithm. Crucially, the convergence of this method hinges on how well this
sampler approximates the true posterior. In contrast, we prove that our method converges to the
optimal policy from a given policy class, regardless of the policy parameterization. Furthermore,
these previously proposed maximum entropy methods generally do not exceed the performance of
state-of-the-art off-policy algorithms, such as DDPG, when learning from scratch, though they may
have other benefits, such as improved exploration and ease of finetuning. In our experiments, we
demonstrate that our soft actor-critic algorithm does in fact exceed the performance of state-of-the-
art off-policy deep RL methods by a wide margin.

3 PRELIMINARIES

In this section, we introduce notation and summarize the standard and maximum entropy reinforce-
ment learning frameworks.

3.1 NOTATION

We address policy learning in continuous action spaces. To that end, we consider infinite-horizon
Markov decision processes (MDP), defined by the tuple (S,A, ps, r), where the state space S and
the action space A are assumed to be continuous, and the unknown state transition probability ps :
S ×S ×A → [0, ∞) represents the probability density of the next state st+1 ∈ S given the current
state st ∈ S and action at ∈ A. The environment emits a bounded reward r : S ×A → [rmin, rmax]

on each transition, which we will abbreviate as rt , r(st,at) to simplify notation. We will also
use ρπ(st) and ρπ(st,at) to denote the state and state-action marginals of the trajectory distribution
induced by a policy π(at|st).

3.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING

The standard objective used in reinforcement learning is to maximize the expected sum of rewards∑
t E(st,at)∼ρπ [rt]. We will consider a more general maximum entropy objective (see e.g. (Ziebart,

2010)), which favors stochastic policies by augmenting the objective with the expected entropy of
the policy over ρπ(st):

J(π) =

T−1∑
t=0

E(st,at)∼ρπ [r(st,at) + αH(π( · |st))] . (1)

The temperature parameter α determines the relative importance of the entropy term against the
reward, and thus controls the stochasticity of the optimal policy. The maximum entropy objective
differs from the standard maximum expected reward objective used in conventional reinforcement
learning, though the conventional objective can be recovered in the limit as α → 0. For the rest
of this paper, we will omit writing the temperature explicitly, as it can always be subsumed into
the reward by scaling it by α−1. The maximum entropy objective has a number of conceptual
and practical advantages. First, the policy is incentivized to explore more widely, while giving
up on clearly unpromising avenues. Second, the policy can capture multiple modes of near-optimal
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behavior. In particular, in problem settings where multiple actions seem equally attractive, the policy
will commit equal probability mass to those actions. Lastly, prior work has observed substantially
improved exploration from this objective (Haarnoja et al., 2017; Schulman et al., 2017), and in
our experiments, we observe that it considerably improves learning speed over state-of-art methods
that optimize the conventional objective function. We can extend the objective to infinite horizon
problems by introducing a discount factor γ to ensure that the sum of expected rewards and entropies
is finite. Writing down the precise maximum entropy objective for the infinite horizon discounted
case is more involved (Thomas, 2014) and is deferred to Appendix A.

Prior methods have proposed directly solving for the optimal Q-function, from which the optimal
policy can be recovered (Ziebart et al., 2008; Fox et al., 2016; Haarnoja et al., 2017). In the next
section, we will discuss how we can devise a soft actor-critic algorithm through a policy iteration
formulation, where we instead evaluate the Q-function of the current policy and update the policy
through an off-policy gradient update. Though such algorithms have previously been proposed for
conventional reinforcement learning, our method is, to our knowledge, the first off-policy actor-critic
method in the maximum entropy reinforcement learning framework.

4 FROM SOFT POLICY ITERATION TO SOFT ACTOR-CRITIC

Our off-policy soft actor-critic algorithm can be derived starting from a novel maximum entropy
variant of the policy iteration method. In this section, we will first present this derivation, verify that
the corresponding algorithm converges to the optimal policy from its density class, and then present
a practical deep reinforcement learning algorithm based on this theory.

