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Abstract

In this paper we assess the viability of applying a few-shot algorithm to the segmentation
of Whole Slide Images (WSI) for human histopathology. Our ultimate goal is to design a
deep network that could screen large sets of WSIs of sentinel lymph-nodes by segmenting
out areas with possible lesions. Such network should also be able to modify its behavior
from a limited set of examples, so that a pathologist could tune its output to specific
diagnostic pipelines and clinical practices. In contrast, ’classical’ supervised techniques
have found limited applicability in this respect, since their output cannot be adapted unless
through extensive retraining. The novel approach to the task of segmenting biological
images presented here is based on guided networks, which can segment a query image
by integrating a support set of sparsely annotated images which can also be extended at
run time. In this work, we compare the segmentation performances obtained with guided
networks to those obtained with a Fully Convolutional Network, based on fully supervised
training. Comparative experiments were conducted on the public Camelyon16 dataset; our
preliminary results are encouraging and show that the network architecture proposed is
competitive for the task described.

Keywords: fully convolutional network, few-shot learning, meta-learning, sparse annota-
tion, lymph nodes, camelyon16, histopathological images

1. Introduction

Breast cancer is the most common form of cancer among women in the Western world.
The prognosis depends on whether the cancer has spread to other organs. Sentinel lymph
nodes are, in fact, the organs which are primarily reached by metastasizing cancer cells and
therefore their diagnosis is of critical importance to decide patients treatment. In clinical
practice, the preparation of diagnostic samples is conducted through a pipeline in which
slices are cut from the sentinel lymph nodes, fixed on glass slides, then stained and finally
digitized to obtain Whole Slide Images (WSIs). These WSIs are visually inspected by
human pathologists to achieve the required diagnosis.

Our goal is to design an automated segmentation method that could help the pathologist
in screening those WSI areas which are actually worth an accurate inspection. To do so we
plan to apply a novel deep learning method that could correct and adapt its behavior based
on a very limited set of examples. Deep learning, in fact, has achieved remarkable successes
in the classification and segmentation of biomedical images (Ronneberger et al., 2015).
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However supervised deep learning, which entails training on large annotated datasets of
images, does not adapt easily to handle images acquired through different protocols, unless
the dataset is properly extended and a full training is performed again (Shen et al., 2017).

These limitations could be overcome by a method allowing to correct the resulting
output through a limited set of annotated images selected by the pathologist and supplied
at run time. In this perspective, our objective is to achieve a method for the automatic
segmentation of lymph-nodes, that could satisfy the following requirements:

• be collaborative and easy to use;

• achieving state-of-the-art accuracy;

• requiring minimal maintenance.

Such tool should be used as a support for automatic screening of WSIs in actual clinical
environments.

2. Related Work

Transfer learning is currently the mainstream approach for training deep learning models on
a limited set of annotated examples. Fine-tuning pre-trained initial weights avoids having
to re-learn the network weights from scratch and can reduce the time to converge by orders
of magnitude. However, the benefit of using pre-trained weights greatly decreases as the
original task which the network was trained to solve diverges significantly from the target
one (Yosinski et al., 2014). Furthermore, although the number of examples required for
fine-tuning might decrease training times by 2 or 3 orders of magnitude, obtaining sensible
results may still need thousands of annotated examples. In the line of principle, it would be
extremely useful for practical application the possibility of adapting the network behavior,
even after extensive training, by just providing a handful of additional, selected images.

Meta-learning has been proposed to acquire knowledge from a limited set of examples.
Early work dates back to the late 1980s, Schmidhuber (1987), and early 1990s, Bengio et al.
(1991), but it is only recently (Lake et al., 2016) that meta-learning was advocated as key
to achieve human-level intelligence1.

Current meta-learning systems are trained on a large set of classification problems, gen-
erated from large quantities of available annotated data, and are tested on their capability
to perform classifications on new datasets with potentially new classes, which were unseen
at training time. In our scenario, in contrast, the set of classes (e.g. lesion and tissue)
is not subject to change over time, whereas segmentation errors could manifest over time
and additional WSIs, acquired through different digital pipelines, may become available at
subsequent times.

