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ABSTRACT

We present a neural network architecture based upon the Autoencoder (AE) and
Generative Adversarial Network (GAN) that promotes a convex latent distribution
by training adversarially on latent space interpolations. By using an AE as both
the generator and discriminator of a GAN, we pass a pixel-wise error function
across the discriminator, yielding an AE which produces sharp samples that match
both high- and low-level features of the original images. Samples generated from
interpolations between data in latent space remain within the distribution of real
data as trained by the discriminator, and therefore preserve realistic resemblances
to the network inputs.

1 INTRODUCTION

Generative modeling has the potential to become an important tool for exploring the parallels be-
tween perceptual, physical, and physiological representations in fields such as psychology, linguis-
tics, and neuroscience (e.g. Sainburg et al. 2018; Thielk et al. 2018; Zuidema et al. 2018). The
ability to infer abstract and low-dimensional representations of data and to sample from these dis-
tributions allows one to quantitatively explore and vary complex stimuli in ways which typically
require hand-designed feature tuning, for example varying formant frequencies of vowel phonemes,
or the fundamental frequency of syllables of birdsong.

Several classes of unsupervised neural networks such as the Autoencoder (AE; Hinton & Salakhut-
dinov 2006; Kingma & Welling 2013), Generative Adversarial Network (GAN; Goodfellow et al.
2014), autoregressive models (Hochreiter & Schmidhuber, 1997; Graves, 2013; Oord et al., 2016;
Van Den Oord et al., 2016), and flow-based generative models (Kingma & Dhariwal, 2018; Dinh
et al., 2014; Kingma et al., 2016; Dinh et al., 2016) are at present popularly used for learning latent
representations that can be used to generate novel data samples. Unsupervised neural network ap-
proaches are ideal for data generation and exploration because they do not rely on hand-engineered
features and thus can be applied to many different types of data. However, unsupervised neural
networks often lack constraints that can be useful or important for psychophysical experimenta-
tion, such as pairwise relationships between data in neural network projections, or how well morphs
between stimuli fit into the true data distribution.

We propose a novel AE that hybridizes features of an AE and a GAN. Our network is trained
explicitly to control for the structure of latent representations and promotes convexity in latent space
by adversarially constraining interpolations between data samples in latent space to produce realistic
samples1.

1Pairwise interpolations in between latent samples may only cover a subset of the convex hull of the latent
distribution, as described in Figure 1.
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1.1 BACKGROUND ON GENERATIVE ADVERSARIAL NETWORKS (GANS) AND
AUTOENCODERS (AES)

An AE is a form of neural network which takes as input xi (e.g. an image), and is trained to
generate a reproduction of the input2 G(xi), by minimizing some error function between the input
xi and output G(xi) (e.g. pixel-wise error). This translation is usually performed after compressing
the representation xi into a low-dimensional representation zi. This low-dimensional representation
is called a latent representation, and the layer corresponding to zi in the neural network is often
called the latent layer. The first half of the network, which translates from xi to zi, is called the
encoder; the second half of the network, which translates from zi to xi, is called the decoder. The
combination of these two networks make the AE capable of both dimensionality reduction (X →
Z); Hinton & Salakhutdinov 2006), and generativity (Z → X). Importantly, AE architectures are
generative3, however they are not generative models (Bishop, 2006) because they do not model the
joint probability of the observable and target variables P (X,Z). Variants such as the Variational
Autoencoder (VAEs; Kingma & Welling 2013), which model P (X,Z) are generative models. AE
latent spaces, therefore, cannot be sampled probabilistically, without modeling the joint probability
as in VAEs. The AE architecture that we propose here does not model the joint probability of X and
Z and thus is not a generative model, although the latent space of our network could be modeled
probabilistically (e.g. with a VAE).

GAN architectures are comprised of two networks, a generator, and a discriminator. The generator
takes as input a latent sample, zi, drawn randomly from a distribution (e.g. uniform or normal), and
is trained to produce a sampleGd(zi) in the data domainX . The discriminator takes as input both xi
and Gd(zi), and is trained to differentiate between real xi, and generated Gd(zi) samples, typically
by outputting either a 0 or 1 in a single-neuron output layer. The generator is trained to oppose
the discriminator by ’tricking’ it into categorizing Gd(z) samples as x samples. Intuitively, this
results in the generator producing Gd(Z) samples indistinguishable (at least to the discriminator)
from those drawn from the distribution x. Thus the discriminator acts as a ’critic’ of the samples
produced by a generator that is attempting to reproduce the distribution x. Because GANs sample
directly from a predefined latent distribution, GANs are generative models, explicitly representing
the joint probability, P (X,Z).