4.1 DERIVATION OF SOFT POLICY ITERATION

We will begin by deriving soft policy iteration, a general algorithm for learning optimal maximum
entropy policies that alternates between policy evaluation and policy improvement in the maximum
entropy framework. Our derivation is based on a tabular setting, to enable theoretical analysis and
convergence guarantees, and we extend this method into the general continuous setting in the next
section. We will show that soft policy iteration converges to the optimal policy within a set of
policies which might correspond, for instance, to a set of parameterized densities.

In the policy evaluation step of soft policy iteration, we wish to compute the value of a policy π
according to the maximum entropy objective in Equation 1. For a fixed policy, the soft Q-value can
be computed iteratively, by starting from any function Q : S × A → R and iteratively applying a
modified version of the Bellman backup operator T π defined by

T πQ , r(st,at) + γ Est+1∼ps [V (st+1)] , (2)
where

V (st) = Eat∼π [Q(st,at)− log π(at|st)] (3)
is the soft state value function. We can find the soft value of an arbitrary policy π by repeatingly
applying T π as formalized in Lemma 1.
Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator T π in Equation 2
and a mapping Q0 : S × A → R, and define Qk+1 = T πQk. Then the sequence Qk will converge
to the soft Q-value of π as k →∞.

Proof. See Appendix B.1.

In the policy improvement step, we update the policy towards the exponential of the new Q-function.
This particular choice of update can be guaranteed to result into an improved policy in terms of its
soft value, as we show in this section. Since in practice we prefer policies that are tractable, we will
additionally restrict the policy to some set of policies Π, which can correspond, for example, to a
parameterized family of distributions such as Gaussians. To account for the constraint that π ∈ Π,
we project the improved policy into the desired set of policies. While in principle we could choose
any projection, it will turn out to be convenient to use the information projection defined in terms of
the Kullback-Leibler divergence. In the other words, in the policy improvement step, for each state,
we update the policy according to

πnew = arg min
π′∈Π

DKL (π′( · |st) ‖ exp (Qπold(st, · )− logZπold(st))) . (4)
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The partition function Zπold(st) normalizes the second KL argument, and while it is intractable in
general, it does not contribute to the gradient with respect to the new policy and can thus be ignored
as noted in the next section. For this choice of projection, we can show that the new, projected policy
has a higher value than the old policy with respect to the objective in Equation 1. We formalize this
result in Lemma 2.
Lemma 2 (Soft Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of the minimiza-
tion problem defined in Equation 4. Then Qπnew(st,at) ≥ Qπold(st,at) for all (st,at) ∈ S ×A.

Proof. See Appendix B.2.

The full soft policy iteration algorithm alternates between the soft policy evaluation and the soft pol-
icy improvement steps, and it will provably converge to the optimal maximum entropy policy among
the policies in Π (Theorem 1). Although this algorithm will provably find the optimal solution, we
can perform it in its exact form only in the tabular case. Therefore, we will next approximate the
algorithm for continuous domains, where we need to rely on a function approximator to represent
the Q-values, and running the two steps until convergence would be computationally too expensive.
The approximation gives rise to a new practical algorithm, called soft actor-critic.
Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy
improvement to any π ∈ Π converges to a policy π∗( · |st) such that Qπ

∗
(st,at) > Qπ(st,at) for

all π ∈ Π, π 6= π∗ and for all (st,at) ∈ S ×A.

Proof. See Appendix B.3.

4.2 SOFT ACTOR-CRITIC

As discussed above, large, continuous domains require us to derive a practical approximation to
soft policy iteration. To that end, we will use function approximators for both the Q-function and
policy, and instead of running evaluation and improvement to convergence, alternate between op-
timizing both networks with stochastic gradient descent. For the remainder of this paper, we will
consider a parameterized state value function Vψ(st), soft Q-function Qθ(st,at), and a tractable
policy πφ(at|st). The parameters of these networks are ψ, θ, and φ. In the following, we will derive
update rules for these parameter vectors.

