
Input-Output Equivalence of Unitary and
Contractive RNNs

Melikasadat Emami
Dept. ECE

UCLA
emami@ucla.edu

Mojtaba Sahraee-Ardakan
Dept. ECE

UCLA
msahraee@ucla.edu

Sundeep Rangan
Dept. ECE

NYU
srangan@nyu.edu

Alyson K. Fletcher
Dept. Statistics

UCLA
akfletcher@ucla.edu

Abstract

Unitary recurrent neural networks (URNNs) have been proposed as a method to
overcome the vanishing and exploding gradient problem in modeling data with
long-term dependencies. A basic question is how restrictive is the unitary constraint
on the possible input-output mappings of such a network? This work shows that
for any contractive RNN with ReLU activations, there is a URNN with at most
twice the number of hidden states and the identical input-output mapping. Hence,
with ReLU activations, URNNs are as expressive as general RNNs. In contrast, for
certain smooth activations, it is shown that the input-output mapping of an RNN
cannot be matched with a URNN, even with an arbitrary number of states. The
theoretical results are supported by experiments on modeling of slowly-varying
dynamical systems.

1 Introduction

Recurrent neural networks (RNNs) – originally proposed in the late 1980s [20, 6] – refer to a widely-
used and powerful class of models for time series and sequential data. In recent years, RNNs have
become particularly important in speech recognition [9, 10] and natural language processing [5, 2, 24]
tasks.

A well-known challenge in training recurrent neural networks is the vanishing and exploding gradient
problem [3, 18]. RNNs have a transition matrix that maps the hidden state at one time to the next time.
When the transition matrix has an induced norm greater than one, the RNN may become unstable.
In this case, small perturbations of the input at some time can result in a change in the output that
grows exponentially over the subsequent time. This instability leads to a so-called exploding gradient.
Conversely, when the norm is less than one, perturbations can decay exponentially so inputs at one
time have negligible effect in the distant future. As a result, the loss surface associated with RNNs can
have steep walls that may be difficult to minimize. Such problems are particularly acute in systems
with long-term dependencies, where the output sequence can depend strongly on the input sequence
many time steps in the past.

Unitary RNNs (URNNs) [1] is a simple and commonly-used approach to mitigate the vanishing
and exploding gradient problem. The basic idea is to restrict the transition matrix to be unitary (an
orthogonal matrix for the real-valued case). The unitary transitional matrix is then combined with
a non-expansive activation such as a ReLU or sigmoid. As a result, the overall transition mapping
cannot amplify the hidden states, thereby eliminating the exploding gradient problem. In addition,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

since all the singular values of a unitary matrix equal 1, the transition matrix does not attenuate the
hidden state, potentially mitigating the vanishing gradient problem as well. (Due to activation, the
hidden state may still be attenuated). Some early work in URNNs suggested that they could be more
effective than other methods, such as long short-term memory (LSTM) architectures and standard
RNNs, for certain learning tasks involving long-term dependencies [13, 1] – see a short summary
below.

Although URNNs may improve the stability of the network for the purpose of optimization, a basic
issue with URNNs is that the unitary contraint may potentially reduce the set of input-output mappings
that the network can model. This paper seeks to rigorously characterize how restrictive the unitary
constraint is on an RNN. We evaluate this restriction by comparing the set of input-output mappings
achievable with URNNs with the set of mappings from all RNNs. As described below, we restrict our
attention to RNNs that are contractive in order to avoid unstable systems.

We show three key results:

1. Given any contractive RNN with n hidden states and ReLU activations, there exists a URNN
with at most 2n hidden states and the identical input-ouput mapping.

2. This result is tight in the sense that, given any n > 0, there exists at least one contractive
RNN such that any URNN with the same input-output mapping must have at least 2n states.

3. The equivalence of URNNs and RNNs depends on the activation. For example, we show
that there exists a contractive RNN with sigmoid activations such that there is no URNN
with any finite number of states that exactly matches the input-output mapping.

The implication of this result is that, for RNNs with ReLU activations, there is no loss in the
expressiveness of model when imposing the unitary constraint. As we discuss below, the penalty is a
two-fold increase in the number of parameters.

