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Abstract
In this paper, we propose two methods, namely
Trace-norm regression (TNR) and Stable Trace-
norm Analysis (StaTNA), to improve perfor-
mances of recommender systems with side in-
formation. Our trace-norm regression approach
extracts low-rank latent factors underlying the
side information that drives user preference un-
der different context. Furthermore, our novel
recommender framework StaTNA not only cap-
tures latent low-rank common drivers for user
preferences, but also considers idiosyncratic taste
for individual users. We compare performances
of TNR and StaTNA on the MovieLens datasets
against state-of-the-art models, and demonstrate
that StaTNA and TNR in general outperforms
these methods.

1. Introduction
The boom of user activity on e-commerce and social net-
works has continuously fueled the development of recom-
mender systems to most effectively provide suggestions for
items that may potentially match user interest. In highly-
rated Internet sites such as Amazon.com, YouTube, Net-
flix, Spotify, LinkedIn, Facebook, Tripadvisor, Last.fm,
and IMDb, developing and deploying personalized recom-
mender systems lie at the crux of the services they provide
to users and subscribers (Ricci et al., 2015). For example,
Youtube, one of the worlds most popular video sites, has
deployed a recommender system that updates regularly to
deliver personalized sets of videos to users based on their
previous or recent activity on site to help users find videos
relevant to their interests, potentially keeping users enter-
tained and engaged (Davidson et al., 2010).

Among the vast advancements in deep learning and matrix
completion techniques to build recommender systems (Ricci
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et al., 2015; Singhal et al., 2017), one of the most imperative
aspect of research in such area is to identify latent (possibly
low-rank) commonalities that drive specific types of user
behaviour. For example, (Dong et al., 2017) proposes a
deep neural network based matrix factorization approach
that uses explicit rating as well as implicit ratings to map
user and items into common low-dimensional space. Yet,
such variety of low-rank methodologies do not address the
impact of idiosyncratic behaviour among buyers, which may
potentially skew the overall learned commonalities across
user groups.

In this work, we propose two multi-task learning methods
to improve performances of recommender systems using
contextual side information. We first introduce an approach
based on trace-norm regression (TNR) that enables us to
extract low-rank latent dimensions underlying the side in-
formation that drive user preference according to variations
in context, such as item features, user characteristics, time,
season, location, etc. This is achieved by introducing a
nuclear-norm regularization penalty term in the multi-task
regression model, and we highlight that such latent dimen-
sions can be thought of as homogeneous behaviour among
particular types of user groups. Furthermore, we propose
a novel recommender framework called Stable Trace-norm
Analysis (StaTNA) that not only captures latent low-rank
common drivers for user preference, but also considers id-
iosyncratic taste for individual users. This is achieved by, in
addition to the low-rank penalty, adding a sparsity regular-
ization term to exploit the sparse nature of heterogeneous
behaviour. Finally, we test the performance of StaTNA on
the MovieLens datasets against state-of-the-art models, and
demonstrate that StaTNA and TNR in general outperforms
these methods.

2. Preliminaries and the StaTNA Framework
We first introduce some notation that will be adopted
throughout the rest of our work. We let Ω denote the
set of all observed entries, and for any matrix Z, define
Z̄ = PΩ(Z) as Z̄ij = Zij if (i, j) ∈ Ω and 0 other-
wise. We let Y ∈ Rn×p, be the final output of the recom-
mender system, X ∈ Rn×d includes all side information,
and L,S ∈ Rd×p represent the common and idiosyncratic
effects of side information on users. Both L and S can be
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considered as mappings from the side information to the rec-
ommender response. To be more specific, we take a movie
recommender system for example: n can be the number
of movies, p is the number of users, so each entry of Y is
the predicted rating of each user for every movie, whileX
represents the features of each movie where each feature is
d dimensional. When a new movie comes in, we apply L
or/and S to the movie’s feature to predict the rating of each
existing user’s, and recommend the movie to users with high
predicted ratings.

2.1. The Trace-norm Regression (TNR) Approach

Before turning to TNR, we first consider a regularized low-
rank solution for large-scale matrix completion problems
called Soft-Impute (Mazumder et al., 2010), which sheds
light upon the key ideas of trace-norm regression. The Soft-
Impute problem is formulated as the following:

min
1

2
‖PΩ(Y −L)‖2F + λL‖L‖∗,

where ‖·‖F denotes the Frobenius norm and ‖·‖∗ denotes
the nuclear norm. In this formulation, we minimize the
reconstruction error subject to a bound on the nuclear norm,
which serves as a convex relaxation of rank of a matrix and
allows us to exploit the low-rank structure of the matrix L.

