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ABSTRACT

Batch Normalization (BN) improves both convergence and generalization in
training neural networks. This work understands these phenomena theoretically.
We analyze BN by using a basic block of neural networks, consisting of a kernel
layer, a BN layer, and a nonlinear activation function. This basic network helps
us understand the impacts of BN in three aspects. First, by viewing BN as an
implicit regularizer, BN can be decomposed into population normalization (PN)
and gamma decay as an explicit regularization. Second, learning dynamics of
BN and the regularization show that training converged with large maximum and
effective learning rate. Third, generalization of BN is explored by using statistical
mechanics. Experiments demonstrate that BN in convolutional neural networks
share the same traits of regularization as the above analyses.

1 INTRODUCTION

Batch Normalization (BN) is an indispensable component in many deep neural networks (He et al.|
2016; Huang et al., 2017). BN has been widely used in various areas such as machine vision, speech
and natural language processing. Experimental studies (loffe & Szegedy, 2015) suggested that BN
improves convergence and generalization by enabling large learning rate and preventing overfitting
when training deep networks. Understanding BN theoretically is a key question.

This work investigates regularization of BN as well as its optimization and generalization in a single-
layer perceptron, which is a building block of deep models, consisting of a kernel layer, a BN layer,
and a nonlinear activation function such as ReLU. The computation of BN is written by

yzg(il), ﬁz’yhgi:lg—&—ﬁ and h = w'x. €))
This work denotes a scalar and a vector by using lowercase letter (e.g. =) and bold lowercase letter
(e.g. x) respectively. In Eqn.(T)), v is the output of a neuron, g(-) denotes an activation function, h
and & are hidden values before and after batch normalization, w and x are kernel weight vector and
network input respectively. In BN, us and o represent the mean and standard deviation of h. They
are estimated within a batch of samples for each neuron independently. -y is a scale parameter and 3
is a shift parameter. In what follows, Sec@] overviews assumptions and main results, and Sec@]
presents relationships with previous work.

1.1 OVERVIEW OF RESULTS

We overview results in three aspects.

e First, Sec[2] decomposes BN into population normalization (PN) and gamma decay. To better
understand BN, we treat a single-layer perceptron with ReLU activation function as an illustrative
case. Despite the simplicity of this case, it is a building block of deep networks and has been widely
adopted in theoretical analyses such as proper initialization (Krogh & Hertz, 1992} |Advani & Saxe,
2017), dropout (Wager et al.,[2013)), weight decay and data augmentation (Bos},|1998). The results in
Sec/2]can be extended to deep neural networks as presented in Appendix [C.4]

Our analyses assume that neurons at the BN layer are independent similar to (Salimans & Kingmal
2016; ivan Laarhoven, 2017; [Teye et al.| [2018)), as the mean and the variance of BN are estimated
individually for each neuron of each layer. The form of regularization in this study does not rely on

*The first three authors contribute equally. Corresponding to pluo.lhi@gmail.com, {wangxinjiang,
pengzhanglin} @sensetime.com, weqish@link.cuhk.edu.hk.



Published as a conference paper at ICLR 2019

Gaussian assumption on the network input and the weight vector, meaning our assumption is milder
than those in (Yoshida et al.,[2017; |Ba et al., 2016; Salimans & Kingmal 2016).

Sec[2] tells us that BN has an explicit regularization form, gamma decay, where y3 and o have
different impacts: (1) up discourages reliance on a single neuron and encourages different neurons to
have equal magnitude, in the sense that corrupting individual neuron does not harm generalization.
This phenomenon was also found empirically in a recent work (Morcos et al., [2018]), but has not
been established analytically. (2) o reduces kurtosis of the input distribution as well as correlations
between neurons. (3) The regularization strengths of these statistics are inversely proportional to
the batch size M, indicating that BN with large batch would decrease generalization. (4) Removing
either one of up and oz could imped convergence and generalization.

e Second, by using ordinary differential equations (ODEs), Sec[3|shows that gamma decay enables
the network trained with BN to converge with large maximum learning rate and effective learning
rate, compared to the network trained without BN or trained with weight normalization (WIN)
(Salimans & Kingma, [2016) that is a counterpart of BN. The maximum learning rate (LR) represents
the largest LR value that allows training to converge to a fixed point without diverging, while effective
LR represents the actual LR in training. Larger maximum and effective LRs imply faster convergence
rate.

e Third, Secl] compares generalization errors of BN, WN, and vanilla SGD by using statistical
mechanics. The “large-scale” regime is of interest, where number of samples P and number of
neurons NV are both large but their ratio P/N is finite. In this regime, the generalization errors are
quantified both analytically and empirically.

Numerical results in Sec[5|show that BN in CNNs has the same traits of regularization as disclosed
above.

1.2 RELATED WORK

Neural Network Analysis. Many studies conducted theoretical analyses of neural networks (Opper|
et al.l |1990; Saad & Solla, (1996} Bs & Opper, 1998} |Pennington & Babhri, 2017} Zhang et al.,
2017b; |Brutzkus & Globerson, |2017; Raghu et al., [2017; Mei et al., [2016; [Tian, [2017). For example,
for a multilayer network with linear activation function, |Glorot & Bengio| (2010) explored its SGD
dynamics and Kawaguchi| (2016) showed that every local minimum is global. [Tian| (2017)) studied
the critical points and convergence behaviors of a 2-layered network with ReLU units. Zhang et al.
(2017b) investigated a teacher-student model when the activation function is harmonic. In (Saad &
Solla, |1996), the learning dynamics of a committee machine were discussed when the activation
function is error function erf(x). Unlike previous work, this work analyzes regularization emerged in
BN and its impact to both learning and generalization, which are still unseen in the literature.

Normalization. Many normalization methods have been proposed recently. For example, BN (loffe
& Szegedyl [2015) was introduced to stabilize the distribution of input data of each hidden layer.
Weight normalization (WN) (Salimans & Kingmal 2016) decouples the lengths of the network
parameter vectors from their directions, by normalizing the parameter vectors to unit length. The
dynamic of WN was studied by using a single-layer network (Yoshida et al.||2017)). L1 et al.| (2018)
diagnosed the compatibility of BN and dropout (Srivastava et al., 2014) by reducing the variance shift
produced by them.

Moreover, |van Laarhoven|(2017)) showed that weight decay has no regularization effect when using
together with BN or WN. Ba et al.| (2016) demonstrated when BN or WN is employed, back-
propagating gradients through a hidden layer is scale-invariant with respect to the network parameters.
Santurkar et al.|(2018)) gave another perspective of the role of BN during training instead of reducing
the covariant shift. They argued that BN results in a smoother optimization landscape and the
Lipschitzness is strengthened in networks trained with BN. However, both analytical and empirical
results of regularization in BN are still desirable. Our study explores regularization, optimization,
and generalization of BN in the scenario of online learning.

Regularization. [loffe & Szegedy| (2015) conjectured that BN implicitly regularizes training to
prevent overfitting. Zhang et al.[(2017a) categorized BN as an implicit regularizer from experimental
results. Szegedy et al.|(2015) also conjectured that in the Inception network, BN behaves similar to
dropout to improve the generalization ability. |Gitman & Ginsburg|(2017) experimentally compared
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BN and WN, and also confirmed the better generalization of BN. In the literature there are also
implicit regularization schemes other than BN. For instance, random noise in the input layer for data
augmentation has long been discovered equivalent to a weight decay method, in the sense that the
inverse of the signal-to-noise ratio acts as the decay factor (Krogh & Hertz, 1992} Rifai et al.| 2011).
Dropout (Srivastava et al., [ 2014) was also proved able to regularize training by using the generalized
linear model (Wager et al., [2013).

