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ABSTRACT

Generative adversarial networks (GANs) learn to map samples from a noise dis-
tribution to a chosen data distribution. Recent work has demonstrated that GANs
are consequently sensitive to, and limited by, the shape of the noise distribution.
For example, a single generator struggles to map continuous noise (e.g. a uniform
distribution) to discontinuous output (e.g. separate Gaussians) or complex output
(e.g. intersecting parabolas). We address this problem by learning to generate
from multiple models such that the generator’s output is actually the combination
of several distinct networks. We contribute a novel formulation of multi-generator
models where we learn a prior over the generators conditioned on the noise, pa-
rameterized by a neural network. Thus, this network not only learns the optimal
rate to sample from each generator but also optimally shapes the noise received by
each generator. The resulting Noise Prior GAN (NPGAN) achieves expressivity
and flexibility that surpasses both single generator models and previous multi-
generator models.

1 INTRODUCTION

Learning generative models of high-dimensional data is of perpetual interest, as its wide suite
of applications include synthesizing conversations, creating artwork, or designing biological
agents (Bollepalli et al., 2017; Tan et al., 2017; Blaschke et al., 2018). Deep models, especially
generative adversarial networks (GANs), have significantly improved the state of the art at modeling
these complex distributions, thus encouraging further research (Goodfellow et al., 2014). Whether
implicitly or explicitly, works that use GANs make a crucial modeling decision known as the mani-
fold assumption (Zhu et al., 2016; Schlegl et al., 2017; Reed et al., 2016). This is the assumption that
high-dimensional data lies on a single low-dimensional manifold which smoothly varies and where
local Euclidean distances in the low-dimensional space correspond to complex transformations in
the high-dimensional space. While generally true in many applications, this assumption does not
always hold (Khayatkhoei et al., 2018).

For example, recent work has emphasized situations where the data lies not on one single manifold,
but on multiple, disconnected manifolds (Khayatkhoei et al., 2018; Gurumurthy et al., 2017; Hoang
et al., 2018). In this case, GANs must attempt to learn a continuous cover of the multiple manifolds,
which inevitably leads to the generation of off-manifold points which lie in between (Kelley, 2017).

The generator tries to minimize the number of these off-manifold points, and thus they are gener-
ally just a small fraction of the total generated distribution. As such, they barely affect the typical
GAN evaluation measures (like Inception and FID scores for images), which measure the quality
of the generated distribution as a whole. Thus, this problem is usually ignored, as other aspects are
prioritized. However, in some applications, the presence of these bad outliers is more catastrophic
than slight imperfections in modeling the most dense regions of the space. For example, consider
the goal of an artificial agent acting indistinguishably from a human: the famous Turing Test. In-
correctly modeling sentence density by using a given sentence structure 60% of the time instead of
40% of the time is relatively harmless. However, generating a single gibberish sentence will give
away the identity of the artificial agent.

Moreover, there are serious concerns about the implications this has for proofs of GAN conver-
gence (Mescheder et al., 2018). These works address the problem of disconnected manifolds by
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Figure 1: The Noise-Prior GAN (NPGAN) architecture. Unlike previous work, the NP network
learns a prior over the generators conditioned on the noise distribution z. This allows it to both
control the sampling frequency of the generators and shape the input appropriate to each one, in an
end-to-end differentiable framework.

simultaneously training multiple generators and using established regularizations (Chen et al., 2016)
to coax them into dividing up the space and learning separate manifolds.

Methods for getting multiple generators to generate disconnected manifolds can be divided into two
categories: (i) imposing information theoretic losses to encourage output from different generators
to be distinguishable (Khayatkhoei et al., 2018; Hoang et al., 2018) (ii) changing the initial noise
distribution to be disconnected (Gurumurthy et al., 2017). Our approach falls into the second cat-
egory. Previous efforts to change the noise distribution to handle disconnectedness has exclusively
taken the form of sampling from a mixture of Gaussians rather than the typical single Gaussian (with
sampling fixed and uniform over the mixture).