Based on similar ideas, trace-norm regression extends this
idea of incorporating regularization on the rank of a matrix
in the context of multi-task learning, as it minimizes square
loss while penalizing large ranks of the coefficient matrix:

min
1

2
‖PΩ(Y −XL)‖2F + λL‖L‖∗.

2.2. Stable Trace-norm Anlaysis (StaTNA)

Similar to our introduction of Soft-Impute and TNR, we first
discuss a non contextual model that incorporates both the
low-rank matrix L and sparse matrix S, namely the stable
principal component pursuit (SPCP) (Wright et al., 2013;
Zhou et al., 2010; Wright et al., 2009):

min
1

2
‖PΩ(Y − (L+ S))‖2F + λL‖L‖∗ + λS‖S‖1,

where ‖·‖1 denotes the sum of absolute values for all entries
of a matrix. ‖S‖1 and ‖L‖∗ models sparsity in S and the
low-rank structure in L respectively. To further illustrate
some intuition for the choice of such norms, we provide an
example in the context of foreground-background separation
in video processing. L can be considered as the stationary
background, which is low-rank due to the strong correlation
between frames; while S can represent foreground objects,
which normally occupy only a fraction of the video and
hence can be treated as sparse. (Mu et al., 2016) Finally, in

light of SPCP, we propose a novel framework called Stable
Trace-norm Analysis (StaTNA) by adding contextual side
information to consideration:

min
1

2
‖PΩ(Y −X(L+ S))‖2F + λL‖L‖∗ + λS‖S‖1.

Note that StaTNA can be considered as a combination of
trace norm regression and SPCP, and some theoretical as-
pects are discussed in (Agarwal et al., 2012). The matrix
L captures latent homogeneity among preferences of users,
such as an Academy Award winning film would be prefer-
able to many users. On the other hand, idiosyncratic tastes
of users are embodied in S, such as some users particu-
larly like horror movies that involve robots and monsters.
Note that S can also be considered as a way to be robust to
outliers in user behaviour or preference. In the case where
X is the identity matrix, this problem is reduced to SPCP.
Also, TNR can be considered as a special case of StaTNA
by taking λS = ∞, which explains why StaTNA will in
general be more robust compared to TNR.

2.3. Solving TNR and StaTNA with FISTA

In this subsection we will only briefly discuss the method-
ologies used in this paper to solve TNR and StaTNA,
due to space limitations. We first highlight the compu-
tational feasibility for both models since methods such as
proximal gradient descent (Nesterov, 2013) or (Fast) Itera-
tive Shrinkage-Thresholding Algorithm (FISTA, (Beck &
Teboulle, 2009)) can be used to solve these problems with
provable (sub)linear convergence rate (Karimi et al., 2016).
For StaTNA, we directly apply FISTA to estimate L and S,
and the procedure is detailed in Algorithm 1 in Appendix
A.1. Next, as aforementioned, TNR is a special case for
StaTNA, so to solve TNR, we simply take λS = ∞ in
Algorithm 1. We also point out that Algorithm 1 may be
computationally expensive when the matrix is large. In Ap-
pendix A.2 we will propose several modifications to our
method for solving TNR and StaTNA which will enable us
to improve computational complexity.

3. Experiment
3.1. Dataset

In our work, we consider the MovieLens 100K and Movie-
Lens 1M datasets. The summary for both datasets are shown
in Table 1 Note that MovieLens 1M movies do not include
all MovieLens 100k movies. In both datasets, each user
has rated at least 20 movies, and ratings are whole numbers
in the scale of 1-5. In addition, each dataset is associated
with a side information matrix whose rows are indexed by
movies and includes 1 feature column denoting the movie
category (19 categories in total), along with 1128 columns
which denote relevant scores of a movie to provided tags.
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Dataset Ratings Items Users Observed
MovieLens 100K 100,000 943 1682 6.30%
MovieLens 1M 1,000,209 6040 3706 4.47%

Table 1. Summary of the MovieLens 100K and MovieLens 1M
datasets. Ratings: total number of user ratings available; Items:
total number of movies; Users: number of users; Observed: per-
centage of available ratings.