One common use for both GANs and AEs has been exploiting the semantically rich low-dimensional
manifold, Z, on which data are either projected onto or sampled from (White, 2016; Hinton &
Salakhutdinov, 2006). Operations performed in Z carry rich semantic features of data, and interpo-
lations between points in Z produce semantically smooth interpolations in the original data space
X (e.g. Radford et al. 2015; White 2016). However, samples generated by latent representations of
both AEs and GANs are limited by the constraints provided by the algorithm. A significant amount
of work has been done over the past several years in developing variants of AEs and GANs which
add additional constraints and functionality to GAN and AE architectures, for example improving
stability of GANs (e.g. Berthelot et al. 2017; Radford et al. 2015; Salimans et al. 2016), disentan-
gling latent representations (e.g. Higgins et al. 2016; Chen et al. 2016; Bouchacourt et al. 2017),
adding generative capacity to AEs (e.g. Kingma & Welling 2013; Kingma et al. 2016; Makhzani
et al. 2015), and adding bidirectional inference to GANs (e.g. Larsen et al. 2015; Mescheder et al.
2017; Berthelot et al. 2017; Dumoulin et al. 2016; Ulyanov et al. 2017; Makhzani 2018).

In this work, we describe several limitations of GANs and Autoencoders, specifically as they relate
to stimuli generation for psychophysical research, and propose a novel architecture, GAIA, that
utilizes aspects of both the AE and GAN to negate shortcomings of each architecture independently.
Our method provides a novel approach to increasing the stability of network training, increasing the
convexity of latent space representations, preserving of high-dimensional structure in latent space
representations, and bidirectionality from X → Z and Z → X .

1.2 CONVEXITY OF LATENT SPACE

Generative latent-spaces enable the powerful capacity for smooth interpolations between real-world
signals in a high-dimensional space. Linear interpolations in a low-dimensional latent space often

2We denote G(xi) as being equivalent to Gd(Ge(xi)), or xi being passed through the encoder and decoder
of the generator, G

3having the power or function of generating, originating, producing, or reproducing (Webster, 2018)
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produce comprehensible representations when projected back into high-dimensional space (e.g. En-
gel et al. 2017; Dosovitskiy et al. 2015). In the latent spaces of many network architectures such
as AEs, however, linear interpolations are not necessarily justified, because the space between end-
points on an interpolation in Z is not explicitly trained to fall within the data distribution when
translated back into X .

A convex set of points is defined as a set in which the line-segment connecting any pair of points
will fall within the rest of the set (Klee, 1971). For example, in Figure 1A, the purple distribu-
tion represents data projected into a two-dimensional latent space, and the surrounding whitespace
represents regions of latent space that do not correspond to the data distribution. This distribution
would be non-convex because a line connecting two points in the distribution (e.g. the black points
in Figure 1A) could contain points outside the data distribution (the red region). In an AE, if the red
region of the interpolation were sampled, projections back into the high-dimensional space may not
necessarily correspond to realistic exemplars of x, because that region of Z does not belong to the
true data distribution.

One approach to overcoming non-convexity in a latent space is to force the latent representation of
the dataset into a pre-defined distribution (e.g. a normal distribution), as is performed by VAEs. By
constraining the latent space of a VAE to fit a normal distribution, the latent space representations
are encouraged to belong to a convex set. This method, however, pre-imposes a distribution in latent
space that may be a suboptimal representation of the high-dimensional dataset. Standard GAN latent
distributions are sampled directly, similarly allowing arbitrary convex distributions to be explicitly
chosen for latent spaces. In both cases, hard-coding the distributional structure of the latent space
may not respect the high-dimensional structure of the original distribution.