2 A PROBABILISTIC INTERPRETATION OF BN

The notations in this work are summarized in Appendix Table 2] for reference.

Training the above single-layer perceptron with BN in Eqn.(T) typically involves minimizing a
negative log likelihood function with respect to a set of network parameters § = {w,~, 8}. Then the
loss function is defined by

P P
1 . 1 o
;Zf(hj) =-5 > logp(y’|h7;0) + <1013, 2)

where p(y7|hi; 0) represents the likelihood function of the network and P is number of training
samples. As Gaussian distribution is often employed as prior distribution for the network parameters,
we have a regularization term ¢||@||3 known as weight decay (Krizhevsky et al., 2012) that is a popular
technique in deep learning, where ( is a coefficient.

To derive regularization of BN, we treat uz and o as random variables. Since one sample x is seen
many times in the entire training course, and at each time x is presented with the other samples in a
batch that is drawn randomly, ;5 and o can be treated as injected random noise for x.

Prior of nu, o. By following (Teye et al., 2018), we find that BN also induces Gaussian priors

for up and 0. We have pug ~ N (up, %) and o ~ N(op, %) where M is batch size, up

and op are population mean and standard deviation respectively, and p is kurtosis that measures the
peakedness of the distribution of h. These priors tell us that ug and o would produce Gaussian
noise in training. There is a tradeoff regarding this noise. For example, when M is small, training
could diverge because the noise is large. This is supported by experiment of BN (Wu & Hel 2018)
where training diverges when M = 2 in ImageNet (Russakovsky et al., 2015). When M is large, the
noise is small because p and o get close to pp and op. It is known that M > 30 would provide a
moderate noise, as the sample statistics converges in probability to the population statistics by the
weak Law of Large Numbers. This is also supported by experiment (loffe & Szegedyl, 2015) where
BN with M = 32 already works well in ImageNet.

2.1 A REGULARIZATION FORM

The loss function in Eqn.(2) can be written as an expected loss by integrating over the priors of 3
and o, that is, 25:1 E,us.05[((h7)] where E[-] denotes expectation. We show that 115 and o5
impose regularization on the scale parameter v by decomposing BN into population normalization
(PN) and gamma decay. To see this, we employ a single-layer perceptron and ReLU activation
function as an illustrative example. A more rigorous description is provided in Appendix

Regularization of pz,05. Let £(h) be the loss function defined in Eqn.() and ReLU be the
activation function. We have

P P
E : J E : J _pt2 E :
P ]EI"B O'BE h P [ h + C( ) ’ and C(h) - SM Mﬁ 7 (3)
amma deca; i=1
%/_/ g y from op
PN from pp

where b/ = vhjg_% + B and B/ = w'x7 represent the computations of PN. ((h)v? represents

gamma decay, where ((h) is an adaptive decay factor depended on the hidden value h. Moreover, p
is the kurtosis of distribution of h, Z(+) represents an estimation of the Fisher information of -y and

I(v) =% Zj 1(‘%(}1] )2, and o () is a sigmoid function.

From Eqn.(3), we have several observations that have both theoretical and practical values.

o First, PN replaces the batch statistics 3, o5 in BN by the population statistics pp, op. In gamma
decay, computation of (k) is data-dependent, making it differed from weight decay where the
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coefficient is determined manually. In fact, Eqn.(3) recasts the randomness of BN in a deterministic
manner, not only enabling us to apply methodologies such as ODEs and statistical mechanics to
analyze BN, but also inspiring us to imitate BN’s performance by WN without computing batch
statistics in empirical study.

e Second, PN is closely connected to WN, which is independent from sample mean and variance.
WN (Salimans & Kingma, |2016) is defined by v 7= H ” that normalizes the weight vector w to have
unit variance, where v 1s a learnable parameter. Let each diagonal element of the covariance matrix
of x be a and all the off-diagonal elements be zeros. h’ in Eqn.(3)) can be rewritten as

i rwax] — up wlxI

+B8=v— +0, “4)
op [[wl]2
where v = T and b = — aWﬁ + 5. Eqn.(4) removes the estimations of statistics and eases our
analyses of regularization for BN.

e Third, p and o produce different strengths in (). As shown in Eqn., the strength from g
depends on the expectation of o(h’) € [0, 1], which represents excitation or inhibition of a neuron,
meaning that a neuron with larger output may exposure to larger regularization, encouraging different
neurons to have equal magnitude. This is consistent with empirical result (Morcos et al., 2018)
which prevented reliance on single neuron to improve generalization. The strength from o5 works
as a complement for p5. For a single neuron, Z(+) represents the norm of gradient, implying that
BN punishes large gradient norm. For multiple neurons, Z(+y) is the Fisher information matrix of
v, meaning that BN would penalize correlations among neurons. Both oz and pp are important,
removing either one of them would imped performance.

Extensions to Deep Networks. The above results can be extended to deep networks as shown in
Appendix [C.4] by decomposing the expected loss at a certain hidden layer. We also demonstrate the
results empirically in Sec[5] where we observe that CNNs trained with BN share similar traits of
regularization as discussed above.

3  OPTIMIZATION WITH REGULARIZATION

Now we show that BN converges with large maximum and effective learning rate (LR), where the
former one is the largest LR when training converged, while the latter one is the actual LR during
training. With BN, we find that both LRs would be larger than a network trained without BN. Our
result explains why BN enables large learning rates used in practice (loffe & Szegedy, 2015).

Our analyses are conducted in three stages. First, we establish dynamical equations of a teacher-
student model in the thermodynamic limit and acquire the fixed point. Second, we investigate
the eigenvalues of the corresponding Jacobian matrix at this fixed point. Finally, we calculate the
maximum and the effective LR.

Teacher-Student Model. We first introduce useful techniques from statistical mechanics (SM). With
SM, a student network is dedicated to learn relationship between a Gaussian input and an output
by using a weight vector w as parameters. It is useful to characterize behavior of the student by
using a teacher network with w* as a ground-truth parameter vector. We treat single-layer perceptron
as a student, which is optimized by minimizing the euclidian distance between its output and the
supervision provided by a teacher without BN. The student and the teacher have identical activation
function.

Loss Function We define a loss function of the above teacher-student model by & Zle ((x7) =
+ Zf 1 [g(w*Tx7) — (\F . ik < )]2 + (2, where g(w*Tx/) represents supervision from the

Iwll2

teacher, while g(v Nyt HWH ) is the output of student trained to mimic the teacher. This student is

defined by following Eqn.@) with v = v/N~ and the bias term is absorbed into w. The above
loss function represents BN by using WN with gamma decay, and it is sufficient to study the
learning rates of different approaches. Let § = {w, v} be a set of parameters updated by SGD, i.e.

it = g7 — nag(; ) where 71 denotes learning rate. The update rules for w and ~y are

N W . OVEwTY
- ’ Py =g ), )

A j+
—w’) and 7 —+7 =7
Iwall2" w3

wit —w = né'(

w2
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where W/ denotes a normalized weight vector of the student, that is, W/ = /N~J ﬁ and
87 = g'(WTx7)[g(w*Tx7) — g(W7Tx7)] represents the gradien{'|for clarity of notations.

Order Parameters. As we are interested in the “large-scale” regime where both [V and P are large
and their ratio P/N is finite, it is difficult to examine a student with parameters in high dimensions
directly. Therefore, we transform the weight vectors to order parameters that fully characterize
interactions between the student and the teacher network. In this case, the parameter vector can be

reparameterized by using a vector of three elements including «, R, and L. In particular, v measures

2w'w

) ) ) Iwli3

measures angle (overlapping ratio) between the weight vectors of student and teacher. We have
~T % - .

