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Abstract

Accurate forecasting of tropical cyclone trajectory is important because it can
have a great impact on the safety of people and infrastructure. This paper intro-
duces a novel data-driven tropical cyclone path prediction model called DeepTC.
The proposed model makes use of data generated using the Weather Research
and Forecasting model, which simulates spatiotemporal atmospheric conditions.
Additionally, the proposed model utilizes convolutional long short-term memory,
which is effective when operating on spatial data over time. Experimental results
demonstrate that DeepTC reduces prediction error significantly, confirming the
effectiveness of the proposed model.

1 Introduction

Tropical cyclones (TCs)—known as hurricanes in the Atlantic and Northeast Pacific, cyclones in the
South Pacific and Indian Ocean, and typhoons in the Northwest Pacific—are one of the most severe
natural disasters. TCs with wind speeds exceeding 31 m/s at their center lead to tens of thousands
of people being evacuated and rescued each year. As a result, the precise prediction of the path of
an impending storm would help local authorities in their decision making regarding the time and
location of evacuation.

Acknowledging the importance of TC prediction as a critical spatiotemporal domain problem,
meteorologists rely on numerical weather prediction (NWP) models such as the Weather Research
and Forecasting (WRF) model, Model for Prediction Across Scales (MPAS), and Community
Atmosphere Model ver 5.0 (CAM5) to predict wind speeds, temperature, air pressure, and other
atmospheric indicators, which help to predict the approach path of a TC over its lifetime.

Extant studies, through the use of modern deep-learning techniques, have recently attempted to predict
the trajectory of TCs and detect their centers. Studies using recurrent neural networks (RNNs) (1),
genetic algorithms (GAs) (2), artificial neural networks (ANNs) (3) trained with latitude, longitude,
wind speed, and pressure, and long short-term memory (LSTM) trained with track data (4) and a
theoretical toy model-Lorenz 96 (5) have been introduced. However, these studies are limited in that
their results still require verification with a real atmospheric model. There have also been trials for
center detection(6) and intensity estimation (7; 8) with CNN using satellite images. (9) attempted
to detect the center using re-analysis data after a TC, but this approach is limited as a forecaster
because re-analysis data is not available when forecasting. To the best of our knowledge, none of the
above-mentioned studies employed a WRF simulation dataset, which is high-level, rich, and realistic
spatiotemporal data of atmosphere, available at the time of forecast.
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In this study, we propose DeepTC, a model capable of predicting the trajectory of TCs using simulation
results generated by the WRF numerical model through use of a recently proposed deep learning
technique—ConvLSTM network. The key idea is that, by training the proposed model with five
different conditioned simulations generated by WRF and the best track1 for each TC, we exploit
DeepTC as an ensemble track forecasting model. Through the above exercise, DeepTC can learn
unique characteristics of differently conditioned simulations, thereby facilitating the generation of
more accurate cyclone-trajectory predictions.

In practice, weather forecasters predict the path of a TC by taking into consideration prediction
results of multiple WRF models based on present atmospheric conditions, their own experience, and
synoptic situations. In this study, we attempt to use DeepTC in the role of the predictor. Further,
the use of the ConvLSTM network assists us in the better capturing of spatio-temporal correlations
contained within WRF data.

2 Data

WRF is a mesoscale numerical weather prediction model designed for both atmospheric research and
operational forecasting applications (Skamarock, 2008). It predicts the future state of atmospheric
conditions, starting from initial data—usually operational global atmospheric data. WRF is mainly
used for regional models, which require a boundary condition on the global atmospheric data.
Although the interval for updating boundary conditions can be changed, in this study, we update
the boundary conditions of global data every six hours. WRF as a regional weather prediction
model is computationally efficient and represents mesoscale weather phenomena better than global
atmospheric models. Therefore, it has been one of the most popular numerical models among
atmospheric scientists since the 2000s.

