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ABSTRACT

Anomaly detection is of the critical issue in both fundamental machine learn-
ing research area and industrial applications. A good anomaly detection should
accurately discriminate anomalies from normal samples. Although most previ-
ous anomaly detection methods achieve good performances on various tasks, they
do not perform well on high-dimensional imbalanced small data-sets with multi-
modal distribution. Unlike existing approaches, each mode in the distribution is
individually detected by a single model, and thus handle multi-modalities. In this
paper, we develop a multimodal one-class model based on generative adversarial
network (GAN) to distinguish anomalies from normal samples. The generator of
the GAN takes in a noise vector with a pseudo latent code to generate instances at
the low-density area of normal samples within the same data space to simulate the
anomalies. The discriminator of the GAN then is trained to distinguish the gener-
ated samples from the normal samples. Since the generated instances mimic the
low-density distribution of the normal samples (outliers), the discriminator should
directly detect real anomalies from normal samples. We test our methods on sev-
eral datasets. In these experiments, our method outperforms the state-of-the-art
anomaly detection methods on both the accuracy and F1 score.

1 INTRODUCTION

Anomaly detection is one of the fundamental problems in machine learning, with many critical ap-
plications in industry, e.g., fraud detection (Zheng et al., 2018). Compared with supervised based
anomaly detection methods (Nakazawa & Kulkarni, 2018; Lee et al., 2017; He & Wang, 2007), we
focus on the anomaly detection problems that is to detect if a new data sample follows a known nor-
mal data distribution with high confidence, i.e. resides in high-density distribution. These problems
are also known as novelty detection problem (Pimentel et al., 2014). Plenty of works have been
conducted in this area. There are three major directions: 1) density estimation methods 2) recon-
struction loss based methods 3) one-class classification. These methods present strong performances
on various dataset and tasks.

Different from most existing anomaly detection problem, e.g., (Rayana & Akoglu, 2015; Stolfo
et al., 2000; McAuley & Leskovec, 2013; Wienke et al., 2016; Poll et al., 2007), in practice, we
usually suffer from several practical issues: 1) a limited amount of data samples 2) imbalanced
dataset 3) multi-modal distribution. An example of normal and anomaly data samples are shown in
Figure 1.

Thus, in this paper, to overcome these challenges, we propose to use the multimodal one-class
generative adversarial network (MMOC-GAN) to address the challenges mentioned above. The
primary idea to capture the modes of the normal samples, and generate possible outliers for these
modes using the normal samples. In the GAN model, instead of taking a noise sampled from a fixed
distribution, the generator takes in a noise vector with a latent code to generate samples that are
complementary to the distribution of the normal samples within the same data space. We expect the
generator could generate the complementary data samples for a specific mode within the same data
space by adding the latent code. The discriminator is trained to discriminate the normal samples
from generated samples. Since the generated samples approximate the low-density distribution of
the normal samples, which simulate the outlier of normal samples, we expect the discriminator
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Figure 1: Low dimensional representations for samples from one manufacturing production dataset
using principal component analysis (PCA): (1) each data sample denotes a piece of product, (2) the
red/blue points are non-pass/pass products respectively, (3) there exists several different clusters of
products. (4) the non-pass samples are very close to the pass samples.

could distinguish normal samples and anomalies. The property of MMOC-GAN method makes it
applicable to anomaly detection in various practical applications.

The experiment on several datasets demonstrates that MMOC-GAN has superior performance over
several types of anomaly detection methods. Additionally, we observe that the generator could
successfully generate complementary data samples for each existing modes.

The rest of the paper is organized as follows: the related work is shown in section 2. A review of
GAN is given in section 3. We then describe the MMOC-GAN in section 4. The experimental result
is shown in section 5. We then conclude the paper in section 6.

2 RELATED WORK

Lots of efforts have been done in the anomaly detection area. There are primarily three directions:
1) density estimation methods 2) reconstruction loss based methods 3) one-class classification (Pi-
mentel et al., 2014).