R = W = NLWWTW*, where the norm of the ground-truth vector is %W*Tw* = 1. Moreover,

L represents length of the original weight vector w and L? = %WTW.

length of the normalized weight vector W, that is, W'w = N~ = N~2. The parameter R

Learning Dynamics. The update equations (3)) can be transformed into a set of differential equations

(ODEs) by using the above order parameters. This is achieved by treating the update step j as
a continuous time variable ¢ = . They can be turned into differential equations because the

contiguous step At = % approaches zero in the thermodynamic limit when N — oo. We obtain a

dynamical system of three order parameters

dry L dR ¥ R 2V’ R dL 5 72
a = n¢Y, g~ Mpzls —npph gt and e =07 org
where I} = E,[6W'x], I, = E[6°x'x], and I3 = E,[6w* x| are defined to simplify notations.

The derivations of Eqn.(6) can be found in Appendix[C.3]

(6)

3.1 FIXED POINT OF THE DYNAMICAL SYSTEM

To find the fixed points of (6), we set dvy/dt = GorRoTo) r—e e

dR/dt = dL/dt = 0. The fixed points of BN, WN,and  "BN | (30,1, L) | (20310~ ey

vanilla SGD (without BN and WN) are given in Table o)/ 22 0

E} In the thermodynamic limit, the optima denoted as WN| (1,1, Lo) oUg—h) 0Ly &

(’}/o,Ro,Lo) would be (’Y(),Ro,Lo) = (1, 1, 1). Our SGD (1,1,1) 3(13711)/ﬂ 770
it} OR 20R

main interest is the overlapping ratio Ry between
the student and the teacher, because it optimizes the Table 1: Comparisons of fixed points, 7max for
direction of the weight vector regardless of its length. R, and 7.g for R. A fixed point is denoted as
We see that Ry for all three approaches attain optimum (o, Ro, Lo).

‘1’. Intuitively, in BN and WN, this optimal solution

does not depend on the value of Ly because their weight vectors are normalized. In other words,
WN and BN are easier to optimize than vanilla SGD, unlike SGD where both R and L have to be
optimized to ‘1°. Furthermore, vy in BN depends on the activation function. For ReLU, we have
Ao = ﬁ (see Propositionin Appendix , meaning that norm of the normalized weight vector

relies on the decay factor (. In WN, we have vj™ = 1 as WN has no regularization on ~.

3.2 MAXIMUM AND EFFECTIVE LEARNING RATES

With the above fixed points, we derive the maximum and the effective LR. Specifically, we analyze
eigenvalues and eigenvectors of the Jacobian matrix corresponding to Eqn.(6). We are interested in
the LR to approach R. We find that this optimum value only depends on its corresponding eigenvalue

denoted as A\p. We have A\ = % %(nmax — Nest ), Where 1.y and 7eg represent the maximum
0

and effective LR (proposition 2] in Appendix [C.3), which are given in Table [} We demonstrate
that Ar < 0.if and only if 7« > 7ea, such that the fixed point Ry is stable for all approaches
(proposition |3|in Appendix . Moreover, it is also able to show that 7, of BN (n2 ) is larger
than WN and SGD, enabling R to converge with a larger learning rate. For ReLU as an example, we

find that > nr{nﬂ’sgd } +2¢ (propositionin Appendix . The larger maximum LRs enables
the network to be trained more stably and has the potential to be combined with other stabilization
techniques (Fagan & Tyengar] [2018) during optimization. The effective LRs shown in Table [I] are
consistent with previous work (van Laarhoven, [2017)).

'¢’(x) denotes the first derivative of g(z).
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4 GENERALIZATION ANALYSIS

Here we investigate generalization of BN by using a teacher-student model that minimizes a loss
function 5 E i=1((y*)? —y7)?, where y* represents the teacher’s output and y is the student’s output.
We compare BN with WN+gamma decay and vanilla SGD. All of them share the same teacher
network whose output is a noise-corrupted linear function y* = w*'x + s, where x is drawn from
N(0, %) and s is an unobserved Gaussian noise. We are interested to see how the above methods
resist this noise by using student networks with both identity (linear) and ReLU activation functions.

For vanilla SGD, the student is computed by y = g(w'x) with g(-) being either identity or ReLU,
and w being the weight vector to optimize, where w has the same dimension as w*. The loss
function of vanilla SGD is £ = & Zi;i (y* — g(w'xJ ))2 For BN, the student is defined as

T
y = y¥——FE + . As our main interest is the weight vector, we freeze the bias by setting 5 = 0.

Therefore, the batch average term MB is also unnecessary to avoid additional parameters, and the
Y= ywTxi/ 03) .
student is computed similar to Eqn.(d) by using y = VN~ HV‘VNH Then the loss function is defined by
g = LS50 i1 () =Ny ﬁ"w’ﬁ:) +¢|7v||3. With the above definitions, the three approaches are

studied under the same teacher-student framework, where their generalization errors can be strictly
compared with the other factors ruled out.

loss function is written as ¢ = L S°F o1 (" For WN+gamma decay, the

1.5

4.1 (a) Linear —— vanilla SGD
— =1/2M
— T =0.25

H BN M=32

GENERALIZATION ERRORS

We provide closed-form solutions of the generalization errors
(see Appendix [D.T) for vanilla SGD with both linear and ReLU
student networks. The theoretical solution of WN+gamma
decay can also be solved for the linear student, but still remains 0.5
difficult for ReLU student whose numerical verification is
provided instead. Both vanilla SGD and WN+gamma decay

are compared with numerical solutions of BN. 0075, 10 2.0 30
a

1.0

Egen

vanilla SGD. In an identity (linear) student, the solution of
generalization error depends on the rank of correlation matrix 11
3 = x'x. Here we define an effective load a = P/N that is

(b) ReLU —— vanilla SGD (theory)
vanilla SGD (exp)

— {=1/4M

—— lower bound

W BNM=16

the ratio between number of samples P and number of input 4,
neurons /N (number of learnable parameters). >
The generalization error of the identity student is denoted 0.7
as efgd , which can be acquired by using the distribution of

eigenvalues of 3 following (Advani & Saxe) 2017) Ifa<l, 05 " > — o
=1—a+ aS/(1 - a). Otherwise, ed =8/(a—1) ' ' a ' '
where S is the variance of the injected noise to the teacher Figure 1: (a) shows generalization

network. The values of efgd with respect to « are plotted in
blue curve of Fig[I[(a). It first decreases but then increases as
« increases from 0 to 1. efgd diverges at o = 1. And it would
decrease again when o > 1.

In a ReLU student, the nonlinear activation yields difficulty to
derive the theoretical solution. Here we utilize the statistical

mechanics and calculate that erg‘liu =1-oa/4+ 2(5‘731) and

a < 2 (see AppendixD.2)). When comparing to the lower bound
(trained without noisy supervision) shown as the red curve in
Figb) we see that €relu (blue curve) diverges at o = 2. This
is because the student overfits the noise in the teacher’s output.
The curve of numerical solution is also plotted in dashed line
in Fig[T[b) and it captures the diverging trend well. It should be
noted that obtaining the theoretical curve empirically requires

error v.s. effective load « using a linear
student (identity units). “WN+gamma
decay’ has two curves ( = ﬁ and
¢ = 0.25. BN is trained with M =
32. (b) shows generalization error v.s.
effective load o using a ReLU student.
‘WN+gamma decay’ has ( = ﬁ and
is compared to BN with batch size
M = 32. The theoretical curve for
vanilla SGD is also shown in blue.
The red line is the generalization error
of vanilla SGD with no noise in the
teacher and thus serves as a lower
bound.

an infinitely long time of training and an infinitely small learning rate. This unreachable limit explains
the discrepancies between the theoretical and the numerical solution.
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WN+gamma decay. In a linear student, the gamma decay term turns the correlation
matrix to ¥ = (x'x+(I), which is positive definite. ~Following statistical mechanics

(Krogh & Hertz, |1992), the generalization error is €' = 52%? — Cz% where G =

l—a—C+ (C+ 1+ Va)?)2(¢+ (1 —+a)?)? /2¢. We see that /" can be computed quan-
titatively given the values of ¢ and «. Let the variance of noise injected to the teacher be 0.25.
Fig[T|(a) shows that no other curves could outperform the red curve when ¢ = 0.25, a value equal
to the noise magnitude. The ¢ smaller than 0.25 (green curve ( = ﬁ and M = 32) would exhibit
overtraining around o = 1, but they still perform significantly better than vanilla SGD.