Of course, the expressiveness of a class of models is only one factor in their real performance. Based
on these results alone, one cannot determine if URNNs will outperform RNNs in any particular task.
Earlier works have found examples where URNNs offer some benefits over LSTMs and RNNs [1, 28].
But in the simulations below concerning modeling slowly-varying nonlinear dynamical systems, we
see that URNNs with 2n states perform approximately equally to RNNs with n states.

Theoretical results on generalization error are an active subject area in deep neural networks. Some
measures of model complexity such as [17] are related to the spectral norm of the transition matrices.
For RNNs with non-contractive matrices, these complexity bounds will grow exponentially with the
number of time steps. In contrast, since unitary matrices can bound the generalization error, this work
can also relate to generalizability.

Prior work

The vanishing and exploding gradient problem in RNNs has been known almost as early as RNNs
themselves [3, 18]. It is part of a larger problem of training models that can capture long-term
dependencies, and several proposed methods address this issue. Most approaches use some form
of gate vectors to control the information flow inside the hidden states, the most widely-used being
LSTM networks [11]. Other gated models include Highway networks [21] and gated recurrent units
(GRUs) [4]. L1/L2 penalization on gradient norms and gradient clipping were proposed to solve the
exploding gradient problem in [18]. With L1/L2 penalization, capturing long-term dependencies
is still challenging since the regularization term quickly kills the information in the model. A
more recent work [19] has successfully trained very deep networks by carefully adjusting the initial
conditions to impose an approximate unitary structure of many layers.

Unitary evolution RNNs (URNNs) are a more recent approach first proposed in [1]. Orthogonal
constraints were also considered in the context of associative memories [27]. One of the technical
difficulties is to efficiently parametrize the set of unitary matrices. The numerical simulations in this
work focus on relatively small networks, where the parameterization is not a significant computational
issue. Nevertheless, for larger numbers of hidden states, several approaches have been proposed.
The model in [1] parametrizes the transition matrix as a product of reflection, diagonal, permutation,
and Fourier transform matrices. This model spans a subspace of the whole unitary space, thereby
limiting the expressive power of RNNs. The work [28] overcomes this issue by optimizing over

2

x

hk = φ(Wh(k−1) + Fxk + b)

yk = Chk

y

: h

x

y

F

W, φ,b

C

Unfold
h(k−1) hk hk+1

xk−1 xk xk+1

yk−1 yk yk+1

F F F

C C C

W WW W

Figure 1: Recurrent Neural Network (RNN) model.

full-capacity unitary matrices. A key limitation in this work, however, is that the projection of weights
on to the unitary space is not computationally efficient. A tunable, efficient parametrization of
unitary matrices is proposed in [13]. This model provides the computational complexity of O(1) per
parameter. The unitary matrix is represented as a product of rotation matrices and a diagonal matrix.
By grouping specific rotation matrices, the model provides tunability of the span of the unitary space
and enables using different capacities for different tasks. Combining the parametrization in [13]
for unitary matrices and the “forget” ability of the GRU structure, [4, 12] presented an architecture
that outperforms conventional models in several long-term dependency tasks. Other methods such
as orthogonal RNNs proposed by [16] showed that the unitary constraint is a special case of the
orthogonal constraint. By representing an orthogonal matrix as a product of Householder reflectors,
we are able span the entire space of orthogonal matrices. Imposing hard orthogonality constraints on
the transition matrix limits the expressiveness of the model and speed of convergence and performance
may degrade [26].

2 RNNs and Input-Output Equivalence

RNNs. We consider recurrent neural networks (RNNs) representing sequence-to-sequence map-
pings of the form

h(k) = φ(Wh(k−1) + Fx(k) + b), h(−1) = h−1, (1a)

y(k) = Ch(k), (1b)

parameterized by Θ = (W,F,b,C,h−1). The system is shown in Fig. 1. The system maps
a sequence of inputs x(k) ∈ Rm, k = 0, 1, . . . , T − 1 to a sequence of outputs y(k) ∈ Rp. In
equation (1), φ is the activation function (e.g. sigmoid or ReLU); h(k) ∈ Rn is an internal or hidden
state; W ∈ Rn×n,F ∈ Rn×m, and C ∈ Rp×n are the hidden-to-hidden, input-to-hidden, and
hidden-to-output weight matrices respectively; and b is the bias vector. We have considered the
initial condition, h−1, as part of the parameters, although we will often take h−1 = 0. Given a set of
parameters Θ, we will let

y = G(x,Θ) (2)

denote the resulting sequence-to-sequence mapping. Note that the number of time samples, T , is
fixed throughout our discussion.