1.3 PIXEL-WISE ERROR AND BIDIRECTIONALITY

AEs that perform dimensionality reduction (in particular VAEs) can produce blurry images due to
their pixel-wise loss functions (Goodfellow et al., 2014; Larsen et al., 2015), which minimize loss by
smoothing the sharp contrasts (e.g. edges) present in real data. GANs do not suffer from this blurring
problem, because they are not trained to reproduce input data. Instead, GANs are trained to generate
data that could plausibly belong to the true distribution X . Thus, smoothing over uncertainty tends
to be discouraged by the discriminator because it can use smoothed edges as a distinguishing feature
between data sampled from X and G(X).

Producing data that fits into the distribution of x, rather than reproducing individual instances of xi
comes at a cost, however. While AEs learn both the translation from X to Z and Z to X , GANs
only learn the latter (Z → X). In other words, the pixel-wise loss function of the AE produces
smoothed data but is bidirectional, while the discriminator-based loss function of the GAN produces
sharp images and is unidirectional.

2 GENERATIVE ADVERSARIAL INTERPOLATIVE AUTOENCODING (GAIA)

Our model, GAIA (Figure 1 left), is bidirectional but is trained on both a GAN loss function and
a pixel-wise loss function, where the pixel-wise loss function is passed across the discriminator
of the GAN to ensure that features such as blurriness are discriminated against. In full, GAIA is
trained as a GAN in which both the generator and the discriminator are AEs. The discriminator
is trained to minimize the pixel-wise loss (`1) between real data (xi) and their AE reproduction in
the discriminator (D(xi)) while maximizing the AE loss between samples generated (G(xi)) by the
generator and their reproduction in the discriminator (D(G(xi))):

‖xi −D(xi)‖1 − ‖xi −D(G(xi))‖1
The generator is trained on the inverse, to minimize the pixel-wise loss between input (xi) and
output (D(G(xi))) such that the discriminator reproduces the generated samples to be as close to
the original data as possible:

‖xi −D(G(xi))‖1
Using an AE as a generator has been previously been used in the VAE-GAN (Larsen et al., 2015),
and decreases blurring from the pixel-wise loss in AEs at the expense of exact-reproduction of
data. Similarly, using an AE as a discriminator has been previously used in BEGAN (Berthelot

3



Under review as a conference paper at ICLR 2019

Figure 1: (A) GAIA network architecture. (B) An example AE latent distribution (purple) which
is non-convex. Black circles represent two projections from X to Z. The solid line between them
represents an interpolation, where the red region contains points in the interpolation that do not
correspond to the true data distribution. The dashed line is an interpolation which passes through
only the true data distribution. One hypothesis is that training will warp the distribution on the left
to produce linearly interpolations within the distribution. (C) An alternative hypothesis is that by
training the network upon interpolations, samples in the interpolated regions (lighter purple) will be
trained to generate data similar to the x, without manipulating the distribution of z. (D) Pairwise in-
terpolations between samples of x in GAIA will not necessarily make the latent distribution convex,
because two point interpolations in Z do not reach all of the points in between the interpolated data
zint..

et al., 2017), which improves stability in GANs but remains unidirectional4. In GAIA, we combine
these two architectures, allowing the generator to be trained on a pixel-wise loss that is passed
across the discriminator, explicitly reproducing data as in an AE, while producing sharper samples
characteristic of a GAN.

In addition, linear interpolations are taken between the latent-space representations:

β ← N (µ, σ2)

zint. = zgeni
β + zgenj

(1− β)

Where interpolations are Euclidean interpolations between pairs of points in Z, sampled from a
1-dimensional Gaussian distribution5 centered around the midpoint between zgeni and zgenj . The
midpoints are then passed through the decoder of the discriminator, which are treated as generated
samples by the GAN loss function:

‖Gd(zint.)−D(Gd(zint.))‖1

The discriminator is trained to maximize this loss, and the generator is trained to minimize this loss.

4Although it is possible to find the regions of Z most closely corresponding to xi
5σ = 0.25. We sample along the midpoint using a Gaussian rather than uniformly because we found that

interpolations near to original samples required less training than interpolations to produce realistic interpola-
tions.
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In full, the loss of the discriminator, as in BEGAN, is to minimize pixel-wise loss of real data, and
maximize pixel-wise loss of generated data (including interpolations):

LDisc =‖xi −D(xi)‖1−
‖xi −D(G(xi))‖1−
‖Gd(zint.)−D(Gd(zint.))‖1

The loss of the generator is to minimize the error across the descriminator for the input data in the
generator (D(G(xi))), along with the minimizing the error of the interpolations generated by the
generator (D(Gd(zint.))).