The WRF simulation performed in this study covered the area of the 7 × 239 × 279 grid we set2,
configured at a horizontal resolution of 30 km and adaptive vertical level up to 50 hPa. Originally,
WRF generated data for the area 29 × 239 × 279 grid, but we selected 7 levels (5, 7, 9, 12, 14,
16, 19) in the vertical plane, which is meaningful for TCs with our domain knowledge in order to
reduce computational cost. At this resolution, each snapshot of the atmospheric states in the WRF
output corresponds to a grid. One simulation produces over 100 variables; however, of these, only
25 variables, deemed to be the most significant for cyclone tracking, were used for the training of
our model. These selected variables are listed in Table 1, and some are visualized in Figure 1 with
VAPOR (10). We used 12 3-Dimensional (in the vertical and horizontal directions) variables, such as
x-wind component (U) and y-wind component (V), and 13 2-Dimensional (in the horizontal direction)
variables, such as surface pressure and sea surface temperature. The trajectory data was from the
Japan Meteorological Agencyś (JMAś) official best track information, which has a precision of one
decimal place.

Table 1: Descriptions of the experimental variables and their spatial

3D Variable Description Dimension 2D Variable Description Dimension
(height,width,length) (width,length)

U x-wind component

(7,239,279)

Q2 Vapor mixing ratio at 2 m

(239,279)

V y-wind component T2 Temperature at 2 m
W z-wind component TH2 Potential temperature at 2 m
PH Perturbation geopotential PSFC Surface temperature
T Perturbation potential temperature U10 U at 10 m
P Perturbation pressure V10 V at 10 m
QVAPOR Water vapor mixing ratio SST Skin sea surface temperature
QCLOUD Cloud water mixing ratio TSK Surface skin temperature
QRAIN Rain water mixing ratio RAINC Accumulated total cumulus precipitation
QICE Ice mixing ratio RAINNC Accumulated total grid scale precipitation
QSNOW Snow mixing ratio OLR TOA outgoing long wave
QGRAUP Graupel mixing ratio LH Latent heat flux at the surface

HFX Upward heat flux at the surface

In this study, WRF simulation data were generated for 50 TCs that drifted in close proximity to the
Korean peninsula, including Rusa, Maemi, Megi, and Ewiniar. Simulations were performed only
for the significant period of each TC (i.e., the period for which the TC was most destructive). For

1A subjectively-smoothed representation of a tropical cyclone’s location and intensity over its lifetime.
(defined by the National Hurricane Center)

2Left, Bottom (N −4◦46.825′, E 107◦77.4′); Left, Top (N 46◦52.65′, E 73◦35.24′); Right, Bottom (N
−4◦46.825′, E 164◦22.6′); Right, Top (N 46◦52.65′, E −161◦35.2′)
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Figure 1: Examples of atmospheric variables by WRF: U,V,W (Wind) (in 2-D), Flow (in 3-D), and
Flow+PSFC (in 3-D)

instance, for Rusa, from the total lifetime of the typhoon, simulation data was generated for only 6
days and 6 hours (from 2002.08.26 00:00 h, lat 22.1N long 146.7E to 2002.09.01 00:00 h, lat 38.0N
long 128.7E). We started the simulations every six hours, as shown in Figure 2. Specifically, one
simulation has five temporal sequences with a six-hour interval between the successive data 24 hours
from the start. Subsequently, 25 simulations were performed for Rusa, and the simulations consists of
five ensemble runs with five different physics settings for the WRF model (one starts from different
initial data, abd the other four follow different physical parameterization schemes), since we intended
to build an ensemble-like model that understands the movement of TCs from multiple models. A
total of 75 simulations were generated for RUSA, and as a result, 5400 simulations were performed
for the 50 TCs. The dataset was then randomly divided into training (60% or approximately 450 GB),
validation (20% or approximately 150 GB), and test data (20% or approximately 150 GB).