3.2. Experiment Setup

We pre-process side information to obtain two types of side-
information matrices. For the first type, we apply one-hot-
encoding to the categorical feature and obtain 19 categorical
features for each dataset. The final side information matrix
is the concatenation of this categorical representation and
relevance scores to given tags, which has dimensions n×
1147 where n is the number of movies in each dataset. For
the second type, in addition to one-hot-encoding, we apply
GloVe word embeddings with K = 300 (Pennington et al.,
2014) to these categories using an average pooling trick,
and result in a 300-dimensional categorical representation
vector for each movie. The final side information matrix
has dimensions n× 1428. For simplicity, we use the suffix
“-G” to denote models trained on the second type of side
information processed using GloVe word embedding, while
models without this suffix will denote models trained on the
first type of side information.

In this work, we perform two experiments: 1. (Matrix com-
pletion with side information) We fill in missing values in
the rating matrix using the pre-processed side information
matrix, which is the traditional matrix completion problem.
For each dataset, we randomly select 20% of observed val-
ues in the rating matrix as the test set, and train TNR &
StaTNA, and TNR-G & StaTNA-G on the two types of
side-information matrices respectively. We use state-of-the-
art models such as SVD, Sparse FC, and GC-MC as our
baseline. Here we point out that these baseline models do
not incorporate side information, opposed to our TNR and
StaTNA models which are trained on side information. Yet,
our experimental results will demonstrate that our proposed
models, via utilizing side information, will significantly
improve performance in this matrix completion task. 2.
(Regression) We predict the ratings for new movies based
on new side information of the movie, which is similar to
the traditional regression problem. For each dataset, we
train TNR, TNR-G, StaTNA, StaTNA-G on a randomly
selected 80% of all movies and apply trained models on
the remaining 20%. Furthermore, both experiments involve
two hyperparameters, namely λL and λS , which are tuned
using 10-fold cross validation. We use Lasso, Elastic Nets,
Multi-task Lasso and Multi-task Elastic Nets (Obozinski
et al., 2006) as our baseline models. Note that standard
Lasso and standard Elastic Nets are trained for each user
independently to predict the user’s rating for a given movie.

The matrix formulations of these baseline models are shown
in Table 6 in Appendix B.2. Finally, we evaluate model
performance using mean absolute error (MAE) and root
mean square error (RMSE) on the test set.

3.3. Performance Results

MovieLens 1M MovieLens 100K
Method RMSE MAE RMSE MAE
SVD 0.874 0.687 0.934 0.737
SVD++ 0.863 0.673 0.921 0.722
k-NN 0.922 0.706 0.930 0.733
GC-MC 0.832 - 0.910 -
Sparse FC 0.824 - 0.890 -
TNR 0.780 0.600 1.032 0.823
TNR-G 0.778 0.595 1.031 0.825
StaTNA 0.783 0.596 1.034 0.826
StaTNA-G 0.768 0.585 1.037 0.828

Table 2. MAE and RMSE for test data in Experiment 1 (matrix
completion) for baseline models, TNR and StaTNA using Movie-
Lens 100K and MovieLens 100M. Note that TNR-G and StaTNA-
G represents TRN and StaTNA trained on side information pro-
cessed using GloVe word embedding.

Experiment 1: Matrix Completion with Side Informa-
tion As shown in the out of sample results in Table 2,
StaTNa significantly outperforms state-of-the-art models
including Sparse FC and GC-MC on MovieLens 1M, re-
sulting in a test set 0.768 RMSE and 0.585 MAE. This
illustrates that StaTNA with GloVe embedding applied to
side information greatly improves movie rating predictions.
Among baseline models, Sparse FC yields the best result
for the MovieLens 1M matrix completion problem, but we
highlight that Sparse FC relies on complex neural network
structure and hence causes many difficulties in model in-
terpretation. Furthermore, for MovieLens 1M, the memory
size of weights and multiply accumulate operations (MAC)
for Sparse FC are extremely large, amounting to 7.00M and
2.23M. On the other hand, results for StaTNA can be ana-
lyzed through investigating the structure inL and S, and the
memory size of StaTNA weights and MAC are only 3.33M
and 0.87M respectively, which imply that StaTNA is more
applicable for real-time edge computing.

