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ABSTRACT

Contextualized word representations, such as ELMo and BERT, were shown to
perform well on various semantic and structural (syntactic) task. In this work,
we tackle the task of unsupervised disentanglement between semantics and struc-
ture in neural language representations: we aim to learn a transformation of the
contextualized vectors, that discards the lexical semantics, but keeps the structural
information. To this end, we automatically generate groups of sentences which are
structurally similar but semantically different, and use metric-learning approach to
learn a transformation that emphasizes the structural component that is encoded in
the vectors. We demonstrate that our transformation clusters vectors in space by
structural properties, rather than by lexical semantics. Finally, we demonstrate the
utility of our distilled representations by showing that they outperform the original
contextualized representations in a few-shot parsing setting.

1 INTRODUCTION

Human language1 is a complex system, involving an intricate interplay between meaning (seman-
tics) and structural rules between words and phrases (syntax). Self-supervised neural sequence mod-
els for text trained with a language modeling objective, such as ELMo (Peters et al., 2018), BERT
(Devlin et al., 2019), and RoBERTA (Liu et al., 2019b), were shown to produce representations
that excel in recovering both structure-related information (Gulordava et al., 2018; van Schijndel &
Linzen; Wilcox et al., 2018; Goldberg, 2019) as well as in semantic information (Yang et al., 2019;
Joshi et al., 2019).

In this work, we study the problem of disentangling structure from semantics in neural language
representations: we aim to extract representations that capture the structural function of words and
sentences, but which are not sensitive to their content. For example, consider the sentences:

1. Neural networks are interesting. 3. I study neural networks.
2. Maple syrup is delicious. 4. John loves maple syrup.

While (1) and (2) are different in content, they share a similar structure, the corresponding words
in them, while unrelated in meaning,2 serve the same function. Similarly for sentences (3) and (4).
In contrast, sentence (1) shares the phrase neural networks with sentence (3) and maple syrup is
shared between (2) and (4).3 While the two occurrences of each phrase share the meaning, they
are used in different structural (syntactic) configurations, serving different roles within the sentence
(appearing in subject vs object position).4 We seek a representation that will expose the similarity
between “networks” in (1) and “syrup” in (2) while ignoring the similarity between “syrup” in (2)
and “syrup” in (4).

1In this work we focus on English.
2We focus on lexical semantics.
3There is a syntactic distinction between the two, with “maple” being part of a noun compound and “neural”

being an adjective. However, we focus in their similarity as noun modifiers in both phrases.
4These differences in syntactic position are also of relevance to language modeling, as different positions

may pose different restrictions on the words that can appear in them.
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We aim to learn a function from contextualized word representations to a space that exposes these
similarities. Crucially, we aim to do this in an unsupervised manner: we do not want to inform the
process of the kind of structural information we want to obtain. We do this by learning a transforma-
tion that attempts to remove the lexical-semantic information in a sentence, while trying to preserve
structural properties.

Disentangling syntax from lexical semantics in word representations is a desired property for sev-
eral reasons. From a purely scientific perspective, once disentanglement is achieved, one can better
control for confounding factors and analyze the knowledge the model acquires, e.g. attributing
the predictions of the model to one factor of variation while controlling for the other. In addi-
tion to explaining model predictions, such disentanglement can be useful for the comparison of
the representations the model acquires to linguistic knowledge. From a more practical perspective,
disentanglement can be a first step toward controlled generation/paraphrasing that considers only
aspects of the structure, akin to the style-transfer works in computer vision, i.e., rewriting a sentence
while preserving its structural properties while ignoring its meaning, or vice-versa. It can also in-
form search-based application in which one can search for “similar” texts while controlling various
aspects of the desired similarity.

To achieve this goal, we begin with the intuition that the structural component in the representation
(capturing the form) should remain the same regardless of the lexical semantics of the sentence (the
meaning). Rather than beginning with a parsed corpus, we automatically generate a large number of
structurally-similar sentences, without presupposing their formal structure (§3.1). This allows us to
pose the disentanglement problem as a metric-learning problem: we aim to learn a transformation of
the contextualized representation, which is invariant to changes in the lexical semantics within each
group of structurally-similar sentences (§3.3). We demonstrate the structural properties captured by
the resulting representations in several experiments (§4), among them automatic identification of
structurally-similar words and few-shot parsing.

