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Abstract

Emerging sources of large-scale data, such as remote sensing, street imagery, GPS
trajectories, coupled with advances in deep learning methods have the potential for
significantly advancing how fast, how frequently, and how locally we can measure
urban features and population characteristics to inform and evaluate policies. One
such example that attracted increasing attention from the research community is
utilizing street level imagery for various measurement tasks in this broader context.
We believe incorporating spatial information with Gaussian Processes (GPs) can
give us better performance when using street images. To test this hypothesis,
we empirically investigated multiple approaches for combining spatial and street
image information using neural networks and GPs for predicting income, crowding,
and education levels in London, UK. Results demonstrated using GPs only with
spatial information (without any inputs from images) gives us a good baseline.
Complementary value of street images were demonstrated for the socioeconomic
status measures we investigated. Further, our results showed superior performance
of GP regression of residuals compared to other methods including feeding spatial
information as input directly to neural networks.

1 Introduction and Related Work

Urbanization and social inequalities are two of the major policy themes of our time, intersecting in
large cities where rich and poor live side by side. Reducing inequalities is at the forefront of the
global sustainable development agenda as well as a policy objective in many cities [GLA, 2017, 2018].
However, datasets for informing these policies and measuring their actual impacts are currently from
disjointed, and inefficient surveillance systems. Measuring socioeconomic status (SES) at high spatial
and temporal resolution, for instance, is crucial yet poses a significant challenge even in developed
parts of the world. Emerging sources of large-scale data, such as remote sensing, imagery, and GPS
trajectories, have the potential for significantly advancing how fast, how frequently and how locally
we can measure urban features and population characteristics.

Researchers both from domain sciences and computer science are increasingly interested in tackling
problems associated with applying advanced learning techniques focusing on automatic feature
extraction to measurement and data collection tasks. Relevant applications of machine learning with
imagery include: poverty detection [Jean et al., 2016, Steele et al., 2017, Xie et al., 2015] and harvest
size and crop yield [Lobell, 2013, You et al., 2017] from satellite data, and income [Gebru et al.,
2017], perceived safety [Naik et al., 2014, 2017], and greenness and openness [Seiferling et al., 2017,
Richards and Edwards, 2017] from Google Street View (GSV) images.

Here, building on our previous work, we use London to evaluate the feasibility of using street level
images for measuring multiple indicators of socioeconomic status including income, crowding, and
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education. We believe incorporating spatial information with Gaussian Processes (GPs) can give
us better performance; to test this hypothesis we compare measurement performances of multiple
methods for combining street images and spatial information using neural networks (NN) and GPs.
Two recent studies by You et al. [2017] and Jean et al. [2018] have proposed using GPs in the
context of making predictions from satellite imagery. In our work, we also investigate the use of
GPs combined with NN, but on a problem with different types of images (i.e. street level images)
and multiple SES indicators as outputs. Our focus here is to investigate the performance of multiple
approaches, some with NN only and some with a combination of NN and GPs.

2 Data and Methods

We first obtained the Office for National Statistics (ONS) Postcode Directory for the UK1 and selected
the 181,150 postcodes assigned to the 33 local authority districts of the Greater London administrative
area. Unique images were available from GSV for 119,681 postcode locations in London. Four
images for each location were extracted by specifying the camera direction (i.e., 0◦, 90◦, 180◦,
270◦) relative to the GSV vehicle to cover a 360◦ view. Hence, we used a total of 478,724 images
corresponding to 119,681 locations in London.

Output data (labels) was obtained from the UK Census 20112 and Greater London Authority house-
hold income estimates 20153. In the UK, Census results and other neighborhood statistics are reported
using output areas designed specifically for statistical purposes. The output labels used here are
detailed below and were available for lower super output areas (LSOA; average population of 1,614
with a total of 4,833 LSOAs in London). For income, we used the mean annual household income
estimates by Greater London Authority, reported for each LSOA. For the regression tasks, the income
values that were used are represented in 10000 GBPs taking values between 3 and 19. For education,
we used the percentage of population with low educational attainment levels (i.e. people who do not
have at least a Level 2 education where the five categories for highest attained qualification were:
no qualification, Level 1, Level 2, Level 3, and Level 4 and above). For crowding, we used the
percentage of households classified as being overcrowded (i.e., having at least one fewer room than
required) by ONS. ONS derives the number of rooms required using a formula based on ages of the
household members and their relationships to each other. For education and crowding, percentages of
deprived populations for each LSOA are used, hence the values are between 0 and 1.