We notice that both TNR and StaTNA do not perform as
well as state-of-the-art models in MovieLens 100K. One
explanation is that our models require more training data
compared to baseline models to fully capture latent struc-
tures of bothL and S in order to generalize well on test data.
Finally, we also point out that StaTNA converges faster, and
in general performs better than TNR, as shown in Figure 1
within Appendix C.1.

Experiment 2: Regression In the second experiment to
predict user ratings for movies, as shown in Table 3, for
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MovieLens 1M MovieLens 100K
Method RMSE MAE RMSE MAE
Lasso 3.454 3.277 2.851 2.527
Lasso-G 3.512 3.344 2.877 2.558
EN 3.355 3.167 2.863 2.491
EN-G 3.320 3.132 2.887 2.557
MT-Lasso 2.703 2.418 2.859 2.522
MT-Lasso-G 2.681 2.389 2.819 2.519
MT-EN 2.709 2.406 2.886 2.503
MT-EN-G 2.707 2.401 2.921 2.550
TNR 0.782 0.597 1.137 0.911
TNR-G 0.760 0.579 1.117 0.891
StaTNA 0.752 0.575 1.156 0.918
StaTNA-G 0.735 0.563 1.141 0.908

Table 3. MAE and RMSE for test data in Experiment 2 (regression)
for baseline models (Lasso and Elastic Nets (denoted as EN)),
TNR and StaTNA using MovieLens 100K and MovieLens 1M.
The prefix “MT” is the abbreviation for “Multi-task”.

MovieLens 100K, all StaTNA and TNR models significantly
outperform baseline models, while TNR with GloVe embed-
ding yields the best out-of-sample performance. For Movie-
Lens 1M, StaTNA with GloVe embedding results in the best
out-of-sample performance compared to all other baseline
models including TNR, with and without GloVe embed-
ding. The strong performance of StaTNA and StaTNA-G
across both experiments, and especially in MovieLens 1M,
indicates that our StaTNA framework provides promising
performance guarantees for solving both matrix completion
and regression tasks.

3.4. Discussion on Interpretability for StaTNA

As mentioned in earlier sections, we are interested in analyz-
ing particular underlying commonalities in user preferences.
We achieve this by investigating the principal components
of our estimate of the low-rank matrix L, each of which
we consider as a common type of user preference. Since
our estimated L is of rank 6, we conclude that there are 6
major common types of user preferences, whose component
scores (i.e. explained variance percentages) are listed in
Table 4, where we observe that the first principal component
explains 88.94% of the variability in user ratings. Table
5 shows the top 12 features of highest absolute weights
within the first two principal components. The first prin-
cipal component (PC1) indicates that users’ preferences
incline towards movies that are more likely to appeal to the
general public, for example original movies, movies with
great endings, movies that are relevant to cultural issues, etc.
The second principle component (PC2) indicates that user
preferences are influenced by overall movie quality, such
that they do not prefer movies with bad plots (perhaps too
predictable) or have bad acting. We highlight that we do

not compare values of features across different principal
components. For example, in PC1 feature with positive
values indicate such features are more preferable, but in
PC2 positive values means such features are less preferable,
which makes sense since the feature surprisingly clever is
negative in PC2.

PC1 PC2 PC3 PC4 PC5 PC6
Var (%) 88.94 5.32 2.16 1.55 1.34 0.69

Table 4. Explained variance percentage for all 6 principal compo-
nents.

Top PC1 Features Weights PC2 Features Weights
1 intercept 0.40 predictable 0.23
2 original 0.21 bad plot 0.16
3 catastrophe 0.16 big budget 0.15
4 great 0.15 horrible 0.14

5 surprisingly
clever 0.13 plot 0.12

6 mentor 0.12 lame 0.12
7 good 0.12 pg-13 0.12

8 life
philosophy 0.12 destiny 0.11

9 dialogue 0.12 bad acting 0.11

10 culture clash 0.11 so bad
it’s funny 0.11

11 great ending 0.11 surprisingly
clever -0.11

12 runaway 0.11 silly 0.11

Table 5. Top 12 features of highest absolute weights within the
first two principal components (PC1 and PC2). Details of other
principle components are shown in Table 7 in Appendinx C.2.