Recall [23] that a matrix W is unitary if WHW = WWH = I. When a unitary matrix is real-
valued, it is also called orthogonal. In this work, we will restrict our attention to real-valued matrices,
but still use the term unitary for consistency with the URNN literature. A Unitary RNN or URNN
is simply an RNN (1) with a unitary state-to-state transition matrix W. A key property of unitary
matrices is that they are norm-preserving, meaning that ‖Wh(k)‖2 = ‖h(k)‖2. In the context of (1a),
the unitary constraint implies that the transition matrix does not amplify the state.

Equivalence of RNNs. Our goal is to understand the extent to which the unitary constraint in
a URNN restricts the set of input-output mappings. To this end, we say that the RNNs for two
parameters Θ1 and Θ2 are input-output equivalent if the sequence-to-sequence mappings are identical,

G(x,Θ1) = G(x,Θ2) for all x = (x(0), . . . ,x(T−1)). (3)

3

That is, for all input sequences x, the two systems have the same output sequence. Note that the
hidden internal states h(k) in the two systems may be different. We will also say that two RNNs are
equivalent on a set of X of inputs if (3) holds for all x ∈ X .

It is important to recognize that input-output equivalence does not imply that the parameters Θ1 and
Θ2 are identical. For example, consider the case of linear RNNs where the activation in (1) is the
identity, φ(z) = z. Then, for any invertible T, the transformation

W→ TWT−1, C→ CT−1, F→ TF, h−1 → Th−1, (4)

results in the same input-output mapping. However, the internal states h(k) will be mapped to Th(k).
The fact that many parameters can lead to identical input-output mappings will be key to finding
equivalent RNNs and URNNs.

Contractive RNNs. The spectral norm [23] of a matrix W is the maximum gain of the matrix
‖W‖ := maxh6=0

‖Wh‖2
‖h‖2 . In an RNN (1), the spectral norm ‖W‖ measures how much the transition

matrix can amplify the hidden state. For URNNs, ‖W‖ = 1. We will say an RNN is contractive if
‖W‖ < 1, expansive if ‖W‖ > 1, and non-expansive if ‖W‖ ≤ 1. In the sequel, we will restrict
our attention to contractive and non-expansive RNNs. In general, given an expansive RNN, we
cannot expect to find an equivalent URNN. For example, suppose h(k) = h(k) is scalar. Then, the
transition matrix W is also scalar W = w and w is expansive if and only if |w| > 1. Now suppose
the activation is a ReLU φ(h) = max{0, h}. Then, it is possible that a constant input x(k) = x0 can
result in an output that grows exponentially with time: y(k) = const × wk. Such an exponential
increase is not possible with a URNN. We consider only non-expansive RNNs in the remainder of
the paper. Some of our results will also need the assumption that the activation function φ(·) in (1) is
non-expansive:

‖φ(x)− φ(y)‖2 ≤ ‖x− y‖2, for all x and y.

This property is satisfied by the two most common activations, sigmoids and ReLUs.

Equivalence of Linear RNNs. To get an intuition of equivalence, it is useful to briefly review the
concept in the case of linear systems [14]. Linear systems are RNNs (1) in the special case where the
activation function is identity, φ(z) = z; the initial condition is zero, h−1 = 0; and the bias is zero,
b = 0. In this case, it is well-known that two systems are input-output equivalent if and only if they
have the same transfer function,

H(s) := C(sI−W)−1F. (5)

In the case of scalar inputs and outputs, H(s) is a rational function of the complex variable s with
numerator and denominator degree of at most n, the dimension of the hidden state h(k). Any state-
space system (1) that achieves a particular transfer function is called a realization of the transfer
function. Hence two linear systems are equivalent if and only if they are the realizations of the same
transfer function.

A realization is called minimal if it is not equivalent some linear system with fewer hidden states.
A basic property of realizations of linear systems is that they are minimal if and only if they are
controllable and observable. The formal definition is in any linear systems text, e.g. [14]. Loosely,
controllable implies that all internal states can be reached with an appropriate input and observable
implies that all hidden states can be observed from the ouptut. In absence of controllability and
observability, some hidden states can be removed while maintaining input-output equivalence.