Our approach differs significantly from those previously. We use multiple generators as before, but
instead of dividing up the noise space into factorized Gaussians and sending one to each generator,
we let an additional neural network determine how best to divide up the noise space and dispatch it
to each generator. This network learns a prior over the generators, conditioned on the noise space.
Thus, we call our additional third network a noise-prior (NP) network. Previous methods have
modeled the data with noise z and generators Gi as p(Gi|z) · Gi(z), with p(Gi|z) = p(Gi) =
p(Gj) ∀i, j. We instead propose a framework to incorporate a richer p(Gi|z) into the generator.
This framework is entirely differentiable, allowing us to optimize the NP network along with the
generators during training.

We note that with this strategy, we significantly increase the expressivity of each generator over the
previous disconnected manifold models. By dividing up the space into four slices si and sending
s1, s3 to the first generator and s2, s4 to the second generator, we can generate four disconnected
manifolds with just two generators. Previous work would have to devote precisely four generators to
this task, with degradation in performance if fewer or more generators are chosen for the hyperpa-
rameter. Here, the prior network learns to divide the noise space appropriately for whatever number
of generators is chosen, and is thus more expressive as well as more robust than previous models.

Moreover, much existing work has exclusively framed the problem as, and tailored solutions
for, the disconnected manifold problem. Our approach is more generalized, addressing any mis-
specification between noise distribution and the target distribution. This means that our approach
does not become redundant or unnecessary in the case of single complex manifolds, for example.

Our contributions can be summarized as:
1. We introduce the first multi-generator ensemble to learn a prior over the noise space, using

a novel soft, differentiable loss formulation.
2. We present a multi-generator method that can learn to sample generators in proportion to

the relative density of multiple manifolds.
3. We show how our model not only improves performance on disconnected manifolds, but

also on complex-but-connected manifolds, which are more likely to arise in real situations.

2 RELATED WORK

Several previous works have included multiple generators, mixing and matching a few commonly
used features. Some use completely distinct generators (Khayatkhoei et al., 2018; Arora et al.,
2017), while others tie some or all of their weights (Gurumurthy et al., 2017; Hoang et al., 2018).
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Most use a single parametric noise source (e.g. a single Gaussian) (Khayatkhoei et al., 2018; Hoang
et al., 2018) while one uses a mixture of Gaussians (Gurumurthy et al., 2017). Most sample the
generators randomly with equal probability, but one attempts to find (in a non-differentiable way)
a sampling scheme to not sample from redundant generators (Khayatkhoei et al., 2018). (Ghosh
et al., 2018) encourages diversity among generator outputs by introducing a classifier that tries to
identify the generator a data point came from, or whether it is a real data point (reminiscent of an
auxiliary classifier (Odena et al., 2017) or the mutual information loss of (Chen et al., 2016)). A
more theoretical analysis of convergence and equilibrium existence in the loss landscape motivated
a multiple-generator, multiple-discriminator mixture in (Arora et al., 2017). We discuss in detail the
works with the most resemblance to our approach here:
DeLiGAN The DeLiGAN (Gurumurthy et al., 2017) was designed to handle diverse datasets with
a limited amount of datapoints. It used a single generator and a Gaussian mixture model latent
space. To train, a single random Gaussiani out of the mixture is chosen, and then they added µi
to the Normal(0, 1) noise and multiplied it by σi, with both µi and σi as learnable parameters.
This differs from our work because while the noise is separated into different components, the
probability of selecting each component is cut off from the gradient information in the model and
is not differentiable (each Gaussian is selected with an equal probability, and this never changes).
Also, every component of the noise is parameterized as a Gaussian. Finally, only one component of
the noise is trained at a time (a single µi and σi is randomly selected for each training batch), while
our model learns to model the data over the full collection of generators in each minibatch.
MGAN The MGAN (Hoang et al., 2018) focused on the problem of mode collapse and addressed
it by using multiple generators which are really the same network except for the first linear projection
layer. They introduced a new loss term into the traditional GAN training: to encourage the generators
to learn different parts of the data space, a lower bound on mutual information between the generated
images and the generator they came from was maximized. This is helpful because the generators
share almost weights between them and otherwise may redundantly use multiple generators to cover
the same part of the space. Unlike in our work, they use a single noise source and let the single
first layer of the generators learn to project it to different parts of the space before going through
the same convolutions. In our work, this transformation of the noise before going to each generator
is done with a separate network which gets gradient information through the generator, but is not
optimized jointly with the generator weights. Moreover, like the DeLiGAN, the probability over the
multiple generators was assumed to be fixed and uniform.
DMWGANPL The DMWGANPL (Khayatkhoei et al., 2018) exclusively viewed multi-generator
models as a solution for disconnected manifolds. Each generator is given the same single noise
sample, and the same mutual information criteria (termedQ(Gi|x), the probability that x came from
generator Gi) as the MGAN was used to ensure each generator learned a different part of the space.
Unlike the previous works, they do not assume an equal probability of selecting each generator.
Instead, they sample each generator Gi with probability ri. After each step of the generator and
discriminator during training, the ri’s are updated to maximize mutual information between their
distribution and Q(Gi|x). This has the primary effect of not sampling redundant generators whose
output is hard to distinguish from another generator’s output, and is completely disassociated from
the minimax GAN game. Each generator gets the same noise sample that takes a single parametric
form (Normal(0, 1)), and the effect this has on the minimax game and the quality of generated
images is only indirect and tangential to the objective being minimized.