The state value function approximates the soft value. There is no need in principle to include a
separate function approximator for the state value, since it is related to the Q-function and policy
according to Equation 3. This quantity can be estimated from a single action sample from the current
policy without introducing a bias, but in practice, including a separate function approximator for the
soft value can stabilize training—and as discussed later, can be used as a state-dependent baseline
for learning the policy—and is convenient to train simultaneously with the other networks. The soft
value function is trained to minimize the squared residual error

JV (ψ) = Est∼D

[
1

2

(
Vψ(st)− Eat∼πφ [Qθ(st,at)− log πφ(at|st)]

)2]
, (5)

whereD is the distribution of previously sampled states and actions, or a replay buffer. The gradient
of Equation 5 can be estimated with an unbiased estimator

∇̂ψJV (ψ) = ∇ψVψ(st) (Vψ(st)−Qθ(st,at) + log πφ(at|st)) , (6)

where the actions are sampled according to the current policy, instead of the replay buffer. The soft
Q-function parameters can be trained to minimize the soft Bellman residual

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st,at)−

(
r(st,at) + γ Est+1∼ps

[
Vψ̄(st+1)

]))2]
, (7)

which again can be optimized with stochastic unbiased gradients

∇̂θJQ(θ) = ∇θQθ(at, st)
(
Qθ(st,at)− r(st,at)− γVψ̄(st+1)

)
. (8)

The update makes use of a target value network Vψ̄ where ψ̄ is an exponentially moving average of
the value network weights, which has been shown to stabilize training (Mnih et al., 2015), although
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we found soft actor-critic to be able to learn robustly also in the absense of a target network. Finally,
the policy parameters can be learned by directly minimizing the KL-divergence in Equation 4, which
we reproduce here in parametrized form for completeness

Jπ(φ) = DKL (πφ( · |st) ‖ exp (Qθ(st, · )− logZθ(st))) . (9)

There are several options for minimizing Jπ , depending on the choice of the policy class. For simple
distributions, such as Gaussians, we can use the reparametrization trick, which allows us to back-
propagate the gradient from the critic network and leads to a DDPG-style estimator. However, if the
policy depends on discrete latent variables, such as is the case for mixture models, the reparametriza-
tion trick cannot be used. We therefore propose to use a likelihood ratio gradient estimator:

∇φJπ(φ)=Eat∼πφ [∇φ log πφ(at|st) (log πφ(at|st)+1−Qθ(st,at)+logZθ(st)+b(st))] , (10)

where b(st) is a state-dependent baseline (Peters & Schaal, 2008). We can approximately center the
learning signal and eliminate the intractable log-partition function by choosing b(st) = Vψ(st) −
logZθ(st)− 1, which yields the final gradient estimator

∇̂φJπ(φ) = ∇φ log πφ(at|st) (log πφ(at|st)−Qθ(st,at) + Vψ(st)) . (11)

Algorithm 1: Soft Actor-Critic

1 Initialize parameter vectors ψ, ψ̄, θ, φ.
2 for each iteration do
3 for each environment step do
4 at ∼ πφ(at|st)
5 st+1 ∼ ps(st+1|st,at)
6 D ← D∪{(st,at, r(st,at), st+1)} .
7 end
8 for each gradient step do
9 ψ ← ψ − λV ∇̂ψJV (ψ)

10 θ ← θ − λQ∇̂θJQ(θ)

11 φ← φ− λπ∇̂φJπ(φ)

12 ψ̄ ← τψ + (1− τ)ψ̄
13 end
14 end

The complete algorithm is described in Algo-
rithm 1. The method alternates between collect-
ing experience from the environment with the
current policy and updating the function approx-
imators using the stochastic gradients on batches
sampled from a replay buffer. In practice we
found a combination of a single environment step
and multiple gradient steps to work best (see Ap-
pendix E). Using off-policy data from a replay
buffer is feasible because both value estimators
and the policy can be trained entirely on off-
policy data. The algorithm is agnostic to the pa-
rameterization of the policy, as long as it can be
evaluated for any arbitrary state-action tuple. We
will next suggest a practical parameterization for
the policy, based on Gaussian mixtures.