3 Equivalence Results for RNNs with ReLU Activations

Our first results consider contractive RNNs with ReLU activations. For the remainder of the section,
we will restrict our attention to the case of zero initial conditions, h(−1) = 0 in (1).

Theorem 3.1 Let y = G(x,Θc) be a contractive RNN with ReLU activation and states of dimension
n. Fix M > 0 and let X be the set of all sequences such that ‖x(k)‖2 ≤ M < ∞ for all k. Then
there exists a URNN with state dimension 2n and parameters Θu = (Wu,Fu,bu,Cu) such that for
all x ∈ X , G(x,Θc) = G(x,Θu). Hence the input-output mapping is matched for bounded inputs.

4

Proof See Appendix A.

Theorem 3.1 shows that for any contractive RNN with ReLU activations, there exists a URNN with at
most twice the number of hidden states and the identical input-output mapping. Thus, there is no loss
in the set of input-output mappings with URNNs relative to general contractive RNNs on bounded
inputs.

The penalty for using RNNs is the two-fold increase in state dimension, which in turn increases
the number of parameters to be learned. We can estimate this increase in parameters as follows:
The raw number of parameters for an RNN (1) with n hidden states, p outputs and m inputs is
n2+(p+m+1)n. However, for ReLU activations, the RNNs are equivalent under the transformations
(4) using diagonal positive T. Hence, the number of degrees of freedom of a general RNN is at most
drnn = n2 + (p + m)n. We can compare this value to a URNN with 2n hidden states. The set of
2n× 2n unitary W has 2n(2n− 1)/2 degrees of freedom [22]. Hence, the total degrees of freedom
in a URNN with 2n states is at most durnn = n(2n− 1) + 2n(p+m). We conclude that a URNN
with 2n hidden states has slightly fewer than twice the number of parameters as an RNN with n
hidden states.

We note that there are cases that the contractivity assumption is limiting, however, the limitations may
not always be prohibitive. We will see in our experiments that imposing the contractivity constraint
can improve learning for RNNs when models have sufficiently large numbers of time steps. Some
related results where bounding the singular values help with the performance can be found in [26].

We next show a converse result.

Theorem 3.2 For every positive n, there exists a contractive RNN with ReLU nonlinearity and state
dimension n such that every equivalent URNN has at least 2n states.

Proof See Appendix B.1 in the Supplementary Material.

The result shows that the 2n achievability bound in Theorem 3.1 is tight, at least in the worst case. In
addition, the RNN constructed in the proof of Theorem 3.2 is not particularly pathological. We will
show in our simulations in Section 5 that URNNs typically need twice the number of hidden states to
achieve comparable modeling error as an RNN.

4 Equivalence Results for RNNs with Sigmoid Activations

Equivalence between RNNs and URNNs depends on the particular activation. Our next result shows
that with sigmoid activations, URNNs are, in general, never exactly equivalent to RNNs, even with
an arbitrary number of states.

We need the following technical definition: Consider an RNN (1) with a standard sigmoid activation
φ(z) = 1/(1 + e−z). If W is non-expansive, then a simple application of the contraction mapping
principle shows that for any constant input x(k) = x∗, there is a fixed point in the hidden state
h∗ = φ(Wh∗ + Fx∗ + b). We will say that the RNN is controllable and observable at x∗ if the
linearization of the RNN around (x∗,h∗) is controllable and observable.

Theorem 4.1 There exists a contractive RNN with sigmoid activation function φ with the following
property: If a URNN is controllable and observable at any point x∗, then the URNN cannot be
equivalent to the RNN for inputs x in the neighborhood of x∗.

Proof See Appendix B.2 in the Supplementary Material.

The result provides a converse on equivalence: Contractive RNNs with sigmoid activations are not in
general equivalent to URNNs, even if we allow the URNN to have an arbitrary number of hidden
states. Of course, the approximation error between the URNN and RNN may go to zero as the URNN
hidden dimension goes to infinity (e.g., similar to the approximation results in [8]). However, exact
equivalence is not possible with sigmoid activations, unlike with ReLU activations. Thus, there is
fundamental difference in equivalence for smooth and non-smooth activations.