3 MODEL

Let X ∼ PX , xi ∈ Rd, i = 1...Nx be a sample of Nx points from a d-dimensional distribution PX .
We seek a generator G that learns to mimic PX by mapping from a noise distribution Z ∼ PZ . To
do this, we train a discriminator D and pit them against each other in the standard GAN framework:

min
G

max
D

LGAN = Ex∼Px
[log(D(x))] + Ez∼Pz

[log(1−D(G(z)))]

where G tries to minimize and D tries to maximize this objective.

Motivated by the success of ensemble models (Miller & Ehret, 2002; Wang & Yao, 2009; Hinton
et al., 2015; Whitehead & Yaeger, 2010), our NPGAN represents the generating function G with
multiple distinct generators of the same architecture. However, rather than simply averaging equal,
independent, randomly initializing models to take advantage of uncorrelated errors, we adopt in-
sights from machine teaching (Mei & Zhu, 2015) and knowledge distillation (Hinton et al., 2015).
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Algorithm 1 Calculating the loss LGAN optimized during training.
G: Generator,D: Discriminator,NP : Noise-Prior Network
Sample xk=1...n ∼ X
Sample zj=1...n ∼ N(0, 1)
function LOSS(x, z)
πi=1...k
j ← NP (zj) . Probability point j is sampled from generator i

Dfake ←
∑
ij

(
πi
j ·D(Gi(zj))

)
Dreal ←

∑
k

D(xk)

LGAN ← log(Dreal) + log(1−Dfake) . Expression for G/D to minimize/maximize
return LGAN

end function

We use a teacher network to select a generator Gi conditioned on the particular input it sees. By
learning a prior over the generators conditioned on the noise, this Noise Prior (NP) network dele-
gates each input point to the appropriate generator that is optimally prepared to handle it. Thus, our
total generator G can be decomposed into:

G(z) = NP (Gi|z) ·Gi(z)

When traditionally training a GAN, the generator and discriminator alternate gradient descent steps,
allowing gradient information to flow through the other network while keeping it fixed and only
optimizing with respect to the given network’s parameters. We extend this to our third noise prior
network NP , allowing gradient information to flow through the fixed generators Gi and discrim-
inator D while optimizing the GAN loss with respect to the parameters of NP . During training,
we let both the NP network and the generators use a soft version of the GAN loss, weighting each
generator output by the learned probabilities NP (Gi|z). Then, during inference, the choice of Gi is
sampled from this learned prior. The full details of the training procedure are given in Algorithm 1.

The NP network looks at the sample from Z and determines how best to divide it across the gen-
erators to achieve the goal of modeling PX . In the special case where PX is disconnected, NP can
divide Z in multiple ways such as giving each generator a continuous area of Z, or giving some
generators multiple disconnected areas of Z (as we demonstrate later in the experiments). Nothing
in our model formulation is specifically designed to model disconnectedness or any other specific
property in PX , however, so NP can learn to divide the sample from Z in whatever way is most
appropriate for the given shape of PX .