For the ReLU student in Fig[T(b), a direct solution of the generalization error €7}, remains an open

problem. Therefore, the numerical results of “WN+gamma decay’ (green curve) are run at each «
value. It effectively reduces over-fitting compared to vanilla SGD.

Numerical Solutions of BN. In the linear student, we employ SGD with M = 32 to find solutions
of w for BN. The number of input neurons is 4096 and the number of training samples can be varied
to change . The results are marked as black squares in Fig[I[a). After applying the analyses for
linear student (Appendix , BN is equivalent to “WN+gamma decay’ when ( = ﬁ (green curve).
It is seen that BN gets in [ine with the curve ‘¢ = 1/2M” (M = 32) and thus quantitatively validates
our derivations.

In the ReLU student, the setting is mostly the same as the linear case, except that we employ a
smaller batch size M = 16. The results are shown as black squares in Fig[I(b). For ReLU units,
the equivalent ( of gamma decay is ( = ﬁ. If one compares the generalization error of BN
with “WN+gamma decay’ (green curve), a clear correspondence is found, which also validates the
derivations for the ReLU activation function.

5 EXPERIMENTS IN CNNS

This section shows that BN in CNNs follows similar traits of regularization as the above analyses.

To compare different methods, the CNN architectures are fixed while only the normalization layers
are changed. We adopt CIFAR10 (Krizhevsky, [2009) that contains 60k images of 10 categories (50k
images for training and 10k images for test). All models are trained by using SGD with momentum,
while the initial learning rates are scaled proportionally (Goyal et al.,|2017) when different batch
sizes are presented. More empirical setting can be found in Appendix

Evaluation of PN+Gamma Decay. This work shows that BN can be decomposed into PN and
gamma decay. We empirically compare ‘PN+gamma decay’ with BN by using ResNet18 (He et al.,
2016). For ‘PN+gamma decay’, the population statistics of PN and the decay factor of gamma decay
are estimated by using sufficient amount of training samples. For BN, BN trained with a normal batch
size M = 128 is treated as baseline as shown in Figgka&b). We see that when batch size increases,
BN would imped both loss and accuracy. For example, when increasing M to 1024, performance
decreases because the regularization from the batch statistics reduces in large batch, resulting in
overtraining (see the gap between train and validation loss in (a) when M = 1024).

In comparison, we train PN by using 10k training samples to estimate the population statistics. Note
that this further reduces regularization. We see that the release of regularization can be complemented
by gamma decay, making PN outperformed BN. This empirical result verifies our derivation of
regularization for BN. Similar trend can be observed by experiment in a down-sampled version of
ImageNet (see Appendix [B.T). We would like to point out that ‘PN+gamma decay’ is of interest in
theoretical analyses, but it is computation-demanding when applied in practice because evaluating
up, op and ¢(h) may require sufficiently large number of samples.

Comparisons of Regularization. We study the regulation strengths of vanilla SGD, BN, WN,
WN+mean-only BN, and WN+variance-only BN. At first, the strength of regularization terms from
both 3 and o are compared by using a simpler network with 4 convolutional and 2 fully connected
layers as used in (Salimans & Kingma, 2016). Fig[2(c&d) compares their training and validation
losses. We see that the generalization error of BN is much lower than WN and vanilla SGD. The reason
has been disclosed in this work: stochastic behaviors of 13 and o in BN improves generalization.

To investigate ;13 and o individually, we decompose their contributions by running a WN with
mean-only BN as well as a WN with variance-only BN, to simulate their respective regularization.
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Figure 2: (a) & (b) compare the loss (both training and evaluation) and validation accuracy between BN and
PN on CIFAR10 using a ResNet18 network; (c) & (d) compare the training and validation loss curve with WN +
mean-only BN and WN + variance-only BN; (¢) & (f) validate the regularization effect of BN on both 42 and
the validation loss with different batch sizes; (g) & (h) show the loss and top-1 validation accuracy of ResNet18
with additional regularization (dropout) on large-batch training of BN and WN.

As shown in Fig[2Jc&d), improvements from the mean-only and the variance-only BN over WN
verify our conclusion that noises from ug and op have different regularization strengths. Both of
them are essential to produce good result.

Regularization and parameter norm. We further demonstrate impact of BN to the norm of
parameters. We compare BN with vanilla SGD. A network is first trained by BN in order to converge
to a local minima where the parameters do not change much. At this local minima, the weight vector
is frozen and denoted as w”'. Then this network is finetuned by using vanilla SGD with a small

learning rate 10~ and its kernel parameters are initialized by w*9¢ = v*-—, where o is the moving
average of 0.

Fig[] in Appendix [B.2] visualizes the results. As pg and op are removed in vanilla SGD, it is
found that the training loss decreases while the validation loss increases, implying that reduction
in regularization makes the network converged to a sharper local minimum that generalizes less
well. The magnitudes of kernel parameters w** at different layers are also observed to increase after
freezing BN, due to the release of regularization on these parameters.

Batch size. To study BN with different batch sizes, we train different networks but only add BN
at one layer at a time. The regularization on the  parameter is compared in Fig[2(e) when BN is
located at different layers. The values of 42 increase along with the batch size M due to the weaker
regularization for the larger batches. The increase of v? also makes all validation losses increased as
shown in Fig 2|f).

BN and WN trained with dropout. As PN and gamma decay requires estimating the population
statistics that increases computations, we utilize dropout as an alternative to improve regularization of
BN. We add a dropout after each BN layer. Fig[2(g&h) plot the classification results using ResNet18.
The generalization of BN deteriorates significantly when M increases from 128 to 1024. This is
observed by the much higher validation loss (Fig[2[g)) and lower validation accuracy (Fig[2(h))
when M = 1024. If a dropout layer with ratio 0.1 is added after each residual block layer for
M = 1024 in ResNet18, the validation loss is suppressed and accuracy increased by a great margin.
This superficially contradicts with the original claim that BN reduces the need for dropout (loffe &
Szegedy, [2015)). As discussed in Appendix [B.3] we find that there are two differences between our
study and previous work (loffe & Szegedy, 2015)).

Fig[2(g&h) also show that WN can also be regularized by dropout. We apply dropout after each WN
layer with ratio 0.2 and the dropout is applied at the same layers as that for BN. We found that the
improvement on both validation accuracy and loss is surprising. The accuracy increases from 0.90
to 0.93, even close to the results of BN. Nevertheless, additional regularization on WN still cannot
make WN on par with the performance BN. In deep neural networks the distribution after each layer
would be far from a Gaussian distribution, in which case WN is not a good substitute for PN.
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6 CONCLUSIONS

This work investigated an explicit regularization form of BN, which was decomposed into PN
and gamma decay where the regularization strengths from pp and op were explored. Moreover,
optimization and generalization of BN with regularization were derived and compared with vanilla
SGD, WN, and WN+gamma decay, showing that BN enables training to converge with large
maximum and effective learning rate, as well as leads to better generalization. Our analytical
results explain many existing empirical phenomena. Experiments in CNNs showed that BN in deep
networks share the same traits of regularization. In future work, we are interested in analyzing
optimization and generalization of BN in deep networks, which is still an open problem. Moreover,
investigating the other normalizers such as instance normalization (IN) (Ulyanov et al.} 2016)) and
layer normalization (LN) (Ba et al.| 2016) is also important. Understanding the characteristics of
these normalizers should be the first step to analyze some recent best practices such as whitening
(Luol 2017bza)), switchable normalization (Luo et al., 2019;2018; Shao et al.,|2019)), and switchable
whitening (Pan et al.,[2019).
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APPENDICES

A NOTATIONS

Table 2: Several notations are summarized for reference.