4.3 SOFT ACTOR-CRITIC WITH GAUSSIAN MIXTURES

Although we could use a simple policy represented by a Gaussian, as is common in prior work, the
maximum entropy framework aims to maximize the randomness of the learned policy. Therefore, a
more expressive but still tractable distribution can endow our method with more effective exploration
and robustness, which are the typically cited benefits of entropy maximization (Ziebart, 2010). To
that end, we propose a practical multimodal representation based on a mixture ofK Gaussians. This
can approximate any distribution to arbitrary precision asK →∞, but even for practical numbers of
mixture elements, it can provide a very expressive distribution in medium-dimensional action spaces.
Although the complexity of evaluating or sampling from the resulting distribution scales linearly in
K, our experiments indicates that a relatively small number of mixture components, typically just
two or four, is sufficient to achieve high performance, thus making the algorithm scalable to complex
domains with high-dimensional action spaces.

We define the policy as

πφ(at|st) =
1∑
i w

φ
i

K∑
i=1

wφi (st)N
(
at;µ

φ
i (st),Σ

φ
i (st)

)
, (12)

where wφi , µ
φ
i , Σφi are the unnormalized mixture weights, means, and covariances, respectively,

which all can depend on st in complex ways if expressed as neural networks. We also apply a
squashing function to limit the actions to a bounded interval as explained in Appendix C. Note that,
in contrast to soft Q-learning (Haarnoja et al., 2017), our algorithm does not assume that the policy
can accurately approximate the optimal exponentiated Q-function distribution. The convergence
result for soft policy iteration holds even for policies that are restricted to a policy class, in contrast
to prior methods of this type.
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Figure 1: Training curves on continuous control benchmarks. Note that SAC performs consistently across all
tasks attaining the highest score compared to both on-policy and off-policy methods in all benchmark tasks.

5 EXPERIMENTS

The goal of our experimental evaluation is to understand how the sample complexity and stability of
our method compares with prior off-policy and on-policy deep reinforcement learning algorithms.
To that end, we evaluate on a range of challenging continuous control tasks from the OpenAI gym
benchmark suite (Brockman et al., 2016). For the Swimmer and Humanoid environments, we use the
rllab implementations (Duan et al., 2016), which have more well-behaved observation spaces. Al-
though the easier tasks in this benchmark suite can be solved by a wide range of different algorithms,
the more complex benchmarks, such as the 21-dimensional Humanoid, are exceptionally difficult to
solve with off-policy algorithms (Duan et al., 2016). The stability of the algorithm also plays a
large role in performance: easier tasks make it more practical to tune hyperparameters to achieve
good results, while the already narrow basins of effective hyperparameters become prohibitively
small for the more sensitive algorithms on the most high-dimensional benchmarks, leading to poor
performance (Gu et al., 2016).

In our comparisons, we compare to trust region policy optimization (TRPO) (Schulman et al.,
2015), a stable and effective on-policy policy gradient algorithm; deep deterministic policy gradient
(DDGP) (Lillicrap et al., 2015), an algorithm that is regarded as one of the more efficient off-policy
deep RL methods (Duan et al., 2016); as well as soft Q-learning (SQL) (Haarnoja et al., 2017),
an off-policy algorithm for learning maximum entropy policies. Although DDPG is very efficient,
it is also known to be more sensitive to hyperparameter settings, which limits its effectiveness on
complex tasks (Gu et al., 2016; Henderson et al., 2017). Figure 1 shows the total average reward
of evaluation rollouts during training for the various methods. Exploration noise was turned off for
evaluation for DDPG and TRPO. For maximum entropy algorithms, which do not explicitly inject
exploration noise, we either evaluated with the exploration noise (SQL) or approximate the maxi-
mum a posteriori action by choosing the mean of the mixture component that achieves the highest
Q-value (SAC).

5.1 COMPARATIVE EVALUATION

Performance across tasks. The results show that, overall, SAC substantially outperforms DDPG
on all of the benchmark tasks in terms of final performance, and learns faster than any of the base-
lines in most environments. The only exceptions are Swimmer, where DDPG is slightly faster, and
Ant-v1, where SQL is initially faster, but plateaus at a lower final performance. On the hardest tasks,
Ant-v1 and Humanoid (rllab), DDPG is unable to make any progress, a result that is corroborated
by prior work (Gu et al., 2016; Duan et al., 2016). SAC still learns substantially faster than TRPO
on these tasks, likely as a consequence of improved stability. Poor stability is exacerbated by high-
dimensional and complex tasks. Even though TRPO does not make perceivable progress for some
tasks within the range depicted in the figures, it will eventually solve all of them after substantially
more iterations. The quantitative results attained by SAC in our experiments also compare very
favorably to results reported by other methods in prior work (Duan et al., 2016; Gu et al., 2016;
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Henderson et al., 2017), indicating that both the sample efficiency and final performance of SAC on
these benchmark tasks exceeds the state of the art. All hyperparameters used in this experiment for
SAC are listed in Appendix E.