LGen =‖xi −D(G(xi))‖1+

‖Gd(zint.)−D(Gd(zint.))‖1

In summary, the generator and discriminator are both AEs. As a result, reconstructions of x have
the potential to resemble the input data (G(x)) at a pixel level, a feature non-existent in other GAN
based inference methods (Figure 5). We also train the network on interpolations in the generator, to
explicitly train the generator to produce interpolations (Gd(zint.)) which deceive the discriminator
and are closer to the distribution in X than interpolations from an unconstrained AE.

2.1 PRESERVATION OF LOCAL-STRUCTURE IN HIGH-DIMENSIONAL DATA

VAEs and GANs force the latent distribution, z, into a pre-defined distribution, for example, a Gaus-
sian or uniform distribution. This approach presents a number of advantages, such as ensuring latent
space convexity and thus being better able to sample from the distribution. However, these benefits
are gained at the loss of respecting the structure of the distribution of the original high dimensional
dataset, x. Preserving high-dimensional structure in low dimensional embeddings is often the goal
of dimensionality reduction, one of the functions of an autoencoder (Hinton & Salakhutdinov, 2006).
To better respect the original high-dimensional structure of the dataset, we impose a regularization
between the latent space representations of the data (z) and the original high dimensional dataset
(x), motivated by Multidimensional Scaling (Kruskal, 1964).

For each minibatch presented to the network, we compute a loss for the distance between the log of
the pairwise Euclidean distances of samples in X and Z space:

Ldist(x, z) =
1

B

B∑
i,j

[
log2

(
1 +

(xi − xj)2
1
B

∑
i,j(xi − xj)2

)
− log2

(
1 +

(zi − zj)2
1
B

∑
i,j(zi − zj)2

)]2

We then apply this error term to the generator to encourage the pairwise distances of the minibatch in
latent space to be similar to the pairwise distances of the minibatch in the original high-dimensional
space.

3 EXPERIMENTS

Here we apply out network architecture to two datasets: (1) five 2D distributions from Scikit-learn
(Pedregosa et al., 2011) which allows us to visualize and quantify the behavior of GAIA in a low-
dimensional space (Figure 2), and (2) the CELEBA-HQ dataset (Liu et al., 2015; Karras et al., 2017)
which allows us to test the performance of GAIA on a more complex high dimensional dataset
(Figure 3).

3.1 2D DATASETS

We compared the performance of AE, VAE, and GAIA networks with the same architecture and
training parameters on five 2D distributions from Scikit Learn (Pedregosa et al., 2011). We also
compared the GAIA network with and without the distance loss term (Ldist = 0). We computed the
learned latent representations (z) as well as reconstructions (Gd(z)) from of each of the networks
(Figures 2, 6), and compared the these spaces on a number of metrics (Table 1).
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Figure 2: GAIA vs. AE and VAE on reconstruction on the S dataset. GAIA is shown both with
the local-structure (ll=1) loss and without (ll=0). Results for the other four 2D datasets are shown in
Figure 6. (Top) Interpolations in latent space Gd(zint.) in red, plotted over true distribution plotted
as blue heat-map. (Second row) A mesh-grid showing translation from a uniform sampling of the
convex hull of z reconstructed as Gd(Z). (Third row) A mesh-grid showing translation from the
convex hull of x reconstructed as G(X). (Bottom) The probability distribution of representations
for each network, showing that the Ldist term promotes the preservation of structure from X to
G(X).

Our most salient observation can be found in the mesh-grids in Figure 2, where a clear boundary
exists in the warping of high- and low-probability data in GAIA, as opposed to an autoencoder with-
out adversarial regulation. A similar warping of low-probability data is seen in the VAE, although a
smoother warping is seen at the boundaries.