Images correspond to photos taken by GSV vehicles at specific locations represented by coordinates
and postcodes. Each postcode location is assigned to a single LSOA where ground truth data is
available; individuals GSV images were matched with output labels using this information.

We took a transfer learning approach where we used VGG16 network [Simonyan and Zisserman,
2014] pre-trained with ImageNet [Russakovsky et al., 2015] as a fixed feature extractor to convert
RGB images to 4096 dimensional codes. On top of the convolutional neural network (CNN) layers
with pre-trained weights, we trained a fully connected NN to perform regression from four GSV
images extracted for each location. In some of our experiments longitude and latitude coordinates
were also fed as inputs to the trained part of the network with a slightly different network architecture
explained further in the next section. We compute LSOA level predictions as the average of postcode
level predictions assigned to that LSOA. To evaluate performance, we used 60% of LSOAs for
training and made predictions for the held-out 40% test set; 5-fold cross validation was carried out
for hyper parameter tuning and NN architecture selection using the training set only. In a set of
our experiments, GP regression was used as an additional separate step for incorporating spatial
information (i.e longitude and latitude coordinates of LSOA centroids) on top of CNN outputs from
images, as detailed in the next section.

3 Experiments and Results

We compared seven different approaches in terms of prediction performance. In the first approach,
CNN-I, four images for each location were fed into the VGG16 network and 4x4096 codes were
extracted from layer h5. A fully connected NN was trained using the architecture presented in Table 1.

1https://ons.maps.arcgis.com/home/item.html?id=1e4a246b91c34178a55aab047413f29b
2https://www.ons.gov.uk/census/2011census
3https://data.london.gov.uk/dataset/household-income-estimates-small-areas
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The main principle for the fully connected part is that the network used all four images from each
location jointly in the four channels shown; the information coming from different channels are then
aggregated and fed into the final layers to yield a single continuous output. No location information
is used in this experiment.

The second approach, CNN-IC, used spatial information (i.e. latitude/longitude) in addition to GSV
images, using the architecture shown in Table 1. The same architecture from CNN-I was used for the
initial layers, the 1D final layer output was then concatenated with longitude and latitude coordinates
associated with each image location yielding a 3D input to the following layers of the network.

NN-C, the third approach was used as baseline comparison where only coordinate information is
used. The same architecture as in CNN-IC was used where the 1D input from CNN-I architecture
was replaced with random noise as in Table 1, allowing the use of exactly the same architecture.

CNN-I CNN-IC NN-C

I-1 I-2 I-3 I-4 I-1 I-2 I-3 I-4
VGG VGG VGG VGG VGG VGG VGG VGG
4096 4096 4096 4096 4096 4096 4096 4096
512 512 512 512 512 512 512 512
256 256 256 256 256 256 256 256
128 128 128 128 128 128 128 128

⊕ ⊕
64 64
1 1 x ∼ N (0, 1)

⊕ 1 lat lng ⊕ 1 lat lng
3 3

10 10
10 10
5 5
1 1

Table 1: Network architectures used for NN only approaches; GP approaches use CNN-I predictions
as explained in more detail below. Light gray cells represent input features, black cells represent
output values, and the darker gray cells represent feature extraction with pre-trained weights using
VGG16. I-1, I-2, I-3, and I-4 correspond to four street level images extracted for each location using
different camera directions 0◦, 90◦, 180◦, 270◦ capturing a 360◦ view.

For the next set of approaches, several alternatives for using GPs to incorporate spatial information
were investigated. The main idea is to get LSOA level predictions using CNN-I, and then incorporate
spatial information using a GP based on centroid coordinates of LSOAs. In all the approaches, we
used Matern-3/2 kernel for the GPs based on initial five-fold cross-validation experiments on the
training set. Throughout the experiments, we used the GPy [GPy, 2012] package to fit the GP models,
where all the parameters of the Matern-3/2 kernel and the noise parameters were determined using
maximum-likelihood (II) estimation, optimizing the log-marginal likelihood.