0 200 400 600 800 1000
episodes

0

2000

4000

6000

8000

10000

12000

to
ta

l r
et

ur
n

HalfCheetah-v1

DDPG
TRPO
SAC

Figure 2: Performance of individual random
seeds on the HalfCheetah-v1 benchmark.

Sensitivity to random seeds. In Figure 2, we
show the performance for multiple individual seeds
on the HalfCheetah-v1 benchmark of DDPG, TRPO,
and SAC (Figure 1 shows the average over seeds).
The individual seeds attain much more consistent
performance with SAC, while DDPG exhibits very
high variability across seeds, indicating substantially
worse stability. TRPO is unable to make progress
within the first 1000 episodes. For SAC, we per-
formed 16 gradient steps between each environment
step, which becomes prohibitively slow in terms of
wall clock time for longer experiments (in Figure 1
we used we used 4 gradient steps).

5.2 ABLATION STUDY

The results in the previous section suggest that algorithms based on the maximum entropy principle
can outperform conventional RL methods on challenging tasks such as the Ant and Humanoid. In
this section, we further examine which particular components of SAC are important for good perfor-
mance. To that end, we consider several ablations to pinpoint the most essential differences between
our method and standard RL methods that do not maximize entropy. We use DDPG as the repre-
sentative non-entropy-maximizing algorithm, since it is the most structurally similar to SAC. This
section examines specific algorithm components, while a study of the sensitivity to hyperparame-
ter settings—most importantly the reward scale and the number of gradient steps per environment
step—is deferred to Appendix D.

Importance of entropy maximization. The main difference of SAC and DDPG is the inclusion
of entropy maximization in the objective. The entropy appears in both the policy and value function.
In the policy, it prevents premature convergence of the policy variance (Equation 9). In the value
function, it encourages exploration by increase the value of regions of state space that lead to high-
entropy behavior (Equation 5). Figure 3a compares how inclusion of this term in the policy and value
updates affects the performance, by removing the entropy from each one in turn. As evident from
the figure, including the entropy in the policy objective is crucial, while maximizing the entropy as
part of the value function is less important, and can even hinder learning in the beginning of training.

Exploration noise. Another difference is the exploration noise: the maximum entropy framework
naturally gives rise to Boltzmann exploration for SAC, whereas DDPG uses external OU noise
(Uhlenbeck & Ornstein, 1930; Lillicrap et al., 2015). For the next experiment, we used a policy
with single mixture component and compared Boltzmann exploration to exploration via external
OU noise (Figure 3b). We repeated the experiment with the OU noise parameters that we used with

(a) Entropy (b) Exploration Noise (c) Value Function

Figure 3: We tested the importance of entropy maximization, Boltzmann exploration, and the separate value
network. (a) The label of each curve denotes which entropy terms (KL divergence and/or value function update)
were included in the policy and value objectives. (b) The blue curve corresponds to the unaltered SAC with
Boltzmann exploration, the green and red curves were obtained by using OU exploration noise with the given
parameters. (c) Contribution of a separate value function target network in the TD updates and as a policy
gradient baseline.

8



Under review as a conference paper at ICLR 2018

DDPG (θ = 0.15, σ = 0.3), and parameters that we found worked best for SAC without Boltzmann
exploration (θ = 1, σ = 0.3). The results indicate that Boltzmann exploration outperforms external
OU noise.

Separate value network. Our method also differs from DDPG in that it uses a separate network
to predict the state values, in addition to the Q-values. The value network serves two purposes: it is
used to bootstrap the TD updates for learning the Q-function (Equation 7), and it serves as a baseline
to reduce variance of the policy gradients (Equation 11). The results in Figure 3c indicates that the
value network has an important role in the policy gradient, but only has a minor effect on the TD
updates. Nevertheless, the best performance is achieved when the value network is employed for
both purposes.