Another relevant idea for the purposes of this work is annotating images via sparse
annotations (Glocker et al., 2013), as opposed to dense annotations. Sparse annotations
have also been used successfully in segmentation of natural images by Xu et al. (2016),
whose approach has many similarities to the few-shot segmentation method by Rakelly
et al. (2018), although the former is limited to interactive segmentation only.

1. https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
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3. Methods

3.1. Few-shot learning

Few-shot learning is designed to achieve good generalization with few annotated exam-
ples. The current paradigm for few-shot learning revolves around the concept of episode
introduced by Vinyals et al. (2016).

An s-shot, K-way episode is built by sampling a subset of K classes, possibly including
the unknown or background class, from a set of classes Ctrain and then generating (Ren
et al., 2018):

• A training (support) set S = {(x1,L1), (x2,L2), . . . , (xs×K ,Ls×K)} with s examples
from each of the K classes;

• A test (query) set Q = {(x∗
1,L

∗
1), (x

∗
2,L

∗
2), . . . , (x

∗
t ,L

∗
t )} of t different examples from

any of the K classes.

In our case, xi is an image patch with shape [H,W, 3] and Li represents the corresponding
annotation. Annotations are sets of pixel-label pairs, (p, l), where p represents the coor-
dinates of a pixel in the image and l is the corresponding label denoting which of the K
classes the pixel belongs to. As a formula we have

Li = {(pj , lj)}Pj=1 , l ∈ {1 . . .K}

where P is the number of annotated pixels in the image. Sparse annotations (Glocker et al.,
2013) have small P whereas for dense annotations P is equal to the image size H ×W .
Clearly, for the query set, annotations L∗

i are only used during the training phase and in our
case these annotations must be dense. During the training phase, the support set S is fed
to the classifier and the weights are updated to minimize the loss of the output prediction
on the query set Q (see Figure 1). In few-shot learning, each support set contains just a
few examples (i.e. s is small).

3.2. Sparse annotations, guided networks

In this work, we use few-shot learning to segment a new, limited dataset of sparsely-
annotated histopathological patches. Figure 1 refers to the case in which K = 2, namely
the two classes are tissue and lesion. In this figure the green dots represent sparse anno-
tations for the lesion class whereas the red dots correspond to the tissue class2. Clearly,
sparse annotations require significantly less time and effort to be completed in compari-
son to the tedious work of fully annotating a complete image. As shown in Figure 1, a
sparse annotation containing multiple classes can be decomposed into multiple single-class
annotations.

For few-shot segmentation, we use the guided network model introduced by Rakelly
et al. (2018), which is shown in Figure 2. The network architecture is organized in two
branches:

2. Dense annotations can be seen in background as a reference but are not used in the ”Task Representation”
branch.
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Figure 1: This figure represents episodic learning. During the first episode the network
learns from the 2-shot 2-way support set to segment the query image; the pre-
diction thus obtained is compared against the actual (dense) segmentation to
compute the loss and back-propagate the errors for end-to-end learning. The
training then moves on to the next episode until a prefixed number of episodes
has been considered or some other convergence criteria have been satisfied.

Figure 2: Late-fusion implementation of the guided network (see 3.3.1 for details). The
support set (upper branch) with the corresponding positive and negative sparse
annotations provide the input to the top branch of the network which derives a
”Task Representation”, z (the ”latent representation”), that is sent as an input
to the ”Guided Inference” branch. This is the part of the network which is
responsible to produce the output segmentation.
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• In the ”Task Representation” branch, the support set with sparse annotations is fed
as input and the network extracts a latent representation z of the task;

• the latent representation z is passed to the ”Guided Inference” branch to direct the
output segmentation of the query image.

The network weights are learned end-to-end by computing the loss between the predicted
and the actual (dense) segmentation of the query image (see Figure 1). Once trained the
network needs no further optimization and, importantly for us, can incorporate additional
annotations to alter the task or correct errors. According to Rakelly et al. (2018)

a “guided” model is both able to make predictions on its own and incorporate
expert guidance for directing the task or correcting errors.