Thus, we model a distribution over our generators rather than simply sampling them uniformly and
concatenating their output. Moreover, we learn this distribution over the generators with another
network which is conditioned on the input noise, allowing it to choose the shape of input each
generator receives. This network does not optimize a separate loss that is a heuristic indirectly
related to the GAN framework, but directly participates in the GAN minimax game. To summarize,
we fully and flexibly incorporate the multiple-generator framework into a GAN such that the model
can learn for itself how best to use the generators. This is achieved by modeling a prior over the
generators that is conditioned on the noise input and optimizing it with respect to the GAN loss
directly.

4 EXPERIMENTS

4.1 DISCONNECTED MANIFOLDS

Our first experimental dataset (Figure 2) consists of a mixture of samples from two-dimensional
Gaussians such that the three Gaussians are not sampled with equal probability (7000, 5000, and
3000 points, respectively). We compare our NPGAN’s ability to model this distribution to a sin-
gle generator model, MGAN (Hoang et al., 2018), DMWGANPL (Khayatkhoei et al., 2018), and
DeLiGAN (Gurumurthy et al., 2017). The noise distribution for each model was a 100-dimensional
Uniform(−1, 1) except the DeLiGAN, which requires samples from Normal(0, 1). The genera-
tors in each case share the same architecture of three layers with 200-100-20 neurons per layer and
Leaky ReLU activations. The discriminator in all cases had three layers of 1000-200-100 neurons
and used minibatch discrimination (Salimans et al., 2016).
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Figure 2: A single generator fails to capture the
underlying structure without generating points
off the support. Only our NPGAN learns to
sample the generators in proportion to the data
(the generator is indicated by the point’s color).

Figure 3: Only our NPGAN is able to learn
to create a discontinuity in the support of one
generator and capture three manifolds with just
two generators (the generator is indicated by the
point’s color).

Initially obvious is that a single generator cannot model this distribution without generating trailing
points that connect the manifolds. By looking at the underlying density plots, we see that most of
the generated data lies on the manifolds, in terms of proportions of points. However, when densely
sampling the noise distribution, these few off-support outliers still arise. We then evaluate all of the
multi-generator models with three generators, which we know to be the true underlying number of
disconnected manifolds in this synthetic situation. The MGAN and DeLiGAN fail to model each
manifold with a distinct generator and thus cover multiple manifolds with one of their generators
and produce a trail of points in between. This failure stems from their sampling the generators
with a fixed, equal probability. Since the disconnected manifolds do not have exactly the sample
probability, their model formulations cannot effectively manage this situation. The DMWGANPL
does learn a prior over the generators, but this prior only learned to eliminate redundant generators.
Thus, it does learn an unequal sampling of the generators and each generator produces points that are
distinct from the other generators, but does so without accurately modeling the data. The NPGAN,
however, assigns each manifold to an individual generator and matches the data distribution without
generating any off-manifold points. This is confirmed quantitatively in Table 1, where we measure
the percentage of points each model generates that are off the manifold, which we define to be any
point farther from the center of any Gaussian than the largest distance of any of the true points.
There we see that the NPGAN generates no points off the manifold, while the other models are all
forced to generate a trail of points connecting two of the Gaussians.

We next demonstrate the improved flexibility of the NPGAN over previous models by choosing two
generators, imagining ourselves in the realistic case of not knowing the true underlying number of
disconnected manifolds in a particular dataset (Figure 3). In this case, all of the other models must
inevitably cover two manifolds with a single generator. Since each generator receives a continu-
ous, unaltered noise distribution, this means they produces points off the manifold (Table 1). The
NPGAN alone learns to model three disconnected manifolds with two generators without generating
off-manifold points in between.

To investigate how the NPGAN achieves this, we learn another model withZ ∼ Uniform(−1, 1) ∈
R2, so that we can plot the noise in two dimensions. In Figure 4a and 4c, we see the noise space for
two and three generators, respectively. Notably, in both cases there are three partitions, no matter
the number of generators. By learning to give one generator disconnected input, the NP network
effectively models a third manifold without having a dedicated generator responsible for it. Viewing
the latent space also informs us how the NPGAN can easily model non-equally sampled manifolds,
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Figure 4: We investigate the NP network by using two-dimensional uniform noise and plotting the
learned prior over the generators. The three unequally sampled Gaussians in the data can have their
density matched with three generators (c-d) or by creating a discontinuity with two generators (a-b).