We quantitatively analyzed the results of Figure 2 in Table 1. We found that interpolations in GAIA
(Gd(zint.)) are the most likely to fall into the distribution of x (Figure 2 top; log(L(Gd(zint.)))). We
also found that the distributions of both network reconstructions and interpolations in Z most highly
match the input distribution (x) in the VAE network (measured by Kullback-Leibler divergence).
This is likely due to the adversarial loss in GAIA. While VAEs are trained to match the distribution
of x, GAIA’s generator is trained to find regions ofX which are sufficiently high-enough probability
that the discriminator will not discriminate against it. Finally, we found that pairwise Euclidean
distances in Z most highly resembled the original data distribution x (r(x, z)) in the GAIA network
when the Ldist loss was imposed on the network. This leads us to conclude that GAIA can learn to
map interpolations in latent-space onto the true data distribution in X in a similar manner as a VAE,
while still respecting the original structure of the data.

3.2 CELEBA-HQ

To observe the performance of our network on a more complex and high dimensional data, we use
the CELEBA-HQ image dataset of aligned celebrity faces. We find that interpolations in Z produce
smooth realistic morphs in X (Figure 3), and that complex features can be manipulated as linear
vectors in the low-dimensional latent space of the network (Figure 4).
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Table 1: Comparison of GAIA, VAE, and AE on 2D datasets.
Model r(x, z) ∗ log(L(Gd(zint.)))

‡ log(L(G(x))) DKL(x ‖ Gd(zint.))
† DKL(x ‖ G(x))

AE 0.58 3207.39 3545.63 0.43 -0.57
VAE 0.64 3574.11 3588.50 -0.05 -0.64
GAIAll=0 0.38 3567.49 3564.27 0.19 -0.36
GAIAll=1 0.91 3593.84 3563.91 0.36 -0.32

Results are intercepts from an OLS regression controlling for 2D dataset type, thus some values (such as KL divergence) can be negative.
∗Pearson correlation ‡Log-likelihood †Kullback-Leibler divergence

Figure 3: Interpolations between autoencoded images in our network. The farthest left and right
columns correspond to the input images, and the middle columns correspond to a linear interpolation
in latent-space.

3.2.1 FEATURE MANIPULATION

Feature manipulation using generative models typically fall into two domains: (1) fully unsuper-
vised approaches, where feature vectors are extracted and applied after learning (e.g. Radford et al.
2015; Larsen et al. 2015; Kingma & Dhariwal 2018; White 2016), and (2) supervised and partially
supervised approaches, where high-level feature information is used during learning (e.g. Choi et al.
2017; Isola et al. 2017; Li et al. 2016; Perarnau et al. 2016; Zhu et al. 2017).

We find that, similar to the latter group of models, high-level features correspond to linear vectors in
GAIA’s latent spaces (Figure 4). High-level feature representations are typically determined using
the means of Z representations of images containing features (e.g Radford et al. 2015; Larsen et al.
2015). The mean of the latent representations of the faces in the dataset (here CELEBA-HQ) con-
taining an attribute (zfeat) and not containing that attribute (znofeat) is subtracted (zfeat− znofeat)
to acquire a high-level feature vector. The feature vector is then added to, or subtracted from, the
latent representation of individual faces (zi), which is passed through the decoder of the generator,
producing an image containing that high-level feature.

Similar to White (2016), we find that this approach is confounded by features being tangled together
in the CELEBA-HQ dataset. For example, adding a latent vector to make images look older biases
the image toward male, and making the image look more young biased the image toward female.
This likely happens because the ratio of young males to older males is 0.28:1, whereas the ratio of
young females to older females is much greater at 8.49:1 in the CELEBA-HQ dataset. As opposed
to White (2016), who balance samples containing features in the training dataset, we use the co-
efficients of an ordinary least-squares regression trained to predict z representations from feature
attributes on the full dataset as feature vectors. We find that these features (Figure 7 bottom) are less
intertwined than subtracting means alone (Figure 7 top).
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Figure 4: Attribute vectors added to Z representation of different images from the CELEBA-HQ
dataset.