U5, 08 batch mean, batch variance

wp, 05 population mean, population variance
X,y input of a network, output of a network
y* ground truth of an output
h, h hidden value before and after BN

h hidden value after population normalization

v, B scale parameter, shift parameter
g(+) activation function

w,w” weight vector, ground truth weight vector

w normalized weight vector
M,N, P batch size, number of neurons, sample size
e an effective load value « = P/N
¢ regularization strength (coefficient)
p Kurtosis of a distribution
1) gradient of the activation function

TNeff , Nmax effective, maximum learning rate
R overlapping ratio (angle) between W and w™
L norm (length) of w
Amax; Amin maximum, minimum eigenvalue
€gen generalization error

B MORE EMPIRICAL SETTINGS AND RESULTS

All experiments in Sec[5] are conducted in CIFAR10 by using ResNet18 and a CNN architecture
similar to (Salimans & Kingma, 2016) that is summarized as ‘conv(3,32)-conv(3,32)-conv(3,64)-
conv(3,64)-pool(2,2)-fc(512)-fc(10)’, where ‘conv(3,32)’ represents a convolution with kernel size
3 and 32 channels, ‘pool(2,2)’ is max-pooling with kernel size 2 and stride 2, and ‘fc’ indicates a
full connection. We follow a configuration for training by using SGD with a momentum value of 0.9
and continuously decaying the learning rate by a factor of 10~* each step. For different batch sizes,
the initial learning rate is scaled proportionally with the batch size to maintain a similar learning
dynamics (Goyal et al., 2017).

B.1 RESULTS IN DOWNSAMPLED IMAGENET

Besides CIFAR10, we also evaluate ‘PN+gamma decay’ by employing a downsampled version of
ImageNet (Loshchilov & Hutter, 2016)), which contains identical 1.2 million data and 1k categories
as the original ImageNet, but each image is scaled to 32x32. We train ResNet18 in downsampled
ImageNet by following the training protocol used in (He et al.l [2016). In particular, ResNet18 is
trained by using SGD with momentum of 0.9 and the initial learning rate is 0.1, which is then decayed
by a factor of 10 after 30, 60, and 90 training epochs.

In downsampled ImageNet, we observe similar trends as those presented in CIFAR10. For example,
we see that BN would imped both loss and accuracy when batch size increases. When increasing M
to 1024 as shown in Fig[3] both the loss and validation accuracy decrease because the regularization
from the random batch statistics reduces in large batch size, resulting in overtraining. This can be
seen by the gap between the training and the validation loss. Nevertheless, we see that the reduction
of regularization can be complemented when PN is trained with adaptive gamma decay, which makes
PN performed comparably to BN in downsampled ImageNet.

B.2 IMPACT OF BN TO THE NORM OF PARAMETERS

We demonstrate the impact of BN to the norm of parameters. We compare BN with vanilla SGD,
where a network is first trained by BN in order to converge to a local minima when the parameters do
not change much. At this local minima, the weight vector is frozen and denoted as w®. Then this
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Figure 3: Results of downsampled ImageNet. (a) plots training and evaluation loss. (b) shows validation
accuracy. The models are trained on 8 GPUs.

network is finetuned by using vanilla SGD with a small learning rate 10~ with the kernel parameters
initialized by w** = WWTIM, where o is the moving average of o3.

Fig ] below visualizes the results. As ju3 and o3 are removed in the vanilla SGD, it is found from the
last two figures that the training loss decreases while the validation loss increases, meaning that the
reduction in regularization makes the network converged to a sharper local minimum that generalizes
less well. The magnitudes of kernel parameters w* at different layers are also displayed in the first
four figures. All of them increase after freezing BN, due to the release of regularization on these
parameters.
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Figure 4: Study of parameter norm. Vanilla SGD is finetuned from a network pretrained by BN on CIFAR10.
The first four figures show the magnitude of the kernel parameters in different layers in finetuning, compared to
[wll

the effective norm of BN defined as 7‘0—5. The last two figures compare the training and validation losses in
finetuning.

B.3 BN AND WN WITH DROPOUT

BN+dropout. Despite the better generalization of BN with smaller batch sizes, large-batch
training is more efficient in real cases. Therefore, improving generalization of BN with large
batch is more desiring. However, gamma decay requires estimating the population statistics that
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increases computations. We also found that treating the decay factor as a constant hardly improves
generalization for large batch. Therefore, we utilize dropout as an alternative to compensate for the
insufficient regularization. Dropout has also been analytically viewed as a regularizer (Wager et al.,
2013)). We add a dropout after each BN layer to impose regularization.

Fig[2(g&h) in the main paper plot the classification results using ResNet18. The generalization of
BN deteriorates significantly when M increases from 128 to 1024. This is observed by the much
higher validation loss (Fig[2[g)) and lower validation accuracy (Fig[Z(h)) when M = 1024. If a
dropout layer with ratio 0.1 is added after each residual block layer for M = 1024 in ResNet18, the
validation loss is suppressed and accuracy increased by a great margin. This superficially contradicts
with the original claim that BN reduces the need for dropout (Ioffe & Szegedy, [2015). We find that
there are two differences between our study and (loffe & Szegedyl 2015).

First, in pervious study the batch size was fixed at a quite small value (e.g. 32), at which the
regularization was already quite strong. Therefore, an additional dropout could not further cause
better regularization, but on the contrary increases the instability in training and yields a lower
accuracy. However, our study explores relatively large batch that degrades the regularization of BN,
and thus dropout with a small ratio can complement. Second, usual trials put dropout before BN and
cause BN to have different variances during training and test. In contrast, dropout follows BN in this
study and the distance between two dropout layers is large (a residual block separation), thus the
problem can be alleviated. The improvement by applying dropout after BN has also been observed
by a recent work (Li et al.,[2018]).

WN-+dropout. Since BN can be treated as WN trained with regularization as shown in this study,
combining WN with regularization should be able to match the performance of BN. As WN
outperforms BN in running speed (without calculating statistics) and it suits better in RNNs than
BN, an improvement of its generalization is also of great importance. Fig[2(g&h) also show that
WN can also be regularized by dropout. We apply dropout after each WN layer with ratio 0.2 and
the dropout is applied at the same layers as that for BN. We found that the improvement on both
validation accuracy and loss is surprising. The accuracy increases from 0.90 to 0.93, even close to
the results of BN. Nevertheless, additional regularization on WN still cannot make WN on par with
the performance BN. In deep neural networks the distribution after each layer would be far from a
Gaussian distribution, in which case WN is not a good substitute for PN. A potential substibute of
BN would require us for designing better estimations of the distribution to improve the training speed
and performance of deep networks.