2Gen Gaussian 3Gen Gaussian 2Gen Parabolas 3Gen Parabolas
NPGAN 0.000 0.000 0.003 0.007
MGAN 0.031 0.162 0.088 0.083

DMWGANPL 0.037 0.026 0.076 0.082
DeLiGAN 0.134 0.055 0.196 0.320

Table 1: Scores for each model on each artificial dataset and the number of generators used (2Gen
or 3Gen). For the Gaussian data, the score is the percentage of generated points off the manifold.
For the parabolas, the score represents the percentage of real points without any generated point in
its neighborhood.

as well, as the size of each partition of the noise space expands or contracts to match the underlying
data distribution.

4.2 COMPLEX CONNECTED MANIFOLDS

Our next dataset explores the case where the underlying data distribution is complex but not neces-
sarily disconnected. The other models have design choices to specifically target distinct areas of the
data space with each generator. While single generator networks have difficulty with disconnected
parts of the data space, there are many other ways the data distribution can be difficult for a single
generator to model that have nothing to do with disconnectedness. Since the NPGAN gives the NP
network full flexibility to shape the input for each generator however it needs to in order to beat the
discriminator, it can aid in generating complex shapes of any kind.

To investigate this we create a distribution of intersecting parabolas and test it with two and three
generators for each model (Figures 5 and 6). As before, this complex shape is too difficult for a
single generator to effectively model. In the DeLiGAN, the equal probability Gaussians trained
alternatingly are unable to coordinate with each other and capture any of the tails of the two parabo-
las. The MGAN and DMWGANPL have the mutual information penalty that pushes the generated
points for different generators away from each other. This not only keeps them from learning to gen-
erate intersecting shapes, but it pushes the optimization away from any solution where it requires a
complex function to know which generator a particular point came from. The NPGAN, on the other
hand, effectively models the data distribution with just two generators while finding a different but
equally effective way of modeling it with three generators. As opposed to the previous Gaussian
example, the problem here is not generating points off the manifold but leaving parts of the true
manifold unmodeled. Thus, to quantitatively evaluate this dataset, we calculate the percentage of
real points that do not have a generated point within an ε-ball centered on it (ε = .001). Table 1
confirms that the other models leave significant parts of the tails unmodeled, representing as much
as 32% of the data in the most extreme case. The NPGAN’s low score with both two and three gen-
erators corroborates that it can not only help in modeling complex distributions, but that the flexible
formulation makes it robust to the specific number of generators chosen.

4.3 CELEBA+PHOTO

To test the NPGAN’s ability to model disconnected, unevenly sampled manifolds on real images,
we combine two distinct datasets. We take 1500 images randomly from the CelebA (Liu et al.,
2015) dataset and combine them with the 6000 photographs dataset from (Zhu et al., 2017). To
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Figure 5: A single generator is unable to model
this non-disconnected data. The disconnected
assumption of the other models forces each gen-
erator to produce points that are separable from
other generators’.

Figure 6: The parabola dataset is naturally
solved with two generators, but the NPGAN is
robust to the number of generators that are cho-
sen. The other models can only work if the pre-
cise optimal number of generators is known a
priori.

Figure 7: Randomly selected images from each model trained on the CelebA+Photo dataset.

effectively match this data distribution with two generators, the models will have to either learn to
sample generators at a differential rate, or have one generator cover a discontinuity (or both).

The images were resized to 32x32, and all models use a DCGAN architecture (Radford et al., 2015),
with three convolutional transpose layers in the generators and three convolutional layers in the
discriminator. Each convolution used stride length two, kernel size three, batch normalization on
all layers except the first layer of the discriminator, and ReLU activations in the generator with
Leaky ReLU activations in the discriminator. Training was performed on minibatches of 32 with an
Adam optimizer (Kingma & Ba, 2014) with learning rate 0.0001. In the MGAN and DeLiGAN, the
generators are all the same network except for the initial linear projection of the noise (or the adding
of the generator-specific mean and the multiplying of the generator-specific standard deviation in
the DeLiGAN). In our NPGAN and the DMWGANPL, the generators do not share weights. To
compensate for the increased capacity that this would otherwise provide, we decrease the number of
filters per generator learned to keep the total number of parameters across all models (within 1%).