We note that the fundamental distinction between Theorem 3.1 and the opposite result in Theorem 4.1
is that the activation is smooth with a positive slope. With such activations, you can linearize the

5

system, and the eigenvalues of the transition matrix become visible in the input-output mapping. In
contrast, ReLUs can zero out states and suppress these eigenvalues. This is a key insight of the paper
and a further contribution in understanding nonlinear systems.

5 Numerical Simulations

In this section, we numerically compare the modeling ability of RNNs and URNNs where the true
system is a contractive RNN with long-term dependencies. Specifically, we generate data from
multiple instances of a synthetic RNN where the parameters in (1) are randomly generated. For the
true system, we use m = 2 input units, p = 2 output units, and n = 4 hidden units at each time step.
The matrices F, C and b are generated as i.i.d. Gaussians. We use a random transition matrix,

W = I− εATA/‖A‖2, (6)

where A is Gaussian i.i.d. matrix and ε is a small value, taken here to be ε = 0.01. The matrix (6)
will be contractive with singular values in (1 − ε, 1). By making ε small, the states of the system
will vary slowly, hence creating long-term dependencies. In analogy with linear systems, the time
constant will be approximately 1/ε = 100 time steps. We use ReLU activations. To avoid degenerate
cases where the outputs are always zero, the biases b are adjusted to ensure that the each hidden state
is on some target 60% of the time using a similar procedure as in [7].

The trials have T = 1000 time steps, which corresponds to 10 times the time constant 1/ε = 100 of
the system. We added noise to the output of this system such that the signal-to-noise ratio (SNR) is
15 dB or 20 dB. In each trial, we generate 700 training samples and 300 test sequences from this
system.

Given the input and the output data of this contractive RNN, we attempt to learn the system with: (i)
standard RNNs, (ii) URNNs, and (iii) LSTMs. The hidden states in the model are varied in the range
n = [2, 4, 6, 8, 10, 12, 14], which include values both above and below the true number of hidden
states ntrue = 4. We used mean-squared error as the loss function. Optimization is performed using
Adam [15] optimization with a batch size = 10 and learning rate = 0.01. All models are implemented
in the Keras package in Tensorflow. The experiments are done over 30 realizations of the original
contractive system.

For the URNN learning, of all the proposed algorithms for enforcing the unitary constraints on
transition matrices during training [13, 28, 1, 16], we chose to project the transition matrix on the full
space of unitary matrices after each iteration using singular value decomposition (SVD). Although
SVD requires O(n3) computation for each projection, for our choices of hidden states it performed
faster than the aforementioned methods.

Since we have training noise and since optimization algorithms can get stuck in local minima, we
cannot expect “exact" equivalence between the learned model and true system as in the theorems. So,
instead, we look at the test error as a measure of the closeness of the learned model to the true system.
Figure 2 on the left shows the test R2 for a Gaussian i.i.d. input and output with SNR = 20 dB for
RNNs, URNNs, and LSTMs. The red dashed line corresponds to the optimal R2 achievable at the
given noise level.

Note that even though the true RNN has ntrue = 4 hidden states, the RNN model does not obtain the
optimal test R2 at n = 4. This is not due to training noise, since the RNN is able to capture the full
dynamics when we over-parametrize the system to n ≈ 8 hidden states. The test error in the RNN at
lower numbers of hidden states is likely due to the optimization being caught in a local minima.

What is important for this work though is to compare the URNN test error with that of the RNN. We
observe that URNN requires approximately twice the number of hidden states to obtain the same test
error as achieved by an RNN. To make this clear, the right plot shows the same performance data
with number of states adjusted for URNN. Since our theory indicates that a URNN with 2n hidden
states is as powerful as an RNN with n hidden states, we compare a URNN with 2n hidden units
directly with an RNN with n hidden units. We call this the adjusted hidden units. We see that the
URNN and RNN have similar test error when we appropriately scale the number of hidden units as
predicted by the theory.

6

Figure 2: Test R2 on synthetic data for a Gaussian i.i.d. input and output SNR=20 dB.

For completeness, the left plot in Figure 2 also shows the test error with an LSTM. It is important to
note that the URNN has almost the same performance as an LSTM with considerably smaller number
of parameters.