C PROOF OF RESULTS

C.1 PRrROOF OF EQN.(B)

Theorem 1 (Regularization of ug, 05) Let a single-layer perceptron with BN and ReLU activation
function be defined by y = max(0, h), h = "= LE+Band h = w' x, where x and y are the network
input and output respectively, h and h are the hzdden values before and after batch normalization,
and w is the weight vector. Let { (ﬁ) be the loss function. Then

2 : MB,UB

+2 -
z:: (h7) + ¢(h)y? and C()—%WI —MFZ::

“U \

w + B represents population normalization (PN), ((h)~y? represents gamma

decay and ((h) is a data-dependent decay factor. p is the kurtosis of the distribution of h, Z() is

where h = ~

an estimation of the Fisher information of v and I(v) = + Zj (T 8[(}'1 )2, and o(-) is a sigmoid
function.

Proof. We have hi = y¥X—15 4 gand hi = 77’”’ + 3. We prove theoremlby performing

a Taylor expansion on a functlon A(hJ ) at h?, where A(hj ) is a function of h7 defined according
to a particular activation function. The negative log likelihood function of the above single-layer

perceptron can be generally defined as — log p(y?|h7) = A(h?) — y7hi, which is similar to the loss
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function of the generalized linear models with different activation functions. Therefore, we have

EMB,UB [A(}Alj) - yjilj}

Il
Yl =

1« Ny
5 2 Bus.osll(h)]
j=1

P P
:;;(A(hj)—yﬂhj)—F]lD;EMBﬁB{ y! (B _hj)+A(iLj) A(BJ)}
L, g, 1w o
:P;l(hHﬁ;EmoB [/ (R) — ) (T — )]
1 P A//(B]) ; ;
+f;Eus,05 [ 5 (W —h )2}

I(h7) + RS + RY,

I
Yl =

<
Il
—

where A’(-) and A”(-) denote the first and second derivatives of function A(-). The first and second

order terms in the expansion are represented by R/ and RY respectively. To derive the analytical

forms of Rf and RY, we take a second-order Taylor expansion of of i and 0% around o p, it suffices
B

to have ) 1 )
P + ( 0723)(03 op) + =) (05 —op)
and 1 1 5
— ~ = + (=)o —op) + = (08 — 0p).
O'B O'P 0'73 077

2
By applying the distributions of ;3 and o introduced in section we have ug ~ N (up, Uﬁp) and
o ~N(op, %). Hence, R/ can be derived as in the paper, R can be derived as

P
1 S o
R = 53 By |(A (W) = ) (W)
Jj=1 )
L S By [0 =) (W
- P = HUB,0B I Y Y 0B Y op
:lZE —(A’(ﬁjyj) AwTxd L1 Y (e il
Pj:l He,o8 L OB op oR op
= YA~y )W ) |
Pj:1 75 o op
=Ny A
P& R

This R/ term can be understood as below. Let h = %;’“’ and the distribution of the population
data be p,,,. We establish the following relationship

E(ﬂﬂvy)NPmyE#B,Us [(A/(B) - y)h] = EMByaBEINPz]Ey‘CEN;Dy\J; [(A/(h) - y)h]
= EpnouBanp, |(El2] ~ Eyjon,, )]
=0.
Since the sample mean converges in probability to the population mean by the Weak Law of

Large Numbers, for all ¢ > 0 and a constant number K (3K > 0 and VP > K), we have
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P (|RT = Euy)mp,, Busos [(A'(R) —y)h] | > §37¢) = 0. This equation implies that R/ is
sufﬁ01ently small with a probability of 1 given moderately large number of data points P (the
above inequality holds when P > 30).

On the other hand, R? can be derived as

P mriy oL
R = 53 By | g0 0]

=1
P — . .
1 A" (h?) wlix) — g wlix) — up 5
P ;:1: 2 18,08 |:(’7 0B + B op + B)
P —
1 A"(h) T jy2 L Lo T L Lo BB pP.o
—— E,. . V2(2 _ 2 \2_9 J(— 0B EP
Pl s | (WL = L Tl (L L 2t
E A2 A" (R 11 —ur\?
-~ Z Tj 2 2 B — KPP
- Fj:l 2 (W x) — /’("P) EMB,UB |:(O-B - O_P) :| +]Eu570'5 ( o5 )

- P op 4M +M< RYY;

! i VA (W) <(waf SIS I 3<p+2>)>
Note that & l(h ) — A”(h])(LP_’“’)Q, we have Z(7) = & Zle A”(ﬁj)(wT’:i;“”)? been an

estimator of the Fisher information with respect to the scale parameter . Then, by neglecting
O(1/M?) high-order term in RY, we get

p+2 2 | Hd2A o
ity Daza
s LT+ e

where 1142 4 indicates the mean of the second derivative of A(h). O

R ~

The results of both ReLLU activation function and identity function are provided as below.

C.2 RELU ACTIVATION FUNCTION

For the ReLLU non-linear activation function, that is g(h) = max(h,0), we use its continuous
approximation softplus function g(h) = log(1+exp(h)) to derive the partition function A(h). In this

case, we have 124 = & Zle o(h?). Therefore, we have ((h) = %I(’y) + 505 le o(h?)
as shown in Eqn.(3).

C.3 LINEAR STUDENT NETWORK WITH IDENTITY ACTIVATION FUNCTION

For a loss function with identity (linear) units, & Zle (WTxd — y(w'x? — pup)/ 05)2, we have
Z(v) = 2X and p = 0 for Gaussian input distribution. The exact expression of Eqn.(3) is also
possible for such linear regression problem. Under the condition of Gaussian input x ~ N (0,1/N),

h = wTx is also a random variable satisfying a normal distribution A/(0, 1). It can be derived that
- (&2 r(
E (081) = fﬂﬁ FE g and E (052) = %W Therefore
MT' (M —3)/2 (M —-2)/2
2 (M~ 1)/2) (M- 1)/2)

Furthermore, the expression of ¢ can be simplified as ¢ = 57 M If the bias term is neglected in
a simple linear regression, contributions from pp to the regularization term is neglected and thus
(= ﬁ. Note that if one uses mean square error without being divided by 2 during linear regression,

the values for ¢ should be multiplied by 2 as well, where ( = ﬁ
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C.4 BN REGULARIZATION IN A DEEP NETWORK

The previous derivation is based on the single-layer perceptron. In deep neural networks, the forward
computation inside one basic building block of a deep network is written by
1 1
e W) g and b = (w2 @)
(o8);

where the superscript [ € [1, L] is the index of a building block in a deep neural network, and
i € [1, N'] indexes each neuron inside a layer. 2° and z” are synonyms of input = and output y,
respectively. In order to analyze the regularization of BN from a specific layer, one needs to isolate
its input and focus on the noise introduced by the BN layer in this block. Therefore, the loss function
E(ﬁl) can also be expanded at £(h'). In BN, the batch variance is calculated with regard to each
neuron under the assumption of mutual independence of neurons inside a layer. By following this

assumption and the above derivation in Appendix [C.I] the loss function with BN in deep networks
can also be similarly decomposed.

Regularization of /i, oL in a deep network. Let ¢! be the strength (coefficient) of the regularization
at the [-th layer. Then

P P N'
Z Lot £((RY) Z ORI

P =P
J
P 7 1y 2
ding (He(B)7), (ph+2 ((W)T (&1 = (up))® 1
d l ) % - 1 M2
and (; = Pj:1 5 A < ()] ) +M +O(1/M*),
where 7 is the index of a neuron in the layer, (h})7 =~/ (wi)” (z(la;ii (up)i B} represents population

normalization (PN), H,(h') is the Hessian matrix at h' regarding to the loss £ and diag(-) represents
the diagonal vector of a matrix.

It is seen that the above equation is compatible with the results from the single-layer perceptron. The
main difference of the regularization term in a deep model is that the Hessian matrix is not guaranteed
to be positive semi-definite during training. However, this form of regularization is also seen from
other regularization such as noise injection (Rifai et al.| 2011) and dropout (Wager et al., 2013), and
has long been recognized as a Tikhonov regularization term (Bishopl [1995).