Density estimation methods are primarily based on clustering analysis, such as the Gaussian mix-
ture model (GMM) (Markou & Singh, 2003; Lauer, 2001). However, it is hard to apply these
methods directly on high-dimensional data. Therefore, various methods adopt a two-stage approach
that reduces the dimension of data as the first step and then uses the density estimation method for
anomaly detection as the second step (Chandola et al., 2009; Sabahi & Movaghar, 2008). However,
the two-stage approach has multiple drawbacks. Recently, an end-to-end deep auto-encoding Gaus-
sian mixture model (DAGMM) (Zong et al., 2018) model is proposed that combines a compression
network to extract latent feature and an estimation network using latent feature and reconstruction
loss to estimate the sample density.

Reconstruction loss based methods assume that anomaly data samples cannot be reconstructed from
low-dimensional space (Shyu et al., 2003; Sakurada & Yairi, 2014). Many recent works presented
to use the reconstruction loss by auto-encoder (Marchi et al., 2015), variational auto-encoder (An
& Cho, 2015), as well as generative adversarial network based reconstruction loss (Schlegl et al.,
2017). These works demonstrate a promising result. However, this assumption does not hold in
every case. As shown in Figure 2, most of the anomalies have similar reconstruction loss as the
normal data samples. This might due to that production process of anomalies and normal samples
in the dataset are very similar.

One class classification method tries to build a classifier using only one class of data samples, i.e.
normal data samples. This method learns a discriminative boundary surrounding the normal in-
stances thus to detect anomalies (Chen et al., 2001; Zhang et al., 2006). One-class support vector
machine (OC-SVM) is one of the widely adopted methods that construct a decision hyper-plane
around the normal sample (Erfani et al., 2016). However, OC-SVM usually suffers from the curse
of dimensionality. One class neural network (OCNN network) is an end-to-end method that is devel-
oped based on OC-SVM (Chalapathy et al., 2018). It combines a neural network to learn the latent
distribution and use the objective function similar to SVM, thus, to detect anomalies. Also, some
other distance-based methods have extended to this category as well. One class nearest neighbor
(OCNN neighbor) has also been used to predict the anomalies based on the distance to its nearest
neighbors (Janssens, 2013; Zhao & Saligrama, 2009). In some other works, the discriminator in the
GAN model has also been used as an anomaly detector (Zenati et al., 2018; Sabokrou et al., 2018).
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Figure 2: Distribution of reconstruction loss by using anomaly GAN (ANOGAN) (Schlegl et al.,
2017) method. The X-axis is the reconstruction loss. The Y-axis is the percentage. Blue is pass data
and orange is non-pass data.

One class adversarial network is recently developed based on the GAN model by using LSTM auto-
encoder to compress the data and the complementary GAN to learn the possible distribution of
anomaly data (Zheng et al., 2018).

Most of these methods obtained relatively good performance on various datasets. However, for the
datasets with multiple modes, the performance is limited. According to the characteristic of these
datasets, we develop our algorithm MMOC-GAN based on the one class classification method.
Based on our knowledge, this is the first one-class anomaly detection model for multi-modal distri-
butions.

3 BACKGROUND INFORMATION

3.1 GENERATIVE ADVERSARIAL NETWORK

Generative adversarial networks (GANs) (Chen et al., 2016; Goodfellow et al., 2014) have recently
received much attention. It is a framework for training deep generative models using mini-max
optimization. A GAN framework consists of two components, a generator G and a discriminator
D. In practice, these two components are usually multi-perceptron neural networks. The generator
generates fake samples xG from a noise vector z sampled from a prior distribution pz , i.e. xG =
G(z). G is trained to learn a distribution pG that matches the real data distribution pd. In other word,
we try to maximize the pd(xG).

The discriminator D is a binary classifier that takes in a sample x as input and output the probability
that it is a real data or a generated fake data from xG = G(z). Thus, D acts as a detector to estimate
to the probability that a sample is from the real data distribution.