Figure 4: We modified the SAC implementation
to make it identical to DDPG by applying a se-
quence of incremental modifications.

From SAC to DDPG. Soft actor-critic closely re-
sembles DDPG with a stochastic actor. To study
which of the components that differs between the
two algorithms are most important, we evaluated a
range of SAC variants by swapping components of
SAC with their DDPG counterparts. In Figure 4 we
evaluate four versions obtained through incremen-
tal modifications: 1) original SAC, 2) replaced like-
lihood ratio policy gradient estimator with an esti-
mator obtained through the reparametrization trick,
3) replaced the stochastic policy with a determinis-
tic policy and Boltzmann exploration with OU noise,
and 4) eliminated the separate value network by us-
ing directly the Q-function evaluated at the mean
action. The figure suggests two interesting points:
First, the reparametrization trick yields somewhat
faster and more stable learning compared to the use
of likelihood policy gradient estimator, though this precludes the use of multimodal mixtures of
Gaussians. Second, use of a deterministic policy degrades performance substantially in terms of
both average return (thick line) and variance across random seeds (shaded region). This observation
indicates that entropy maximization, and particularly the use of a stochastic policy, can make off-
policy deep RL significantly more robust and efficient compared to algorithms that maximizes the
expected return, especially with deterministic policies.

6 CONCLUSION

We presented soft actor-critic (SAC), an off-policy maximum entropy deep reinforcement learning
algorithm that provides sample-efficient learning while retaining the benefits of entropy maximiza-
tion and stability. Our theoretical results derive soft policy iteration, which we show to converge to
the optimal policy. From this result, we can formulate a soft actor-critic algorithm, and we empiri-
cally show that it outperforms state-of-the-art model-free deep RL methods, including the off-policy
DDPG algorithm and the on-policy TRPO algorithm. In fact, the sample efficiency of this approach
actually exceeds that of DDPG by a substantial margin. Our results suggest that stochastic, en-
tropy maximizing reinforcement learning algorithms can provide a promising avenue for improved
robustness and stability, and further exploration of maximum entropy methods, including methods
that incorporate second order information (e.g., trust regions (Schulman et al., 2015)) or more ex-
pressive policy classes is an exciting avenue for future work.
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A MAXIMUM ENTROPY OBJECTIVE

The exact definition of the discounted maximum entropy objective is complicated by the fact that,
when using a discount factor for policy gradient methods, we typically do not discount the state
distribution, only the rewards. In that sense, discounted policy gradients typically do not optimize
the true discounted objective. Instead, they optimize average reward, with the discount serving
to reduce variance, as discussed by Thomas (2014). However, we can define the objective that is
optimized under a discount factor as

J(π) =

∞∑
t=0

E(st,at)∼ρπ

[ ∞∑
l=t

γl−t Esl∼ps,al∼π [r(st,at) + αH(π( · |st))|st,at]

]
. (13)

This objective corresponds to maximizing the discounted expected reward and entropy for future
states originating from every state-action tuple (st,at) weighted by its probability ρπ under the
current policy.

B PROOFS

B.1 LEMMA 1

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator T π in Equation 2
and a mapping Q0 : S × A → R, and define Qk+1 = T πQk. Then the sequence Qk will converge
to the soft Q-value of π as k →∞.

Proof. Define the entropy augmented reward as rπ(st,at) , r(st,at) + Est+1∼ps [H (π( · |st+1))]
and rewrite the update rule as

Q(st,at)← rπ(st,at) + γ Est+1∼ps,at+1∼π [Q(st+1,at+1)] (14)

and apply the standard convergence results for policy evaluation (Sutton & Barto, 1998).

B.2 LEMMA 2

Lemma 2 (Soft Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of the minimiza-
tion problem defined in Equation 4. Then Qπnew(st,at) ≥ Qπold(st,at) for all (st,at) ∈ S ×A.