In fact, it has been reported that in common neural networks, where convex activation functions such
as ReLU and convex loss functions such as common cross entropy are adopted, the Hessian matrix
H¢(h') can be seen as ‘locally’ positive semidefinite (Santurkar et al., 2018). Especially, as training
converges to its mimimum training loss, the Hessian matrix of the loss can be viewed as positive
semi-definite and thus the regularization term on ~/ is positive.

C.5 DYNAMICAL EQUATIONS

Here we discuss the dynamical equations of BN. Let the length of teacher’s weight vector be 1,
that is, ~ Lw*Tw* = 1. We introduce a normalized weight vector of the student as w = v N WHX—H.

Then the overlapping ratio between teacher and student, the length of student’s vector, and the

length of student’s normalized weight vector are +W'w* = QR = YR, +W'w = Q% =2, and

%WTW L? respectively, where QQ = ~. And we have NWTW LR.

We transform update equations (&) by using order parameters. The update rule for variable Q? can be
obtained by (Qg)j+1 (Q2) ~ [27753 wiTx) —2nC (Q2) } following update rule of . Similarly,
the update rules for variables RL and L? are calculated as follow:

(R = (Re)! = 3 (B gwe Tl = T, (8)
X 2
(L2)1+1 ( ) _ [77 é 6J X]TX] N(an)j éjQ(WjTXj)ﬂ.
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Lett = % is a normalized sample index that can be treated as a continuous time variable. We have
At = % that approaches zero in the thermodynamic limit when N — oo. In this way, the learning
dynamic of Q2, RL and L? can be formulated as the following differential equations:

2
99— o1 — 2m(Q7,
dRL

i =nils—nih, ©)
2
U =%,

where I} = (6W'x)x, Ir = (62x"X)y, and I3 = (Sw*Tx),, which are the terms presented in
dT(‘?:, %, and dd—L: and (-)x denotes expectation over the distribution of x. They are used to
simplify notations. Note that we neglect the last term of dL?/dt in Eqn. since %62 (wTx)?
can be approximately equal to zero when N approaches infinity. On the other hand, we have
dQ? = 2QdQ,dRL = RdL + LdR and dL? = 2LdL. Hence, Eqn.@) can be reduced to

d
2
G VR T A 10

Proposition 1. Let (Qo, Ro, Lo) denote a fixed point with parameters Q, R and L of Eqn.(I0).
. . . .. 1
Assume the learning rate 1 is sufficiently small when training converges and x ~ N (0, ~D). If

activation function g is ReLLU, then we have Q¢ = ﬁ, Ry = 1 and Ly could be arbitrary.

Proof. First, L has no influence on the output of student model since w is normalized, which implies
that if (Qo, Ro, Lo) is a fixed point of Eqn., Ly could be arbitrary. Besides, we have n >> n?
because the learning rate 7 is sufficiently small. Therefore, the terms in Eqn. proportional to n?
can be neglected. If (Qo, Ro, Lo) is a fixed point, it suffices to have

n—h(QT;’RO) —0CQo =0, (11)
0
R
nggf3(Qo7 Ro) — U%11(Qo, Ry) =0, (12)
L(] L()

To calculate I; and I3, we define s and ¢ as W' x and w' x. Since x ~ N/(0, +-I), we can acquire

(& )

so probability measure of [s,#]" can be written as

RN
Then,
I = (g (W'x) [g(w*"x) — g(WTx)] W'x)

- / 19/(5) (9(t) — g(s) | DsDt

uU,v

+o00o +oo +o00 +o00
:/ / stDsDt—/ s2 DsDt
0 0 0 —0o0

Q(mR+ 21 — R2 4+ 2Rarcsin(R))  Q?
B 4T 2

13)

18



Published as a conference paper at ICLR 2019

and

@:/w@@@fM@m%m

u,v

= /g'(s)g(t)tDsDt—/g’(s)g(s)tDsDt

L,V U
—+oo +oo +oo +oo

= / / t>?DsDt — / / stDsDt
0 0 0 —oo

m+2RV1 — R? 4+ 2arcsin(R) QR
- 4 2

By substituting Eqn. and into Eqn. and , we get Qp = 2<+1 and Ry = 1. O

Proposition 2. Given conditions in propositio let \&, A% be the eigenvalues of the Jacobian

matrix at fixed point (Qo, Ro, Lo) corresponding to the order parameters QQ and R respectively in
BN. Then

(14)

A%l - 20 (nmax ngg”)ﬂ

?mz" —1¢Qo,

where ™ and ngﬁf are the maximum and effective learning rates respectively in BN.

Proof. At fixed point (Qo, Ro, Lo) = (2C +1> 1, Lo) obtained in proposmo the Jacobian of
dynamic equations of BN can be derived as
or or
&Té =216 Cgo 31'% o 0
g — 0 Lig (Qg%fs _ 311 CQO> . 7725%0 % 0 7
n Q ol
0 203 ok 0

and the eigenvalues of .J* can be obtained by inspection

N5 = g2 —onc,

b _ QoL _ 91 Q5 0l _ 01> 1Q o
N = 7 (%R — 5 —CQB) — B 3 = SRR (nlt —lR)

R — 12\ R
n __
A = 0.
. o Is—1 ol bn
Since 70 = Qo, we have 1, = (22203710 — Cy0) /5% and nlfy = . m

C.6 STABLE FIXED POINTS OF BN

Proposition 3. Given conditions in propositio when activation function is ReLU, then (i) )\gl <0,
and (”) )\bn <0 lﬁcnmax > neff

Proof. When activation function is ReLU, we derive I; = — QUrR+2V1-R*+2Rarcsin(R)) Q2 , which

gives o
ol TR+ 2v1 — R? 4+ 2R arcsin(R)
= 7Q + .
oQ 4
Therefore at the fixed point of BN (Qo, Ro, L) = (2<+1 ,1, Lp), we have
1 0L 1 1 1
o= N—=—==—2() = +7—2 =—(C—=-<0.
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Note that x" x approximately equals 1. We get

L= / 19/(5) (g(t) — g(s))12DsDt

’ +oo +oo +oo +o00 +oo +o0
:/ / U2DsDt+/ / sQDst—2/ / stDsDt (15)
0 0 0 —00 0 — 0o

o Q? n 7R+ 2RvV1 — R? + 2arcsin(R) Q(mR+ 2v1— R? 4+ 2R arcsin(R))
T2 4 a 2m '

At the fixed point we have 22 = —Q, < 0. Therefore, we conclude that \% < 0iff %, > 1. O

C.7 MAXIMUM LEARNING RATE OF BN

Proposition 4. When the activation function is ReLU, then 0, > n;{,ﬁﬁ’sgd } + 2, where 0, and

n&ﬁ@’sgd 4 indicate the maximum learning rates of BN, WN, and vanilla SGD respectively.