3.3. Adapting the model to histopathological images

3.3.1. Dataset selection and preparation

To create the support and query set, for both training and validation, the Camelyon16
dataset of histopathological images was used. From each WSI in that dataset, we extracted
patches of size 448x448 with a stride of 224. A subset of 81 WSIs containing lesions were
used; in this subset, images with id from 1 to 60 were used for training, while images with
id from 61 to 81 were used for validation.

The set of patches obtained from the selected images needed filtering due to the presence
of background – just white slide or containing a very small amount of tissue – or other non-
tissue artifacts. This was done by a logit of the RGB image converted to HSV with the
following formula

logit(p(foreground)) = −78.6801 + 0.237V̄ + 0.9713S̄ + 15.6831Vfg (1)

where V̄ and S̄ are the mean values of the corresponding channels in the patch, and Vfg
is the percentage of foreground in the V-channel as computed by the Otsu filter. The
parameters in (1) were found by applying a logistic regression to the problem of reliable
classification of foreground vs. background. Patches having a p(foreground) < 0.9 where
discarded.

After filtering, the resulting dataset was imbalanced toward the tissue class with 241543
patches marked as tissue and 31538 patches marked as lesion. Dataset re-balancing was
performed by selecting a subset of tissue patches at random3.

3.3.2. VGG-16 pre-training

As it will be explained below, the image encoders used for implementing our network are
derived from the VGG-16 architecture (Simonyan and Zisserman, 2014). The publicly-
available weights for VGG-16 originating from the training on the ImageNet dataset (Rus-
sakovsky et al., 2015) were adopted as the starting point for our work. Subsequently, those
weights were fine-tuned using the set of filtered patches described in the previous section.

3. The training set was composed by 23577 patches classified as lesion and 23737 classified as tissue. The
validation set was composed by 7961 patches classified as lesion and 7801 classified as tissue
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For the purpose of VGG-16 fine-tuning, each patch needed to be labeled as belonging to one
specific class. In our case, each patch was classified to be either lesion or tissue by relying
on the dense annotations associated; a patch was labeled to be lesion if at least one pixel
in the center window of size 224x224 was annotated as lesion, otherwise it was classified as
tissue (Liu et al., 2017).

3.3.3. Guided network training and validation

With reference to Figure 2, in the network architecture of choice guidance is extracted by
the guide g((x,L)) as a latent representation z, whereas inference is carried out by fθ(x

∗, z)
using z alone. Two different configurations of the guided network have been used for the
experiments:

• Late Fusion. This is the network represented in Figure 2, which is also the reference
implementation in Rakelly et al. (2018). The visual features are extracted from the
images by φ(x). The annotations Lq, where q ∈ {+,−} (i.e. foreground/background),
are mapped in the feature layer coordinates with the map m. The map m is a fixed
bilinear interpolation for downsampling implemented as fractionally strided convolu-
tion (Dumoulin and Visin, 2016). The images features φ(x) and the output of m(Lq)
are then fused with an element-wise multiplication ψ

glate(x,L
+,L−) = ψ(φ(x),m(L+),m(L−))

With late fusion new annotations can be added interactively during inference, making
real-time collaborative segmentation possible.

• Early Fusion. In this configuration, not represented in figures, the support images
and the annotations are concatenated in a channel-wise fashion and used as input to
the support feature extractor φ. This approach, which is similar to the stacking of
images with ”positive” and ”negative clicks” by Xu et al. (2016), has the disadvantage
that the encoder φ used for the support set must be different from the one used for
the query set. The network training is also substantially slower, over 5 times slower,
than with late-fusion.

The encoders φ used in both configurations are based on a VGG-16 network in which
the top, fully-connected layers were replaced by fully convolutional layers as in Shelhamer
et al. (2016). The decoder consists of a bilinear interpolator for upsampling implemented as
fractionally strided convolution, where the initial filter was a bilinear upsampling kernel4.
The advantage of such architecture is that the decoder is just another convolution layer
hence allows performing backpropagation.