Figure 3 shows similar results for the same task with SNR = 15 dB. For this task, the input is sparse
Gaussian i.i.d., i.e. Gaussian with some probability p = 0.02 and 0 with probability 1− p. The left
plot shows the R2 vs. the number of hidden units for RNNs and URNNs and the right plot shows the
same results once the number of hidden units for URNN is adjusted.

We also compared the modeling ability of URNNs and RNNs using the Pixel-Permuted MNIST task.
Each MNIST image is a 28 × 28 grayscale image with a label between 0 and 9. A fixed random
permutation is applied to the pixels and each pixel is fed to the network in each time step as the input
and the output is the predicted label for each image [1, 13, 26].

We evaluated various models on the Pixel-Permuted MNIST task using validation based early stopping.
Without imposing a contractivity constraint during learning, the RNN is either unstable or requires a
slow learning rate. Imposing a contractivity constraint improves the performance. Incidentally, using
a URNN improves the performance further. Thus, contractivity can improve learning for RNNs when
models have sufficiently large numbers of time steps.

6 Conclusion

Several works empirically show that using unitary recurrent neural networks improves the stability
and performance of the RNNs. In this work, we study how restrictive it is to use URNNs instead of
RNNs. We show that URNNs are at least as powerful as contractive RNNs in modeling input-output
mappings if enough hidden units are used. More specifically, for any contractive RNN we explicitly
construct a URNN with twice the number of states of the RNN and identical input-output mapping.
We also provide converse results for the number of state and the activation function needed for exact
matching. We emphasize that although it has been shown that URNNs outperform standard RNNs
and LSTM in many tasks that involve long-term dependencies, our main goal in this paper is to show
that from an approximation viewpoint, URNNs are as expressive as general contractive RNNs. By
a two-fold increase in the number of parameters, we can use the stability benefits they bring for
optimization of neural networks.

Acknowledgements

The work of M. Emami, M. Sahraee-Ardakan, A. K. Fletcher was supported in part by the National
Science Foundation under Grants 1254204 and 1738286, and the Office of Naval Research under

7

Figure 3: Test R2 on synthetic data for a Gaussian i.i.d. input and output SNR=15 dB.

Figure 4: Accuracy on Permuted MNIST task for various models trained with RMSProp, validation-
based early termination, and initial learning rate lr. (1) URNN model: RNN model with unitary
constraint; (2) ContRNN: RNN with a contractivity constraint; (3 & 4) RNN model with no con-
tractivity or unitary constraint (two learning rates). We see contractivity improves performance, and
unitary constraints improve performance further.

Grant N00014-15-1-2677. S. Rangan was supported in part by the National Science Foundation
under Grants 1116589, 1302336, and 1547332, NIST, the industrial affiliates of NYU WIRELESS,
and the SRC.

A Proof of Theorem 3.1

The basic idea is to construct a URNN with 2n states such that first n states match the states of RNN
and the last n states are always zero. To this end, consider any contractive RNN,

h(k)
c = φ(Wch

(k−1)
c + Fcx

(k) + bc), y(k) = Cch
(k)
c ,

where h(k) ∈ Rn. Since W is contractive, we have ‖W‖ ≤ ρ for some ρ < 1. Also, for a ReLU
activation, ‖φ(z)‖ ≤ ‖z‖ for all pre-activation inputs z. Hence,

‖h(k)
c ‖2 = ‖φ(Wch

(k−1)
c + Fcx

(k) + bc)‖2 ≤ ‖Wch
(k−1)
c + Fcx

(k) + bc‖2
≤ ρ‖h(k−1)

c ‖2 + ‖Fc‖‖x(k)‖2 + ‖bc‖2.

8

Therefore, with bounded inputs, ‖x(k)‖ ≤M , we have the state is bounded,

‖h(k)‖2 ≤
1

1− ρ
[‖Fc‖M + ‖bc‖2] =: Mh. (7)

We construct a URNN as,

h(k)
u = φ(Wuh(k−1)

u + Fux(k) + bu), y(k) = Cuh(k)
u

where the parameters are of the form,

hu =

[
h1

h2

]
∈ R2n, Wu =

[
W1,W2

W3,W4

]
, Fu =

[
Fc

0

]
, bu =

[
bc

b2

]
. (8)

Let W1 = Wc. Since ‖Wc‖ < 1, we have I−WT
cWc � 0. Therefore, there exists W3 such that

WT
3W3 = I−WT

cWc. With this choice of W3, the first n columns of Wu are orthonormal. Let[
W2

W4

]
extend these to an orthonormal basis for R2n. Then, the matrix Wu will be orthonormal.