Figure 7 shows randomly selected images from each model, and there we can see the consequences
of the MGAN and DeLiGAN sampling generators at a fixed rate and giving each generator the same
continuous noise. In each case, one of the generators effectively generates photos, but the other
generator gets caught in between generating photos and CelebA images, producing many blurry
images. The DMWGANPL samples generators at a different rate, but again did so ineffectively:
one generator makes photos, but the other generator makes both CelebA images and some photos
that are not being made by the other generator. Even though it is an imperfect measure of capturing
outliers, the FID scores reported in Table 2 show that the imbalance affects their ability to model the
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underlying dataset, too. To add an uncertainty measure to this score, we average the last three model
checkpoints and report the mean and standard deviation. In Figure 7, we see the NPGAN learns to
sample more from the generator that exclusively makes photos, while also using its ability to create
discontinuity in its input to allow the other generator to make both CelebA images and a few realistic
photos. Only the NPGAN is able to effectively model this disconnected, unevenly sampled dataset.

4.4 COMPLEX-BUT-CONNECTED IMAGE DATASET

FID Score Face-Photo ConnectedFace-Photo
NPGAN 58.9 +/- 2.4 51.7 +/- 4.1
MGAN 65.5 +/- 1.5 63.1 +/- 3.4

DeLiGAN 64.1 +/- 3.1 68.6 +/- 2.6
DMWGANPL 81.0 +/- 6.2 83.4 +/- 5.5

WGAN-GP 66.5 +/- 4.9 69.3 +/- 5.9

Table 2: FID Scores for all models.

In this section, we explore how connected-
ness affects the results of the models for im-
age datasets. The previous works on multiple
generators have emphasized disconnectedness,
but we show here that the NPGAN outperforms
the alternatives even without disconnected data.
The effects of other properties, like class/mode
imbalance, dominate the results. We test this
notion by modifying the dataset from the previ-
ous section to create a connection between the Face and Photo images. To do this, we randomly
choose images in each dataset and perform linear interpolation between them with a mixing coeffi-
cient α chosen from a Uniform(0, 1) distribution. We add these interpolations to the Face+Photo
dataset to make a ConnectedFace+Photo dataset. Conceptually, ConnectedFace+Photo takes the
shape of a ”barbell” with a narrow trail connecting two areas of density in data space.

We then repeat the experiment of the previous section and report the results. Notably, the quantitative
results remain essentially the same. This can be explained with a couple of observations. First, as
in the artificial cases, the other models have difficulty dealing with density imbalances, and this
difficulty dominates the effects of whether the data is disconnected or not. Second, as previously
discussed, the FID scores in Table 2 are affected most strongly by model performance where most
of the data density is as opposed to a few bad trailing outlier points. Nonetheless, the presence of
wrong off-manifold outliers like those in Figure 7b-d could be severely problematic in contexts with
a higher sensitivity to outliers than the FID score captures.

4.5 CIFAR

FaceBed CIFAR
NPGAN 16.39 18.94

WGANGP 17.84 20.74
DMWGANPL 17.51 19.69

DeLiGAN 17.69 19.61
MGAN 17.43 19.58

Table 3: Outlier manifold distances for
all models on FaceBed and CIFAR.