The G and D are trained adversarially as competitors to each other by alternatively training G and
D. G tries to fool D by making D predicts samples xG generate by G is real. This is achieved by
optimizing the following objective function of G:

min
G

Ez∼pz [log (1−D (G(z)))] (1)

On the contrary, D tries to minimize the chance that it being fooled by maximizing the probability
that it predicts the real data x is real and minimizing the probability that the generated data G(z) is
real:

max
D

Ex∼pd [logD (x)] + Ez∼pz [log (1−D (G(z)))] (2)

The GAN model is thus formalized as a mini-max problem with the following objective:

min
G

max
D

V (D,G) = Ex∼pd [logD (x)] + Ez∼pz [log (1−D (G(z)))] (3)

The GAN model theoretically aims to minimize the Jensen-Shannon (JS) divergence between the
data distribution Pd and the generated distribution PG. The minimization of JS divergence is
achieved when pD(G(z)) = pd(x)/(pd(x) + PG(x)) that the generated samples are indistinguish-
able from real data samples. Therefore, the GAN model captures the distribution of the real data.
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4 METHODOLOGY

4.1 OVERVIEW

The generatorG in the GAN model uses a simple noise vector z as input and maps it to a complicated
data distribution xG. This mapping requires a generator that disentangle the underlying factors of
variations in the data distribution and enables multi-modal diversity. However, in practice, regular
GAN is known to have the model collapse problems (Salimans et al., 2016; Berthelot et al., 2017).
This problem is not desired for a multimodal dataset, as shown in Figure 1. For these datasets, It is
natural to decompose different modes into a set of essential factors of variations by injecting prior
information, thus to have the generator in the GAN to produce data samples for different modes.
The idea of adding prior information can be found in various works. Inspired by (Chen et al., 2016;
Gurumurthy et al., 2017), our G is designed to take in both noise vector z and prior information.

The discriminatorD is used to detect the anomalies from the normal samples. Different from regular
GAN, our generator G tries to generate complementary data samples which lie in the low-density
region of the normal samples. The discriminator tries to separate the normal samples and the gener-
ated samples, which should give itself the capability to detect anomalies from normal data samples
because the generated samples simulate outliners in the low-density area.

The overall framework of our method can be found in Figure 3.

Figure 3: The generator takes in both noise vector and the prior information to generate a compli-
mentary sample. The discriminator takes in a generated sample and real data samples and output the
probability if it is real or not as well as the probability of the prior information.

4.2 PRIOR INFORMATION SELECTION

Inspired by (Chen et al., 2016), We hope to generate data samples without any supervision simply
by using a latent categorical variable to represent a potential mode. We denote the latent variable by
c ∈ 1, 2, ,m, where m is the number of clusters. The latent variable for a data sample x is cx.

To generate a data point, we adopt a new generator function x̂ = G(φ(z, cx)), that takes in both
noise vector z and the latent variable cx. We expect that x̂ be in the same data space H and falls to
the same modal as x. φ is a feature construction function. In this paper, we attempt two different
feature construction function φ(z, cx). The first feature function is direct concatenation(Chen et al.,
2016)

φcat(z, cx) = cat(z, one hot(cx)) (4)

where one hot is the one-hot encoding function. The second one reparameterizes the noise vector
z as Gaussian modelGurumurthy et al. (2017). Each modal distribution follows a Gaussian model
distribution. We denote this function as φmix:

φmix(z, cx) = µcx + σcxz (5)

where µcx and σcx are the mean and standard deviation of the Gaussian distribution. To avoid the
collapse of the variance in the variance of each Gaussian model, we adopt a regularizer (Gurumurthy
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et al., 2017):

Lσ = λ

m∑
i=1

(1− σci)2

m
(6)

where λ is a hyperparameter. The mutual information I(X,Y ) measures the reduction of uncertainty
in X when Y is observed (Chen et al., 2016). Similarly, we use mutual information loss to model
how much the latent code influences the generated samples. In this paper, the mutual information
loss is defined as follows:

LMI = −E(cx̂ ∼ p(c|x̂), x̂ ∼ G(φ(z, cx)), cx ∼ Q(c|x), x ∼ pd[logQ(cx̂|x̂) +H(cx)] (7)

where Q is the auxiliary distribution that is used to approximate p(c|x); H is the entropy function.
Here, we also use the auxiliary distribution Q to sample the prior information that is provided to the
generator. The Q(c|x) is model as a neural network that shares the hidden layer with the discrimi-
nator with an extra layer outputs the probability of classes. The p(c|x̂) is obtained by using the same
output layer of Q(c|x). H(cx) is the entropy loss using the output of Q(c|x).