3.3 RELATED WORK

This work builds primarily upon the GAN and AE. We used the AE as a discriminator motivated
by Berthelot et al. (2017), and an AE as a generator motivated by Larsen et al. (2015), which in
concert act as both an autoencoder and a GAN imparting bidirectionality on a GAN and imparting
an adversarial loss on the autoencoder. A number of other adversarial network architectures (e.g.
Larsen et al. 2015; Mescheder et al. 2017; Berthelot et al. 2017; Dumoulin et al. 2016; Ulyanov
et al. 2017; Makhzani 2018) have been designed with a similar motivation in recent years. Our
approach differs from these methods in that, by using an autoencoder as the discriminator, we are
able to use a reconstruction loss which is passed across the discriminator, resulting in pixel-wise
data reconstructions (Figure 5).

Similar motivations for better bidirectional inference-based methods have also been explored using
flow-based generative models (Kingma & Dhariwal, 2018; Dinh et al., 2014; Kingma et al., 2016;
Dinh et al., 2016), which do not rely on an adversarial loss. Due to their exact latent-variable infer-
ence (Kingma & Dhariwal, 2018), these architectures may also provide a useful direction for devel-
oping generative models to explore latent-spaces of data for generating datasets for psychophysical
experiments.

In addition, the first revision of this work was published concurrently to ACAI network (Berth-
elot et al., 2018), which also uses an adversarial constraint on interpolations in the latent space of
an autoencoder. Berthelot et al. find that adversarially constrained latent representations improve
downstream tasks such as classification and clustering. At a high level, GAIA and ACAI networks
perform the same functions, however, there are a few notable differences between the two networks.
While ACAI uses an autoencoder as the discriminator of the adversarial network to improve pass
the autoencoder error function across the discriminator, ACAI uses a traditional discriminator. As
a result, the loss function is different between the two networks. Further comparisons are needed
between the two architecture to compare network features such as training stability, reconstruction
quality, latent feature representations, and downstream task performance.
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4 CONCLUSION

We propose a novel GAN-AE hybrid in which both the generator and discriminator of the GAN
are AEs. In this architecture, a pixel-wise loss can be passed across the discriminator producing
autoencoded data without smoothed reconstructions. Further, using the adversarial loss of the GAN,
we train the generator’s AE explicitly on interpolations between samples projected into latent space,
promoting a convex latent space representation. We find that in our 2D dataset examples, GAIA
performs equivalently to a VAE in projecting interpolations in Z onto the true data distribution
in X , while respecting the original structure in X . We conclude that our method more explicitly
lends itself to interpolations between complex signals using a neural network latent space, while
still respecting the high-dimensional structure of the input data.

The proposed architecture still leaves much to be accomplished, and modifications of this architec-
ture may prove to be more useful, for example utilizing different encoder strategies such as pro-
gressively growing layers (Karras et al., 2017), interpolating across the entire minibatch rather than
two-point interpolations, modeling the joint probability of X and Z, and exploring other methods to
train more explicitly on a convex latent space. Further explorations are also needed to understand
how interpolative sampling effects the structure of the latent space of GAIA in higher dimensions.

Our network architecture furthers generative modeling by providing a novel solution to maintaining
pixel-wise reconstruction over an adversarial architecture. Further, we take a step in the direction
of convex latent space representations in a generative context. This architecture should prove use-
ful both for current behavioral scientists interested in sampling from smooth and plausible stimuli
spaces (e.g. Sainburg et al. 2018; Thielk et al. 2018; Zuidema et al. 2018), as well as providing
motivation for future solutions to structured latent representations of data.

Our network was trained using Tensorflow, and our full model, code, and high-resolution images,
along with videos of the model will be made available when de-anonymized.
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5 APPENDIX

5.1 NETWORK ARCHITECTURE

In principle, any form of AE network can be used in GAIA. In the experiments shown in this paper,
we used two different types of networks. For the 2D dataset examples, we use 6 fully connected
layers per network with 256 units per layer, and a latent layer with two neurons. For the CELEBA-
HQ dataset a modified version of network architecture advocated by Huang et al. (2018), which is
comprised of a style and content AE using residual convolutional layers. Each layer of the decoder
uses half as many filters as the encoder, and a linear latent layer is used in the encoder network but
not the decoder network. The final number of latent neurons for the style and content networks are
both 512 in the 128 × 128 pixel model shown here. The loss term for the pairwise-distance loss
term is set at 2e-5. A Python/Tensorflow implementation of this network architecture is linked in
the Conclusions section, and more details about the network architecture used are located in Huang
et al. (2018).