Next, we explore the NPGAN’s ability to model the
canonical CIFAR10 dataset (Krizhevsky et al., 2014).
Unlike in the previous case where the disconnectedness in
the data was drastic enough to measurably affect sample
quality as measured by FID, here our NPGAN produced
essentially the same FID as our code with one-generator
(26.4 to 25.8). However, as previously discussed, FID is
not a good measure of whether a model produced outliers
or not, since generating 1% bad samples off the manifold
will be unnoticed in FID score if coupled with a slight
improvement of sample quality on the other 99% of the samples. With that in mind, we introduce a
new measure of how bad a model’s worst samples are: outlier manifold distance. Unlike FID, our
outlier manifold distance is sensitive to a model generating outliers, irrespective of how good its best
samples are. We calculate this distance by finding the average distance of the 1% furthest generated
points from the real data manifold, as measured by the distance to the closest real point in the last
feature map of the Inception network for each generated point. The outlier manifold distance for
each model is then the average of the 1% largest distances (the 1% “most anomalous” points). In
Table 3, we see that NPGAN has the best outlier manifold distance of all models. As a sanity check,
we also calculate it on the previous FaceBed data, and show that it confirm quantitatively what we
saw qualitatively and with FID score, that other models produce outliers that are worse than NG-
PAN’s worst samples. For space reasons, a more comprehensive investigation into the NPGAN’s
use of multiple generators on CIFAR we defer to the supplement.

5 DISCUSSION
We introduced a novel formulation of multiple-generator models with a prior over the generators,
conditioned on the noise input. This results in improved expressivity and flexibility by shaping each
generator’s input specifically to best perform that generator’s task.
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Figure A.1: NPGAN output, with the generator of the image represented by the color of the box, on
the CIFAR dataset.

A SUPPLEMENT

A.1 CIFAR

In this section, we elaborate on the CIFAR experiment from the main text. We use a more com-
plicated architecture here with spectral normalization, self-attention, and ResNet connections, per
the best achieving models to-date. We experimented using two, three, four, and five generators in
the NPGAN architecture. Figure A.1 shows images generated by the NPGAN with each number
of generators. With just two generators, each one creates a wide diversity of images. On the other
hand, when increasing the number of generators, each one more homogeneous. For example, in the
two generator model, one of them creates dogs, cars, and frogs, while in the five-generator model
each generator has specialized to just birds in the sky or just cars.

Qualitatively, the noise prior is obviously learning a sensible split of the data across generators and
each generator is outputting quality images. However, when comparing the two-generator, three-
generator, four-generator, and five-generator versions of NPGAN to the baseline one-generator of
the same model, we do not observe any improvement in FID score. This is unsurprising for the
reasons mentioned in the main text. The FID scores treat all points equally across a generated
dataset, and thus will be most strongly influenced by where the most points are. A relatively small
number of outliers barely register by this metric.

Even current state-of-the-art image generation on CIFAR10 is no where close to perfectly modeling
the data. When GANs are able to perfectly model the dataset except for trailing outliers between
modes, we expect the NPGAN’s improvements to be visible in FID scores on this dataset. Until
then, the detection of a few bad outliers needs to be done with other evaluation techniques on this
dataset.

With this caveat, we note that we could achieve an FID score of 26.4 with our NPGAN, compared
to 25.8 with our code and one generator, which demonstrates that the NPGAN can scale to state-
of-the-art architecture without suffering in quality. The NPGAN is robust to a connected dataset
while simultaneously being able to automatically solve the problems of a disconnected dataset.
Furthermore, this motivated the creation of our new outlier manifold distance metric, designed to
be more sensitive to the creation of outliers than the FID score. Using this metric, we see NPGAN
outperform all other models.

Relation to Machine Teaching In (Zhu, 2013), an analogous question is posed: if a teacher net-
work knows the function its student network is supposed to learn, what are the optimal training
points to teach it as efficiently as possible? For students following a Bayesian learning approach,
this is thought of as finding the best data points D to make the desired model θ∗, or minimizing
with respect to D: −log(p(θ∗|D)) . In our framework, the teacher network NP does not know the
function its students should learn ahead-of-time, because this target is changing continually as the
discriminator improves simultaneously. Nevertheless, the NP network is still learning to form the
optimal curriculum for each individual student such that the collection of students best models the
target function given the current parameters of the discriminator.
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Relation to knowledge distillation Our NP network also has links to the field of knowledge dis-
tillation (Kim & Rush, 2016; Chen et al., 2017; Furlanello et al., 2018; Wang et al., 2018), where a
teacher network is trying to compress or distill the knowledge it has about a particular distribution
into one or several (Hinton et al., 2015) smaller models. In the case of multiple smaller models,
the teacher can be thought of as a generalist whose job it is to find the right specialist for a specific
problem.
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