4. Future Work and Conclusion
Our methodology to solve TNR and StaTNA (i.e. Algorithm
1 in Appendix A.1) may be computationally expensive when
the matrix is large since it requires calling a Singular Value
Decomposition (SVD) oracle in each iteration of the algo-
rithm. Hence we propose two alternative methods, a FW-T
algorithm and a nonconvex reformulation of the problem, to
avoid using an SVD oracle. These are detailed in Appendix
A.2. Furthermore, our current studies use side information
from only one side, namely movie information. Our StaTNA
framework can be extended to incorporate side information
for both movies and users:

min
1

2
‖PΩ(Y −XM (LM + SM )− (LU + SU )XU‖2F

+λLM ‖LM‖∗ + λSM ‖SM‖1 + λLU ‖LU‖∗ + λSU ‖SU‖1.

where U and M denotes users and movies respectively.
Moreover, our StaTNA framework is also compatible with
neural networks by including nuclear norm and sparse penal-
ties to the objective. We believe that similar formulations
will provide us with better performance guarantees, but at
the cost of model interpretability.
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Supplementary Material

A. Algorithms for Solving TNR and StaTNA
A.1. FISTA algorithm

In this section, we discuss the methodologies we use to solve TNR and StaTNA. As mentioned earlier, we use (Fast) Iterative
Shrinkage-Thresholding Algorithm (FISTA, (Beck & Teboulle, 2009)) to solve these problems. Before we address the
detailed applications of these algorithms in our context to solve TNR and StaTNA, we introduce the following optimization
oracles. We define the proximal mapping of the `1 norm as Tλ[Y ] = arg min 1

2‖X − Y ‖
2
F + λ‖X‖1, where Tλ : R→ R

denotes the soft-thresholding operator Tλ(x) = x
(

1− λ
|x|

)+

, whose extension to matrices is obtained by applying the
scalar operator to each element. Moreover, we define the proximal mapping of the nuclear norm (Cai et al., 2010; Ma
et al., 2011) as Sλ[Y ] = arg min 1

2‖X −Y ‖
2
F + λ‖X‖∗, where Sλ[Y ] = UTλ[D]V >, and Y = UDV > is the SVD of

matrix Y . Now, using these definitions, we detail the algorithm to solve StaTNA in Algorithm 1. Note that one can also
initialize L0 in both Algorithm 1 as L0 = (X>X)†X>PΩ(Y ), where † denotes the pseudo-inverse of a matrix.

For StaTNA, we directly apply FISTA to estimate L and S, and the procedures are detailed in Algorithm 1. As aforemen-
tioned, TNR is a special case for StaTNA, so to solve TNR, we simply take λS =∞ in Algorithm 1, which forces all Sk

and Ŝk to 0.

Algorithm 1 FISTA for StatNA

1: Given Y ,X set L̂0 = L0 = 0, Ŝ0 = S0 = 0, t0 = 1
2: Let L = λmax(X>X)
3: for k = 0, 1, . . . do
4: Gk = −X>PΩ(Y −XL̂k −XŜk)

5: Lk+1 = SλL/L[L̂k −Gk/L]

6: Sk+1 = TλS/L[Ŝk −Gk/L]

7: tk+1 =
1+
√

1+4(tk)2

2

8: L̂k+1 = Lk+1 + tk−1
tk+1 (Lk+1 −Lk)

9: Ŝk+1 = Sk+1 + tk−1
tk+1 (Sk+1 − Sk)

10: end for
11: return Lk+1,Sk+1

A.2. Extension on Algorithm Scalability

In Algorithm 1, we call an SVD oracle in each iteration in FISTA to find the proximal mapping of the nuclear norm, which is
computationally expensive when the matrix is large, i.e. the number of movie features and users are large. Here we propose
two methods to avoid using an SVD oracle.

First, inspired by a scalable algorithm FW-T on SPCP (Harchaoui et al., 2015; Mu et al., 2016), we propose a similar FW-T
algorithm to solve StaTNA by replacing the proximal mapping of the nuclear norm with a Frank-Wolfe update in each
iteration. To be more specific, we consider the following reformulation of StaTNA:

min
1

2
‖PΩ(Y −X(L+ S))‖2F + λLtL + λStS

s.t. ‖L‖∗ ≤ tL ≤ UL
‖S‖∗ ≤ tS ≤ US ,

for some UL and US such that the optimal solution (L?,S?) is still feasible to the above problem, i.e. ‖L?‖∗ ≤ UL and
‖S?‖∗ ≤ US . For simplicity, we write the above objective function as g(L,S, tL, tS). In each iteration of the FW-T
algorithm, we call the following Frank-Wolfe oracle (Algorithm 2) for L and S respectively. We can see that for the
Frank-Wolfe update for matrix L only requires to compute the leading singular pairs for a matrix, which can be achieved
by computationally cheap power iteration (Jaggi, 2013). In addition, we perform an exact line-search by easily solving a
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Algorithm 2 Frank-Wolfe Oracle Fλ(G, U, ‖·‖)
1: D? ∈ arg min‖D‖≤1〈D,G〉
2: if λ ≥ −〈D?,G〉 then
3: return (V ?, t?) = (0, 0)
4: else
5: return (V ?, t?) = (UD?, U)
6: end if

quadratic problem Pk.