5.2 INSTABILITY IN ADVERSARIAL NETWORKS

GANs are notoriously challenging to train, and refining techniques to balance and properly train
GANs has been an area of active research since the conception of the GAN architecture (e.g. Berth-
elot et al. 2017; Salimans et al. 2016; Mescheder et al. 2017; Arjovsky et al. 2017). In traditional
GANs, a balance needs to be found between training the generator and discriminator, otherwise
one network will overpower the other and the generator will not learn a representation which fits
the dataset. With GAIA, additional balances are required, such as between reproducing real im-
ages vs. discriminating against generated images, or balancing the generator of the network toward
emphasizing autoencoding vs. producing high-quality latent-space interpolations.

We propose a novel, but simple, GAN balancing act which we find to be very effective. In our
network, we balance the GAN’s loss using a sigmoid centered at zero:

sigmoid(d) =
1

1 + e−d∗b

In which b is a hyper-parameter representing the slope of the sigmoid6, and d is the difference
between the two values being balanced in the network. For example, the balance in the learning rate
of the discriminator and generator is based upon the loss of the real and generated images:

δDisc ← sigmoid(‖xi −D(xi)‖1 − ‖xi −D(G(xi))‖1 + ‖Gd(zint.)−D(Gd(zint.))‖1/2)

The learning rate of the generator is then set as the inverse:

δGen ← 1− δDisc

This allows each network to catch up to the other network when it is performing worse. The same
principles are then used to balance the different losses within the generator and discriminator, which
can be found in Algorithm 1. This balancing act allows the part of the network performing more
poorly to be emphasized in the training regimen, resulting in more balanced and stable training.

6kept at 20 for our networks
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Figure 5: Data reconstructions from a subset of bidirectional GAN network architectures. Input im-
ages (x), and network reconstruction images (G(x)) are shown side by side, with inputs on the left.
(A) Larsen et al. (2015) (B) Mescheder et al. (2017) (C) Berthelot et al. (2017) (D) Dumoulin et al.
(2016) (E) Ulyanov et al. (2017) (F) Makhzani (2018) (G) Our method. Because most bidirectional
GANs are either not trained on pixel-wise reconstruction, or do not pass pixel-wise reconstruction
across the discriminator, reconstruction is either smoothed out, or exhibits features not present in
the original data. Note that these methods all use different architectures, image data, and image
resolutions, and therefore should not be compared for signal reconstruction quality.

Figure 6: The same plots as in Figure 2, with the remaining four datasets.
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Figure 7: Attribute vectors passed through the decode of the network. Attributes on the top are
found by subtracting means. Attributes on the bottom are found using ordinary least-squares regres-
sion. The attribute vectors on the bottom are more variable (for example, see Male vs Goatee vs
Moustache in both panels). Zoom-in to see labels.
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Algorithm 1 Training the GAIA Model
1: θGen, θDisc ← initialize network parameters
2: repeat
3: x← random mini-batch from dataset
4: # pass through network
5: z ← Ge(x)
6: zint. ← interpolate(z)
7: xgen ← Gd(z)
8: xint. ← Gd(zint.)
9: x̃← D(x)

10: x̃int. ← D(xint.)
11: x̃gen ← D(xgen)
12: # compute losses
13: Lx ← ‖x− x̃‖1
14: Lxgen ← ‖x− x̃gen‖1
15: Lxint. ← ‖xint. − x̃int.‖1
16: Ldistance ← pairwisedistance(x, zgen)
17: # balance losses
18: δDisc ← sigmoid(Lx −mean(Lxgen

, Lxint.
))

19: δGen ← 1− δDisc
20: WGenint.

← sigmoid(Lxint.
− Lxgen

)
21: WGengen

← 1−WGenint.

22: WDiscfake
← sigmoid(mean(Lxgen

, Lxint.
) · γ − Lx)

23: # update parameters according to gradients
24: θGen

+← −∆θGen
(Lxgen

· WGengen
+ Lxint.

· WGenint.
+ Ldistance ∗ α) · δDisc

25: θDisc
+← −∆θDisc

(Lx −mean(Lxgen
, Lxint.

) · WDiscfake
) · δGen

26: until deadline
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