4.3 COMPLEMENTARY GAN

4.3.1 GENERATOR

Unlike the generator in regular GAN to approximate the distribution of normal samples’ distribution
pd, the generator G in complementary GAN learns a distribution pG that close to the complementary
distribution p∗ (Zheng et al., 2018). Here, we introduce three losses for the generator: (1) KL diver-
gence loss to model the distance between the generated samples and the complementary distribution
of normal samples; (2) feature matching loss to ensure the generated samples fall into the same data
space rather than random noise; (3) pull away loss to encourage the diversity of generated samples.

KL divergence loss. The generator tries to learn the distribution of samples of the outlier region of
pd, i.e., the low-density areas distribution:

p∗(x̂) =

{
1

τpd(x̂)
, if pd ≥ ε

C, if pd ≤ ε

where ε is a parameter to decide if the generated samples are in the high-density area or not. τ is a
normalization constant, and C is a small constant. To learn the complementary distribution, we use
the KL divergence as the objective function. Since the τ and C are both constant, we omit them in
the objective function as follows:

LKL(pG ‖ p∗) = H(pG)− Ex̂∼pG log pd(x̂) 1[pd ≥ ε] (8)

The objective function does not have τ and C. We do not need to select them explicitly. The ε is
selected as the percentile of anomalies with the dataset.

Feature matching loss. To ensure the generated samples are in the same space of the data samples
H, the feature matching loss is adopted as well (Salimans et al., 2016).

Lfm = Ex∼pd = [‖ Ex∼pG [f(x̂)− f(x)] ‖22] (9)

where f is the hidden layer of the discriminator. However, estimate the pdata is expensive. A target
network T is applied to detect the data distribution pd

Pull away loss. The entropy H(pG) is approximated by the pull-away loss that encourages the
diversity of generated data samples (Zhao et al., 2016). The PT term is as follows:

Lpt =
1

N(N − 1)

N∑
i

N∑
j 6=i

(
f(x̂i)(x̂j)

‖ x̂i ‖‖ x̂j ‖

)
(10)

where N is the number of samples in a mini-batch. Thus, the overall objective function of the
generator is as follows:

LG =

{
Lfm + Lpt + LKL + LMI , if use φcat
Lfm + Lpt + LKL + Lσ + LMI , if use φmix
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4.3.2 DISCRIMINATOR

The discriminator in the complementary GAN detects if a sample follows the real data distribution
pd or the generated distribution pG by the generator. Here, since the generated distribution pG is
trained to capture the complementary data distribution p∗. The generator is thus used as a proxy to
generate the low-density area data. The discriminators objective function is as follows:

LD = Ex∼pd [log(D(x))]+Ez∼pz,cx∼Q(c|x),x∼pd [log(1−D(G(z, cx)))]+Ex∼pd [H(D(x))] (11)

H(D(x)) is the entropy loss using the output of D(x). It it to further push the decision boundary of
discriminator toward the normal data samples with higher confidence.

5 EXPERIMENT

To test our methods, we conducted several experiments on three dataset. More about the new dataset.

5.1 EXPERIMENT 1

5.2 EXPERIMENT 2

5.3 EXPERIMENT 3 OR MAY BE WITHOUT MENTIONING THIS DATASET DEPEND ON THE
EXPERIMENTS ON OTHER DATASETS?

5.3.1 DATASET

The third dataset is collected from one of Samsungs production lines in 2018. The dataset is limited
and imbalance that contains 3936 pass products and 22 non-pass products.