Proof. Let πold ∈ Π and let Qπold and V πold be the corresponding soft state-action value and soft
state value, and let πnew be defined as

πnew( · |st) = arg min
π′∈Π

DKL (π′( · |st) ‖ exp (Qπold(st, · )− logZπold(st)))

= arg min
π′∈Π

Jπold
(π′( · |st)). (15)

It must be the case that Jπold
(πnew( · |st)) ≤ Jπold

(πold( · |st)), since we can always choose πnew =
πold ∈ Π. Hence

Eat∼πnew
[log πnew(at|st)−Qπold(st,at) + logZπold(st)] ≤ Eat∼πold

[log πold(at|st)−Qπold(st,at) + logZπold(st)],
(16)

and since partition function Zπold depends only on the state, the inequality reduces to

Eat∼πnew
[Qπold(st,at)− log πnew(at|st)] ≥ V πold(st). (17)

Next, consider the soft Bellman equation:

Qπold(st,at) = r(st,at) + γ Est+1∼ps [V πold(st+1)]

≤ r(st,at) + γ Est+1∼ps
[
Eat+1∼πnew

[Qπold(st+1,at+1)− log πnew(at+1|st+1)]
]

...
≤ Qπnew(st,at), (18)

where we have repeatedly expanded Qπold on the RHS by applying the soft Bellman equation and
the bound in Equation 17. Convergence to Qπnew follows from Lemma 1.
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B.3 THEOREM 1

Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy
improvement to any π ∈ Π converges to a policy π∗( · |st) such that Qπ

∗
(st,at) > Qπ(st,at) for

all π ∈ Π, π 6= π∗ and for all (st,at) ∈ S ×A.

Proof. Let πi be the policy at iteration i. By Lemma 2, the sequence Qπi is monotonically increas-
ing. Since Qπ is bounded above for π ∈ Π (both the reward and entropy are bounded), the sequence
converges to some π∗. We will still need to show that π∗ is indeed optimal. At convergence, it
must be case that Jπ∗(π∗( · |st)) < Jπ∗(π( · |st)) for all π ∈ Π, π 6= π∗. Using the same iterative
argument as in the proof of Lemma 2, we get Qπ

∗
(st,at) > Qπ(st,at) for all (st,at) ∈ S × A,

that is, the soft value of any other policy in Π is lower than that of the converged policy. Hence π∗
is optimal in Π.

C ENFORCING ACTION BOUNDS

We use an unbounded GMM as the action distribution. However, in practice, the actions needs to
be bounded to a finite interval. To that end, we apply an invertible squashing function (tanh) to
the GMM samples, and employ the change of variables formula to compute the likelihoods of the
bounded actions. In the other words, let u ∈ RD be a random variable and µ(u|s) the corresponding
density with infinite support. Then a = tanh(u), where tanh is applied elementwise, is a random
variable with support in (−1, 1) with a density given by

π(a|s) = µ(u|s)
∣∣∣∣det

(
da

du

)∣∣∣∣−1

. (19)

Since the Jacobian da/du = diag(1− tanh2(u)) is diagonal, the log-likelihood has a simple form

log π(a|s) = log µ(u|s)−
D∑
i=1

log
(
1− tanh2(ui)

)
, (20)

where ui is the ith element of u.

D SENSITIVITY TO HYPERPARAMETERS

This section discusses the sensitivity to hyperparameters. All of the following experiments are on
the HalfCheetah-v1 benchmark, and although we found these results to be representative in most
cases, they may differ between the environments. For other environments, we only swept over the
reward scale only.

Reward scale. Soft actor-critic is particularly sensitive to the reward magnitude, because it serves
the role of the temperature of the energy-based optimal policy and thus controls its stochasticity.
Figure 5a shows how learning performance changes when the reward scale is varied: For small
reward magnitudes, the policy becomes nearly uniform, and consequently the fails to exploit the
reward signal, resulting in substantial degradation of performance. For large reward magnitudes,
the model learns quickly at first, but the policy quickly becomes nearly deterministic, leading to
poor exploration and subsequent failure due to lack of adequate exploration. With the right reward
magnitude, the model balances exploration and exploitation, leading to fast and stable learning. In
practice, we found reward scale to be the only hyperparameter that requires substantial tuning, and
since this parameter has a natural interpretation in the maximum entropy framework, this provides
good intuition for how to adjust this parameter.