The first GP-based approach, GP on Coordinates - GPC, does not use the image information at all
and simply fits a GP regressor on the coordinates to predict labels from the training set. The second
approach, GP for Residuals on coordinates - CNN-I-GPR, fits a GP regressor to the residuals of the
CNN-I predictions. The third approach, GP on coordinates and Predictions with Product Kernel -
CNN-I-GPPK, feeds predictions of CNN-I as additional input to the GP regressor that uses a product
kernel with two terms, the first using spatial coordinates and second CNN-I predictions. We note
that using a linear model for the second kernel yields a similar method as CNN-I-GPR hence we
explore Matern-3/2 kernel instead. We also empirically evaluated an alternative approach, where the
CNN-I predictions were concatenated with the spatial coordinates instead of using a product kernel,
the performances were lower. We believe the cause is the differences in numerical ranges; different
spatial lengths would be required when concatenated in the same kernel for good performance. In the
last approach, we refer to as CNN-I-GPC, we use GP based on coordinates as a spatial smoothing
model and fit it to ground truth labels on the training set and CNN-I predictions on the test set.
Observation noise is assumed minimal on the ground truth set while a higher value is assigned to the
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predictions on the test set. This latter higher value of noise used on predictions was estimated based
on five-fold cross validation experiments on the training set.

Income Crowding Education
r NRMSE MAPE r NRMSE MAPE r NRMSE MAPE

CNN-I .84 .057 12 .81 .009 65 .78 .009 27
CNN-IC .85 .049 12 .82 .007 46 .82 .006 22

NN-C .83 .052 12 .77 .009 55 .72 .010 26
GPC .90 .031 8 .83 .007 40 .82 .007 21

CNN-I-GPR .93 .023 7 .88 .005 31 .88 .005 17
CNN-I-GPPK .92 .026 7 .89 .005 28 .89 .004 16
CNN-I-GPC .90 .032 8 .82 .008 38 .82 .007 20

Table 2: Prediction performances of investigated approaches on the test set. r: Pearson’s correlation
coefficient, NRMSE: normalized root mean squared error, MAPE: mean absolute percentage error.

Results are shown in Table 2. In line with previous work, prediction performances for all output labels
were high, demonstrating the potential for using GSV images and corresponding location information
for improving measurements in cities. There are differences in performance across different labels,
that potentially relate to differences in available information contained in imagery and space. We
note the difference in how accuracy metrics relate to interpretable units. For income, MAPE will
relate to errors in absolute values of income in GBPs. For crowding and education, it relates to errors
in the percentage of the population that live in overcrowded households and with lower educational
attainment. Hence we expect the former to have lower values for MAPE, and higher values for
NRMSE.

In this study, our focus was on performance comparison of different approaches for combining imagery
and spatial information; we observed several interesting points. First, all GP-based approaches for
combining imagery and spatial information (i.e. CNN-I-GPR, CNN-I-GPPK, and CNN-I-GPC)
outperformed the NN based approach i.e. CNN-IC. Strikingly, GPC that uses only the coordinates
achieved very similar performance, even higher in some cases, compared to CNN-I and CNN-IC. It
gives us a good baseline to which image only predictions should always be compared. Using NN only
on the coordinates i.e. NN-C did not show similar success. These results demonstrated the richness
of spatial information and success of GPs in leveraging it to improve performances of learning based
measurement tasks. It also suggests that a stricter evaluation, leaving out larger neighborhoods, is
necessary, as the current train/test split might favor GP regression with test locations located among
train locations.

Second, combined use of imagery and coordinates improved performance compared to baseline where
only images or coordinates were used. Specifically, CNN-IC outperformed CNN-I and CNN-C for
all indicators. Similarly, CNN-I-GPR and CNN-I-GPPK outperform GPC. Such difference suggests
complementary information is available from GSV images for predicting these measures.

Third, the way in which one integrates CNN based approaches with GP also made a difference.
CNN-I-GPR and CNN-I-GPPK yielded higher performance increase compared to CNN-I-GPC. Both
of these models aim to learn the residual error structure with different means. Their performance
were similar across the different measures.

4 Conclusions

In experiments with multiple SES indicators from London, i.e. income, crowding, and education,
we find that GP-based methods for explicitly incorporating spatial information with GSV imagery
can substantially improve prediction and measurement performance. The focus here was on making
predictions for the city where we also do the training. Transferability of learned features to different
target cities using CNN-I only was investigated in previous work. Investigation of transferability of
learned spatial correlation structures to different target cities will be very valuable especially in places
where measurement data on SES indicators is not available or outdated - we leave this to future work.
Additionally, GPs conveniently give Bayesian posteriors that are useful for quantifying uncertainty.
In future work, we also plan to investigate predictions from GPs not just for RMSE but also in terms
of how well-calibrated the uncertainty intervals are.
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