min g(L,S, tL, tS)

s.t.
(
L
tL

)
∈ conv

{(
0
0

)
,

(
Lk

tkL

)
,

(
V k
L

V ktL

)}
(
S
tS

)
∈ conv

{(
0
0

)
,

(
Sk

tkS

)
,

(
V k
S

V ktS

)}
.

(Pk)

The full algorithm for the FW-T is detailed in Algorithm 3.

Algorithm 3 FW-T for StatNA
1: Given Y ,X set L0 = S0 = 0, t0L = t0S = 0; U0

L = g(L0,S0, t0L, t
0
S)/λL, U0

S = g(L0,S0, t0L, t
0
S)/λS

2: Let L = λmax(X>X)
3: for k = 0, 1, . . . do
4: Gk = −X>PΩ(Y −XLk −XSk)
5: (V k

L , V
k
tL) = FλL(Gk, UkL, ‖·‖∗)

6: (V k
S , V

k
tS ) = FλS (Gk, UkS , ‖·‖1)

7:
(
L̂k, Ŝk, t̂kL, t̂

k
S

)
∈ arg min(Pk)

8: Ĝk = −X>PΩ(Y −XL̂k −XŜk)

9: Sk+1 = Tλ2/L[Ŝk − Ĝk/L]

10: Lk+1 = L̂k, tk+1
L = t̂kL, tk+1

S = ‖Sk+1‖1
11: Uk+1

L = g(Lk+1,Sk+1, tk+1
L , tk+1

S )/λL
12: Uk+1

S = g(Lk+1,Sk+1, tk+1
L , tk+1

S )/λS
13: end for
14: return Lk+1,Sk+1

Second, we propose a nonconvex formulation of the problem suggested by (Aravkin et al., 2014; Srebro et al., 2005):

min
1

2
‖PΩ(Y −X(UV > + S))‖2F +

λL
2

(‖U‖2F + ‖V ‖2F ) + λS‖S‖1,

where U ∈ Rd×r,V ∈ Rp×r. This problem is nonconvex but smooth, and these two problems are equivalent in the sense
that there is a ono-on-one correspondence between the global minima of these two problems (Burer & Monteiro, 2005;
Driggs et al., 2019). Since this new formulation has multi-affine structure, according to new results given by (Gao et al.,
2018), we can use ADMM to solve this, which is detailed in Algorithm 4.

To apply ADMM on this nonconvex reformulation, we further reformulate the problem as the following

min
1

2
‖PΩ(N)‖2F +

λL
2

(‖U‖2F + ‖V ‖2F ) + λS‖S‖1

s.t. Y −X(L+R)−N = 0,

UV > −L = 0,

S −R = 0

(1)
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Algorithm 4 ADMM for nonconvex StaTNA
1: Given Y ,X , set L0 = S0 = U0 = V 0 = N0 = R0 = Λ0

Y = Λ0
L = Λ0

S = 0, set ρY , ρL, ρS
2: for k = 0, 1, . . . do
3: Uk+1 = (ρLL

k −Λk
L)V k[λLI + ρL(V k)>V k]−1

4: V k+1 = (ρLL
k −Λk

L)>Uk+1[λLI + ρL(Uk+1)>Uk+1]−1

5: Sk+1 = TλS/ρS [Rk −Λk
S/ρS ]

6: Lk+1 = [ρLI + ρYX
>X]−1[ρLU

k+1(V k+1)> + Λk
L +X>Λk

Y + ρYX
>(Y −XRk −Nk)]

7: Rk+1 = [ρSI + ρYX
>X]−1[ρSS

k+1 + Λk
S +X>Λk

Y + ρYX
>(Y −XLk+1 −Nk)]

8: Nk+1 = 1
ρY +1PΩ[Λk

Y + ρY Y − ρYX(Lk+1 +Rk+1)] + 1
ρY
P⊥Ω [Λk

Y + ρY Y − ρYX(Lk+1 +Rk+1)]