5.3.2 BASELINE

To verify the effectiveness of our method, we compare our MMOC-GAN with several widely
used anomaly detection methods including: 1) One class nearest neighbors (OCNN neighbor)
(Zhao & Saligrama, 2009); 2) One class support vector machine (OCSVM) (Chen et al., 2001);
3) One class neural network (OCNN network) (Chalapathy et al., 2018); 4) Gaussian mixture model
(GMM) (Chandola et al., 2009); 5) Robust deep auto-encoder (RDA) (Zhou & Paffenroth, 2017);
6) Deep auto-encoder Gaussian mixture model (DAGMM) (Zong et al., 2018); 7) Anomaly GAN
(ANOGAN) (Schlegl et al., 2017); 8) Regular GAN (RGAN); and 9) One class adversarial network
(OCAN)(Zheng et al., 2018).

Note that some of these methods require using part of the anomaly data for tuning. In this work, for
each fold, we other methods by using all anomalies in the test dataset, which should greatly improve
the performance of these baseline methods. Our method, in contrast, does not require such tuning
and directly use the output of the discriminator as the detection result. More specifically, one of
the output of the discriminator is the probability if the sample is fake or real. If the probability is
larger than 50%, the sample is classified as normal sample, otherwise it is classified as anomaly. The
learning hyperparameter is the same as the finetuned OCAN method. A comparison of the selection
of the number of latent code is shown later.

5.4 RESULT

The means and variances of the accuracy of anomalies and normal samples, and the F1 score for
five-fold experiments are reported in Table 1.

Our MMOCGAN obtains the highest performance than other baseline methods in all measurements.
Most of these baselines fail in this practical task. The result shows the effectiveness of our method
for anomaly detection in the practical dataset. Note that some of the methods have a high overall
accuracy and f1 score. However, this is because they predict all samples as pass product for this
imbalanced dataset. Second, our method is relatively stable across five-fold cross-validation while
the variance of other methods is relatively high. For instance, the OCAN method obtains a variance
of 13.9%, which might because it fails to capture the multi-modal distribution.

6



Under review as a conference paper at ICLR 2019

Table 1: The result of different methods. Raw train only using the training dataset. Fine tune means
using the test dataset to fine-tune the threshold.

Methods Pass acc. Non-pass Acc. Acc. F1 Score

OCNN neighbor 90.8± 5.0% 92.1± 16.2% 91.0% 0.95
OCSVM 97.9± 1.1% 26.3± 41.4% 95.2% 0.97
OCNN network 78.8± 1.1% 23.6± 18% 77.3% 0.87
GMM 63.6± 9.6% 16.3± 11.4% 62.3% 0.76
DAGMM 86.6± 6.7% 76.4± 14.8% 86.3% 0.92
RDA 69.3± 8.3% 39.4± 12.7% 68.4% 0.81
ANOGAN 60.6± 8.4% 51.3± 17.2% 60.3% 0.73
RGAN 94.3± 1.3% 9.3± 4.7% 92.0% 0.95
OCAN 94.5± 1.5% 89.1± 13.9% 94.3% 0.97
MMOCGAN cat 96.4± 0.5% 100± 0% 96.5% 0.98
MMOCGAN mix 90.3± 2.1% 100± 0% 90.5% 0.97

Table 2: Influence of number of clusters on the MMOCGAN concatenation model
Number of classes P Acc. NP Acc. F1 Score AUROC

1 93.1% 86.9% 0.96 95.3
5 95.0% 94.5% 0.97 96.4
10 96.4% 100% 0.98 97.5
20 94.8% 100% 0.97 97.2

6 DISCUSSION

As shown in table.2, both feature construction functions φmix and φcat yield satisfactory results.
However, we can see that using the Gaussian model for each latent variable does not help to improve
the performance as shown in Table 1. This might because the data does not necessarily follow the
Gaussian distribution.

We also investigate the influence of the number of latent variables. The result is shown in Table 2.
By setting the number of cluster m as 1, our method essentially assumes there’s only one mode. We
can see by increasing the number of the latent variable improves the performance.