_ QmR+2V1— R2+2Rarcsin(R)) Qﬁ2

Proof. From the above results, we have I , which gives
O0I,/OR > 0 at the fixed pomt of BN. Then it can be derived that 81 5B <O. Furthermore at the fixed
point of BN, Q¢ = < 1, then we have

= 2g+1
e = (8(@?% Wy 22
S Hh D) O - SR -l
2 MaR 2 288% %
where the inequality sign holds because (1 — 7)% fgg is positive. Note that Id_h) / 2%[}“% is

also defined as maximum learning rates of WN, and vanilla SGD in|Yoshida et al. (2017) Hence, we
conclude that n,, > ™ 4 o, O

D PROOFS REGARDING GENERALIZATION AND STATISTICAL MECHANICS (SM)

In this section, we build an analytical model for the generalization ability of a single-layer network.
The framework is based on the Teacher-Student model, where the teacher network output y* =
g* (W*T -X + s) is learned by a student network. The weight parameter of the teacher network
satisfies 4 (w*) T - w*=1 and the bias term s is a random variable s ~ N (0, S) fixed for each
training example x to represent static errors in training data from observations. In the generalization
analysis, the input is assumed to be drawn from x ~ N (O7 %I) The output of the student can also
be written as a similar form y = g (W - x), where the activation function g (-) can be either linear
or ReLU in the analysis and w is a general weight parameter which can be used in either WN or
common linear perceptrons. Here we take WN for example, since it has been derived in this study
that BN can be decomposed into WN with a regularization term on . In WN w = ~ H‘va\l and we

1 il )

defined the same order parameter as the previous section that % = e w' - wand YR = N w oW

D.1 GENERALIZATION ERROR

Since the learning task is a regression problem with teacher output biased by a Gaussian noise, it

2
comes natural that we can use the the average mean square error loss €; = % > j (y}k — yj) for the

regression. The generalization error defined as the estimation over the distribution of input x and is
written as

wen () = (" = 9)*) (16)
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where (), denotes an average over the distribution over x. The generalization error is a function of
its weight parameter and can be converted to a function only with regard to the aformentioned order
parameters, detailed derivation can be seen in (Bos) |1998; Krogh & Hertz,|1992).

2
caen(1:R) = [ [ DIaDha [ 57 (h1) = g(yRhy + VT = Roh)] a7

where hiand ho are variables drawn from standard Gaussian distribution and Dh := N (0, 1) dh;.

When both the teacher network and student network have a linear activation function, the above
integration can be easily solved and

gen(V, R) =147° —29R (18)

As for the case where the teacher network is linear and the student network has a ReLLU activation, it
can still be solved first by decomposing the loss function

2
cgen(7, R) = // DhyDhs [hl — g(YRhy +vV/1 - R2h2)}
2
_ // Dy Dhs [+ g(yRhy +7v/T = R2h)? — 2hag(yRhy +7v/1— Reho)|
2 2
-1+ % - 2/ Dhy Dhs {hlg(thl +yv1- R2h2)}

It should be noted that the last two terms should only be integrated over the half space YRh; +
vV 1 — R?hy > 0, and therefore if we define the angle of this line with the ho axis 6y = arccos (R)
the integration is transformed to polar coordinate

2 2
cgen(7, ) =1+ 73 - 2/ Dhy Dhsy [hlg(thl + Wmhg)}

2

T—0o o0 1 2
=1+ L - / dﬁ/ rdr— exp(fr—) (fyR'rQ sin?(0) +vv/1 — R2r? cos (0) sin (0))
2 o, o o 2
2
g
=14+——-9R
* 2

D.2 EQUILIBRIUM ORDER PARAMETERS

Following studies on statistical mechanics, the learning process of a neural network resembles a
Langevin process (Mandt et al., 2017) and at the equilibrium the network parameters 6 follow a Gibbs
distribution. That is, the weight vector that yields lower training error produces higher probability.
We have p() = Z~!exp{—PBe;(0;x)}, where 8 = 1/T and T is temperature, representing the
variance of noise during training and implicitly controlling the learning process. €;(6; x) is an energy
term of the training loss function, Z = [ dP(0) exp{—e:(6;x)/T} is the partition function, and
P () is a prior distribution.

Instead of directly minimizing the energy term above, statistical mechanics finds the minima of free
energy, f, which is a function over 7', considering the fluctuations of 6 at finite temperatures. We
have —3f = (In Z).

By substituting the parameters that minimize f back into the generalization errors calculated above,
we are able to calculate the averaged generalization error, at a certain temperature.

The solution of SM requires the differentiation of f with respect to the order parameters.
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In general, the expression of free energy under the replica theory is expressed as(Seung et al.,[1992)

1 (v -+?R?») 1 : — g2
fﬂf:597¥L72+5mm2—$)+a/ DMDMmL/D@@m<B@29)>]
19)

=g@mh+v%—%mm+v¥—%m)

g" =g "(h1 +s)

(20)

In the above expression, hq, hs, hs are three independent variables following the standard Gaussian
distribution and @ = P/N represents the ratlo of the number of training samples P to number of

unknown parameters NV in the network, R = N Hv‘:lvl\ - W™, q is the prior value of ..

The above equation can be utilized for a general SM solution of a network. However, the solution is
notoriously difficult to solve and only a few linear settings for the student network have close-form
solutions(Bos},|1998)). Here we extend the previous analysis of linear activations to a non-linear one,
though still under the condition that 5 — oo, which means that the student network undergoes a
exhaustive learning that minimizes the training error. In the current setting, the student network is a
nonlinear ReLLU network while the teacher is a noise-corrupted linear one.

Proposition 5. Given a single-layer linear teacher y* = w*x + s and a student ReLU network
Y= g(vﬁx) linear student network with g being a ReLU activation function, x ~ N (0, %) the

free energy f satisfies as f — oo

2p2
B = ;W + (g —?)
(21
o 9 9 af (1 —2yR+~2 + S) af  af
B T v R W

where S is the variance of the Gaussian noise s injected to the output of the teacher.

Proof. The most difficult process in Eqn[I9]is to solve the inner integration over hs. Here as 5 — oo,
it is noted that the function exp (—fSx) only notches up only at © = 0 and is 0 elsewhere. Therefore,

*\ 2
the integration f Dhsexp (*M depends on the value of g*. If g* < 0, no solution exists for

g —g* = 0as g is aReLU activation, and thus the integration is equivalent to the maximum value of
the integral under the limit of 8 — oco. As g* > 0, the integration over the “notch” is equivalent to
the one at full range. That is,

Dhsexp Bl phs >0
/Dh;wxp( blo— g>>: J Dhs ( ‘e '

2 maxp,, exp (*M hi+s<0

The above equation can be readity integrated out and we obtain

*\2
in [ Dhsexp (—W;’”) 51+ 8 (¢ =)
3 (=R — 37— Rhs + )
]

1+ B(q? —~?)

Substituting it back to Eqn[I9] we have its third term equivalent
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B(aﬂmhﬁmhﬁsf
2

Term3:a// DhiDhy | —
hi+s>0 e L+ 8(¢* —7?)

2
// DhyDhy | -2 (= v b = VA7 =" Fha + )
= —
hi1+s>0 ' 2

1+ 5(¢* =)

N |

To solve the above integration, we first realize that s is a random variable to corrupt the output of the
teacher output and the above integration should be averaged out over s. Given that s ~ A (0, S) , it
is easy to realize that

: 1
</ 52Dh> = §, </ Dh> = —, and </ hth> =0
ht5>0 s 2 hts>0 s 2 h+5>0 s

Through simple Gaussian integraions, we get

1 B(l-29R++*+S) B B
Term3 = o | —-In (1 2 _4%) - - C
erm a[ 411( +8(¢*=7%)) 11+ B(Z —2) 4 45
Substituting Term3 back yields the results of the free energy. O

Therefore, by locating the values that minimizes f in the above proposition, we have equilibrium
order parameters

9y aS
& 22
K 20 20—« 22)
and o
YR = — 23)
2a
. N 1+ﬁ(q2—'yz) S N
where a is defined as a = FE= Substituting the order parameters back to the generalization
error, we have
a aS
en=1——+——— 24
‘e 4a+2a(2a—0¢) 24
When a < 2 and 8 — o0, a = 1, the generalization error is
@ asS
en=1——+—7— 25
‘e 1720 a) (2)
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