Mixture components. We experimented with different numbers of mixture components in the
Gaussian mixture policy (Figure 5b). We found that the number of components did not affect the
learning performance very much, though larger numbers of components consistently attained some-
what better results.
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Figure 5: Sensitivity of soft actor-critic to selected hyperparameters in the HalfCheetah-v1 task. See
Appendix D for more detailed analysis.

Policy evaluation. Since SAC converges to stochastic policies, it is generally beneficial to make
the final policy deterministic at the end for best performance. For evaluation, we approximate the
maximum a posteriori action by choosing the action that maximizes the Q-function among the mix-
ture component means. Figure 5c compares training returns to test returns obtained with this strat-
egy. The test returns are substantially better. It should be noted that all of the training curves depict
the sum of rewards, which is different from the objective optimized by SAC and SQL which both
maximize also the entropy.

Target network update. In Figure 5d we varied the smoothing constant, τ , for the target value
network updates. A value of one corresponds to a hard update where the weights are copied directly
at every iteration, and values close to zero correspond to exponentially moving average of the net-
work weights. Interestingly, SAC is relatively insensitive to the smoothing constant: smaller τ tends
to yield higher performance at the end with the cost of marginally slower progress in the beginning,
but the difference is small. In prior work, the main use of the target network was to stabilize train-
ing (Mnih et al., 2015; Lillicrap et al., 2015), but interestingly, SAC is able to learn stably also when
effectively no separate target network is used, but instead the weights are copied directly (τ = 1),
although at the cost of minor degradation of performance.

Replay buffer size. Next, we experimented with the size of the experience replay buffer (Fig-
ure 5e), which we found to be important for environments where the optimal policy becomes nearly
deterministic at convergence, such as HalfCheetah-v1. For such environments, the exploration noise
becomes negligible at the end, making the content of the replay buffer less diverse and resulting
in overfitting and instability. Use of a higher capacity buffer solves this problem by allowing the
method to remember the failures from the beginning of learning, but slows down learning by al-
locating some of the network capacity to modeling the suboptimal initial experience. Note that a
return of just 4800 is considered as the threshold level for solving this benchmark task and that the
performance in all cases is well beyond the threshold. We used a buffer size of 10 million samples
for HalfCheetah-v1, and 1 million samples for the other environments.

Gradient steps per time step. Finally, we experimented with the number of actor and critic gra-
dient steps per time step of the algorithm (Figure 5f). Prior work has observed that increasing the
number of gradient steps for DDPG tends to improve sample efficiency (Gu et al., 2017; Popov et al.,
2017), but only up to a point. We found 4 gradient updates per time step to be optimal for DDPG,
before we saw degradation of performance. SAC is able to effectively benefit from substantially
larger numbers of gradient updates in most environments, with performance increasing steadily un-
til 16 gradient updates per step. In some environments, such as Humanoid, we did not observe as
much benefit. The ability to take multiple gradient steps without negatively affecting the algorithm
is important especially for learning in the real world, where experience collection is the bottleneck,
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and it is typical to run the learning script asynchronously in a separate thread. In this experiment, we
used a replay buffer size of 1 million samples, and therefore the performance suddenly drops after
reaching a return of approximately 10 thousand due to the reason discussed in the previous section.

E HYPERPARAMETERS

Table 1 lists the common SAC parameters used in the comparative evaluation in Figure 1, and Table 2
lists the parameters that varied across the environments.

Table 1: Shared Parameters

Parameter Symbol Value
learning rate 3 · 10−4

discount γ 0.99
target smoothing coefficient τ 0.01

number of mixture components K 4
number of layers (3 networks) 2

number of hidden units per layer 128

Table 2: Environment Specific Parameters

Environment DoFs Reward Scale Gradient Steps Replay Pool Size
Swimmer (rllab) 2 100 4 106

Hopper-v1 3 1 4 106

HalfCheetah-v1 6 1 4 107

Walker2d-v1 6 3 4 106

Ant-v1 8 3 1 106

Humanoid (rllab) 21 3 1 106
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