We use our generator to generate some complementary instances. The data samples are projected
into a 2d space using the t-SNE method as shown in Figure 5. We can see our method successfully
generate samples between normal samples and anomalies.

Figure 4: t-SNE distribution of pass products (all colors except red and yellow), non-pass products
(red), and generated complementary data (yellow).

7 CONCLUSION

In the paper, we developed a multi-modal one-class generative adversarial network for anomaly
detection problem. This method uses only the normal samples as the training set. The generator in
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the GAN model takes in a combination a latent code with the noise vector produces instances from
the complementary distribution of normal samples within the same data space for the corresponding
mode. Since the produced instances simulate the outliers of normal samples, the discriminator could
discriminate the normal samples and anomalies. The experiment shows that our model outperforms
most existing anomaly detection methods in various tasks.
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HYPER-PARAMETERS

Both discriminator and the generator are neural networks. The discriminator D is a four-layer feed-
forward neural network that takes in the feature vector of a data sample and outputs the probability
of the sample being real. Its latent dimensions are 128, 128 respectively. The auxiliary distribution
Q shares the hidden layer with the discriminator and output the probability of the latent code. The
generator is a three layer feed-forward neural network that takes in the random noise and outputs
the generated feature vector. The dimension of the hidden layer in the generator is 128. The training
epoch is 1000. If use φmix, we set λ = 0.03, as suggested in (Gurumurthy et al., 2017).The threshold
is set as 99.5 percentile1 of the real data predicted by the target network. The batch size is set as
100. We use five-fold cross validation to verify the models, more specifically, we divide the pass
products data into five folds, use four of them for training and the left fold and the non-pass product
data for testing.

BASELINE METHODS

Our MMOC-GAN are compared with following widely used anomaly detection methods including:

1. One class nearest neighbors (OCNN neighbor) (Zhao & Saligrama, 2009) detects anomaly
data samples by using the average distance between the data samples and some of its nearest
neighbors in the pass product dataset. A prede-fined threshold that is trained by using the
validation dataset is required to determine if a product is pass or not.

2. One class support vector machine (OCSVM) (Chen et al., 2001) is based on the support
vector machine to learn a compact decision hyper-plane around the pass product data, and
data samples at the outlier of the hyperplane are classified as non-pass data.

3. One class neural network (OCNN network) (Chalapathy et al., 2018) applies a neural net-
work to generate the tight en-velope around the normal data. It is developed based on
OCSVM. The critical part is to develop an end-to-end neu-ral network based method to
learn the data representation in the hidden layer driven by using a regularized objective
similar to SVM, i.e. to learn the hyperplane.

4. Gaussian mixture model (GMM) (Chandola et al., 2009) is a density based model that can
be used for anomaly detection.

5. Robust deep auto-encoder (RDA) (Zhou & Paffenroth, 2017) is based on auto-encoder with
a combination of robust principal component analysis as a regularizer. The reconstruction
error is used as the measurement to detect anomalies.

6. Deep auto-encoder Gaussian mixture model (DAGMM) (Zong et al., 2018) is an end-to-
end unsuper-vised learning method that utilizes a deep auto-encoder to generate a low-
dimensional representation and reconstruction error for each data sample, which is further
input into a Gaussian mixture model. The joint optimization methods help the auto-encoder
to escape from local optima.

7. Anomaly GAN (ANOGAN) (Schlegl et al., 2017) is a GAN based anomaly detection
method by mapping the data sample space back to the latent space. The residual loss
between the original data sample and the generated data sample from the perfectly remap-
ping latent noise and the reconstruction loss together are used as the measurement to detect
anomalies.

8. Regular GAN (RGAN) where discriminator in the GAN model is directly applied as the
detector.

122/(3936 + 22) ≈ 0.005
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9. One class adversarial network (OCAN)(Zheng et al., 2018) method tries to generate the
malicious users from benign users directly, thus to help discriminate the malicious users.
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