Figure 2: Cyclic simulation for typhoon Rusa

3 Approach & Experiment

The proposed study aims to tackle the problem of reliably predicting the trajectory of a TC using
test and training data. To solve this problem, we have used the ConvLSTM network (11), which is
known to be effective in operations involving spatial data. It replaces matrix multiplications with
convolution operations performed at each gate in the LSTM cell. As a result, it is able to capture
underlying spatial features from multi-dimensional data.

The architecture of DeepTC utilizing ConvLSTM is presented in Figure 3. The proposed model
configuration (many-to-many), thus provides a means of predicting the next sequence of TC positions
from the next sequence of simulated atmospheric conditions. The model receives five items of data
(X), including 3-D (12 channels) and 2-D (13 channels) variables at regulated time intervals of 6 h.
For 3-D data, the Conv3DLSTM cell is invoked to facilitate 3-D convolution, and for 2-D data, the
Conv2DLSTM cell is invoked. We used four kernels with 3× 3 shape and four kernels with 3× 3× 3
shape. Tensors from each cell were flattened, concatenated and fed to a fully-connected (FC) layer.
FC layers (24 × 2) were added to the output of each sequence cell to generate two output values,
which represent the expected latitude and longitude. The cost function for the model was set as the
root mean squared error (RMSE) of latitude and longitude for each output node.

We trained the model with the Adam optimizer at a learning rate of 0.001. We used random shuffling
mini-batches for learning; the mini-batch size was set to 10. The training epoch was 200, and it took
approximately 2 h to complete one epoch. The mean absolute error (MAE) was used to measure the
prediction accuracy. The testbed environment configuration had dual GPUs (NVIDIA Titan Xp 12
GB) and 128 GB of RAM, and we used TensorFlow 1.8 and Python 3.6.2 for implementation.
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Figure 3: DeepTC architecture using ConvLSTM

Figure 3 shows training and validation loss during learning with eight kernels for 200 epochs. In
our experiments, we observed that using eight kernels produced stable learning. Therefore, we
checked the performance of the test dataset on the model built with the eight kernels. Based on the
results(Table 3), MAE of latitude is 1.8 and MAE of longitude is 2.12 with the model built at epoch
200. Average lat and long of all best tracks of our 50 TCs are 25.59 and 130.95. (max lat: 47.9 max
long: 174.1, min lat: 10.6, min long: 108.0) At the average point (25.9, 130.95), one degree in lat is
110.78 km and in long is 100.46 km. Thus, the current error around 2 degrees would mean about 200
km (lat 1.8 * 110 km, long 2.12 * 100 km). Furthermore, 6-hour forecast errors are about 176 km in
lat and 208 km in long. Note that the center of TC is approximately 30 km and the diameter of middle
size TC is around 300∼500 km. Currently, our WRF dataset resolution is 30 km (that means one cell
in the data grid is 30 km by 30 km). We expect that the error would decrease if we have a higher
resolution of WRF data (e.g., 10 km) with the proposed method. Furthermore, we measured MAE at
each time (Figure 3) by calculating the error from each output node. We found that the prediction
accuracy decreased with time, as expected.

Figure 4: Learning Curve
Figure 5: Loss over time with models at each

epoch

Table 2: MAE of lat. and long. (in degrees, MAE) with test set and trained model for each condition
Model Filter Epoch Lat. Long.

DeepTC: ConvLSTM 8 150 2.27 2.52
200 1.8 2.12

4 Conclusion

In this preliminary study, we applied WRF simulation datasets to ConvLSTM to reliably predict
the trajectory of TCs. Experimental results demonstrate that our methodology is promising. The
main reason for this is that ConvLSTM can easily learn spatial and temporal representations of the
atmosphere simulated by WRF. In future work, we will experiment with a split dataset by TCs instead
of dividing the dataset randomly. It is more practical to generate prediction with unseen data from
the trained network when we make a forecast with a split dataset. Finally, the authors are working
towards synthesizing trajectory prediction results through the use of a model trained by satellite
images to enhance overall system performance.
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