The input pair (x,L) to the guide g is decomposed across receptive fields (represented as
boxes in color inside each map in Figure 2) so that each receptive field (xj,Lj) is associated
a latent representation zj = g((xj ,Lj)), called local latent representation. Since we need
to learn a visual segmentation which is position invariant, all local latent representations
zj are pooled together to provide the global task representation z = mP ({zj : ∀j}). The
adopted pooling function mP was average pooling.

4. See http://avisynth.nl/index.php/Resampling.
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4. Experimental results and discussion

We tested the algorithm above with late and early fusion. Tests were performed with 1
and 5 shots per episode, with 5 points and 10 points sparse annotations and with dense
annotations as well.

The results for the late-fusion strategy are summarized in Table 1 and for the early-
fusion variant in Table 2 . For both fusion strategies the values reported were obtained in

Table 1: Guided networks with late fusion of features and annotation masks

Shots Annotation Accuracy Tissue Accuracy Lesion IOU Tissue IOU Lesion
1 5 points 0.9557 0.9497 0.8850 0.9010
1 10 points 0.9439 0.9416 0.8854 0.8994
1 dense 0.9552 0.9643 0.8983 0.9260
5 5 points 0.9308 0.9773 0.8861 0.9290
5 10 points 0.9611 0.9575 0.9036 0.9337
5 dense 0.9499 0.9634 0.9048 0.9354

Table 2: Guided networks with early fusion of support images and annotations

Shots Annotation Accuracy Tissue Accuracy Lesion IOU Tissue IOU Lesion
1 5 points 0.9427 0.9582 0.7484 0.8675
1 10 points 0.9160 0.9499 0.8049 0.8922
1 dense 0.9466 0.9660 0.8389 0.8946
5 5 points 0.9051 0.9427 0.7946 0.8967
5 10 points 0.9291 0.9614 0.7854 0.8821
5 dense 0.9717 0.9681 0.8964 0.9324

the best run, measured by the overall accuracy, across 104000 iterations5. We report, for
each s-shot P-points configuration, the results obtained of per-class accuracy and per-class
Intersection Over Union (IOU).

For a comparative evaluation, we trained a FCN-32s as described in Shelhamer et al.
(2016) in fully supervised mode and with dense annotations. In this latter case, we obtained
a per-class accuracy of 0.9509 on tissue and 0.9517 on lesions, an IOU of 0.8878 on tissue
and an IOU of 0.9210 on lesions. As it can be seen, the late model with 5 shots and 10
annotation points (in bold in Table 1) is better than a similar configuration using early
fusion (in bold in Table 2) and is competitive with a standard FCN-32s network with dense
annotations, according to the results reported above.

5. Some of the early-fusion experiments did not run for the entire 104000 iterations due to time constraints
(early-fusion experiments take much longer than late-fusion experiments). In such cases we could com-
plete 88000 iterations for early-fusion 1-shot, 10 points annotation, 72000 for 1-shot, dense annotation,
and 56000 for 5-shots, 10 points annotation
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Figure 3: Comparative examples of segmentation results produced with a late fusion, 5-
shots, 10 points configuration. Normal tissue is brown and lesions are green.
Patches in the top row contain tissue of one class only, respectively tissue and
lesion, whereas patches in the bottom row contain tissue of both classes.
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5. Conclusions and future work

We have applied a guided network that performs few-shot segmentation with sparse anno-
tations to histopathological images and we have compared the results with different config-
urations to a ’standard’ approach using an FCN-32s architecture with dense annotations.
On a balanced validation set of lesion and tissue patches, few-shot segmentation with late
fusion, 5 shots and as low as 10 annotations compares favorably to the FCN results. In
future work, we plan to test the few-shot segmentation algorithm on new test data extracted
from Camelyon17 (Bandi et al., 2018). We will also compare the results to different deep
segmentation algorithms such as dilated FCN (Garcia-Garcia et al., 2017). In addition,
we plan to create different validation tests in which the segmentation produced could be
modified by extending the support set according to the observations an expert pathologist.
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