9: Λk+1
Y = Λk

Y + ρY [Y −X(Lk+1 +Rk+1)−Nk+1]

10: Λk+1
L = Λk

L + ρL[Uk+1(V k+1)> −Lk+1]

11: Λk+1
S = Λk

S + ρS(Sk+1 −Rk+1)
12: end for
13: return Lk+1,Sk+1

B. Summary for Formulations
B.1. Summary for norms

Norms Formula Comments

‖X‖F
(∑

i,j x
2
ij

)1/2 Frobineous norm
`2-norm of vectorizedX

‖X‖∗
∑
k σk(X)

Nuclear norm
`1-norm of singular values ofX

‖X‖1
∑
i,j |xij |

`1-norm of vectorizedX
`1-norm of `1-norm of each row ofX

‖X‖21

∑
i

(∑
j x

2
ij

)1/2

`1-norm of `2-norm of each row ofX

B.2. Summary for models

Framework Model Formulation Measurement Weight Regularizer

Regression Lasso min
1

2
‖PΩ(Y −XW )‖2F + λ‖W ‖1 X W λ‖W ‖1

ElasticNet min
1

2
‖PΩ(Y −XW )‖2F + λρ‖W ‖1 +

λ(1− ρ)
2

‖W ‖2F X W λρ‖W ‖1 +
λ(1−ρ)

2 ‖W ‖2F

MTR MT-Lasso min
1

2
‖PΩ(Y −XW )‖2F + λ‖W ‖21 X W λ‖W ‖21

MT-EN min
1

2
‖PΩ(Y −XW )‖2F + λρ‖W ‖21 +

λ(1− ρ)
2

‖W ‖2F X W λρ‖W ‖21 +
λ(1−ρ)

2 ‖W ‖2F

MC Soft-Impute min
1

2
‖PΩ(Y − L)‖2F + λL‖L‖∗ X = I W = L λL‖L‖∗

SPCP min
1

2
‖PΩ(Y − (L + S))‖2F + λL‖L‖∗ + λS‖S‖1 X = I W = L + S λL‖L‖∗ + λS‖S‖1

Ours TNR min
1

2
‖PΩ(Y −XL)‖2F + λL‖L‖∗ X W = L λL‖L‖∗

StatNA min
1

2
‖PΩ(Y −X(L + S))‖2F + λL‖L‖∗ + λS‖S‖1 X W = L + S λL‖L‖∗ + λS‖S‖1

Table 6. Summary for formulations of models. MTR is the abbreviation for multitask regression, while MC is the abbreviations for matrix
completion.

C. Additional Stuff
C.1. Experiment Figures (Figures 1 and 2)

C.2. Other Principal Components (Table 7)
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Figure 1. Experiment 1 (matrix completion) for MovieLens 1M. Left: Traning loss vs. number of iterations; Right: Test RMSE vs.
number of iterations.

Figure 2. Experiment 2 (regression) for MovieLens 1M. Left: Traning loss vs. number of iterations; Right: Test RMSE vs. number of
iterations.

Top PC3 Features Weights PC4 Features Weights PC5 Features Weights PC6 Features Weights
1 goofy -0.14 intercept -0.16 Drama -0.15 Adventure 0.16
2 girlie movie 0.14 interesting 0.13 good action 0.11 tense -0.12
3 brutality -0.11 great movie 0.13 chase 0.11 Drama -0.11
4 stupidity -0.11 intense 0.12 action 0.11 weird 0.11
5 romantic 0.10 narrated 0.11 great movie 0.11 fantasy 0.11
6 sweet 0.10 great acting 0.11 exciting 0.11 fantasy world 0.10
7 family 0.10 imdb top 250 0.11 franchise 0.11 Sci-Fi 0.10
8 violence -0.10 dark 0.10 series 0.10 mythology 0.10
9 Horror -0.10 excellent script 0.10 quotable 0.10 imagination 0.10

10 love story 0.10 dark humor 0.10 fighting 0.10 visually stunning 0.09
11 cult classic -0.10 very good 0.10 hilarious 0.10 suspense -0.09
12 silly fun -0.09 drama 0.10 humor 0.10 superheroes 0.09

Table 7. Top 12 features of highest absolute weights within the third to sixth principal components (PC3, PC4, PC5 and PC6)