Next, let b2 = −Mh1n×1, where Mh is defined in (7). We show by induction that for all k,

h
(k)
1 = h(k)

c , h
(k)
2 = 0. (9)

If both systems are initialized at zero, (9) is satisfied at k = −1. Now, suppose this holds up to time
k − 1. Then,

h
(k)
1 = φ(W1h

(k−1)
1 + W2h

(k−1)
2 + Fcx

(k) + bc)

= φ(W1h
(k−1)
1 + Fcx

(k) + bc) = h(k)
c ,

where we have used the induction hypothesis that h
(k−1)
2 = 0. For h

(k)
2 , note that

‖W3h
(k−1)
1 ‖∞ ≤ ‖W3h

(k−1)
1 ‖2 ≤ ‖h(k−1)

1 ‖ ≤Mh, (10)

where the last step follows from (7). Therefore,

W3h
(k−1)
1 + W4h

(k−1)
2 + b2 = W3h

(k−1)
1 −M1n×1 ≤ 0. (11)

Hence with ReLU activation h
(k)
2 = φ(W3h

(k−1)
1 + W4h

(k−1)
2 + b2) = 0. By induction, (9) holds

for all k. Then, if we define Cu = [Cc0], we have the output of the URNN and RNN systems are
identical

y(k)
u = Cuh(k)

u = Cch
(k)
1 = y(k)

c .

This shows that the systems are equivalent.

References
[1] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.

In International Conference on Machine Learning, pages 1120–1128, 2016.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv, pages arXiv–1409, 2014.

[3] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. The problem of learning long-term
dependencies in recurrent networks. In IEEE International Conference on Neural Networks,
pages 1183–1188. IEEE, 1993.

[4] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder–decoder approaches. Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014.

[5] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12(Aug):2493–2537, 2011.

[6] Jeffrey L Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

9

[7] Alyson K Fletcher, Sundeep Rangan, and Philip Schniter. Inference in deep networks in high
dimensions. In Proc. IEEE International Symposium on Information Theory, pages 1884–1888.
IEEE, 2018.

[8] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous
time recurrent neural networks. Neural Networks, 6(6):801–806, 1993.

[9] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 6645–6649. IEEE, 2013.

[10] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep
neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine,
29, 2012.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[12] Li Jing, Caglar Gulcehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, and
Yoshua Bengio. Gated orthogonal recurrent units: On learning to forget. Neural Computation,
31(4):765–783, 2019.

[13] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark,
and Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to
rnns. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1733–1741. JMLR. org, 2017.

[14] Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 2401–2409. JMLR.
org, 2017.

[17] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems, pages
5947–5956, 2017.

[18] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310–1318, 2013.

[19] Jeffrey Pennington, Samuel S Schoenholz, and Surya Ganguli. The emergence of spectral
universality in deep networks. arXiv preprint arXiv:1802.09979, 2018.

[20] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Cognitive Modeling, 5(3):1, 1988.

[21] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

[22] Gilbert W Stewart. The efficient generation of random orthogonal matrices with an application
to condition estimators. SIAM Journal on Numerical Analysis, 17(3):403–409, 1980.

[23] Gilbert Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press Wellesley,
MA, 1993.

[24] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[25] Mathukumalli Vidyasagar. Nonlinear systems analysis, volume 42. Siam, 2002.

10

[26] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learn-
ing recurrent networks with long term dependencies. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3570–3578. JMLR. org, 2017.

[27] Olivia L White, Daniel D Lee, and Haim Sompolinsky. Short-term memory in orthogonal
neural networks. Physical review letters, 92(14):148102, 2004.

[28] Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. In Advances in Neural Information Processing Systems,
pages 4880–4888, 2016.

11

	Introduction
	RNNs and Input-Output Equivalence
	Equivalence Results for RNNs with ReLU Activations
	Equivalence Results for RNNs with Sigmoid Activations
	Numerical Simulations
	Conclusion
	Proof of Theorem 3.1
	Converse Theorem Proofs
	Proof of Theorem 3.2
	Proof of Theorem 4.1