2 RELATED WORK

The problem of disentangling different sources of variation has long been studied in computer vision,
and was recently applied to neural models (Bengio et al., 2013; Mathieu et al., 2016; Hadad et al.,
2018). Such disentanglement can assist in learning representations that are invariant to specific
factors, such as pose-invariant face-recognition (Peng et al., 2017) or style-invariant digit recognition
(Narayanaswamy et al., 2017). From a generative point of view, disentanglement can be used to
modify one aspect of the input (e.g., “style”), while keeping the other factors (e.g., “content”) intact,
as done in neural image style-transfer (Gatys, 2017).

In the field of NLP, disentanglement is much less researched. In controlled natural language genera-
tion and style transfer, several works attempted to disentangle factors of variation such as sentiment
or age of the writer, with the intention to control for those factors and generate new sentences with
specific properties, or transfer existing sentences to similar sentences that differ only in the those
properties. Several works (Sohn et al., 2015; Ficler & Goldberg, 2017) have trained conditional
generative models by explicitly conditioning a decoder network with a vector of attributes. On train-
ing, the attributes derive from the training sentence, while in testing the conditioning vector can be
set to generate a text with the desired attributes. Other works Fu et al. (2018); Hu et al. (2017) aim
to achieve style transfer (as opposed to generation) by explicitly training representations that are
invariant to the controlled attributes (e.g. by co-training of a generator and attribute discriminator).
A decoder generates the transferred text from the disentangled representation and from an explicit
attribute representation. Lample et al. (2018) use a conditioned back-translation approach to achieve
a similar goal. While these works try to disentangle sentence-level attributes, in this study we focus
on disentangling between two components in the representations of individual words.

Several works examine the way semantic and syntactic information is distributed across the layers of
neural models of text (Blevins et al., 2018; Tenney et al., 2019). They use diagnostic classifiers (Adi
et al., 2016; Hupkes et al., 2018) to predict syntactic properties and demonstrate that different parts of
the model encode information in different levels of abstraction (e.g. POS information, dependency
label and semantic role). Liu et al. (2019a) used diagnostic classifiers trained to predict various
syntactic and semantic properties from state-of-the-art LMs representations, and demonstrated that
many syntactic and semantic distinctions are encoded in the probed representations. Clark et al.
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(2019) probed the attention patterns of BERT, and showed that individual attention-heads focus in
syntactically-meaningful relations in the input.

Beyond the descriptive level, recent works have focused on supervised extraction of syntax-related
representations from neural representations. Artetxe et al. (2018) used a linear transformation, in-
spired from the notion of ”similarity order” in classic word representation learning, to tailor uncon-
textualized word representations to syntactic vs. semantic tasks. Hewitt & Manning (2019) demon-
strated that it is possible to train a linear transformation, under which squared euclidean distance
between transformed contextualized word vectors correspond to the distances between the respec-
tive words in the syntax tree that represents the hierarchical structure of the sentence. Concurrent to
this work, Li & Eisner (2019) have used a variational estimation method (Alemi et al., 2016) of the
information-bottleneck principle (Tishby et al., 1999) to extract word embeddings that are useful to
the end task of parsing.

While impressive, those works presuppose a specific formal syntactic structure (e.g. annotated parse
trees following a specific linguistic annotation schema) and use this syntactic signal to learn struc-
tural information in a supervised manner. In other words, these works assume a given structure,
and use supervision to make the structural information more salient, mapping (or forcing) the neural
representations to known linguistic properties. In contrast, we aim to expose the structural informa-
tion encoded in the network in an unsupervised manner, without pre-supposing an existing syntactic
annotation scheme.

3 METHOD

Our goal is to learn a function f : Rn 7→ Rm, which operates on contextualized word representations
x and extracts vectors f(x) which make the structural information encoded in x more salient, while
discarding as much lexical information as possible. In the sentences “Maple syrup is delicious” and
“Neural networks are interesting”, we want to learn a f such that f(v2syrup) ≈ f(v1networks), where
viword is the contextualized vector representation of the word in sentence i. We also want f(v4syrup) ≈
f(v3networks), while keeping f(v1networks) 6≈ f(v3networks).

Moreover, we would like the relation between the words “maple” and “delicious” in the sec-
ond sentence, to be similar to the relation between “neural” and “interesting” in the first sen-
tence: pair(v2maple, v

2
delicious) ≈ pair(v1neural, v

1
interesting). Operativly, we represent pairs of words (x, y)

by the difference between their transformation f(x) − f(y), and aim to learn f that preserves:
f(v2maple) − f(v2delicious) ≈ f(v1neural) − f(v1interesting). The choice to represent pairs this way was in-
spired by several works that demonstrated that nontrivial semantic and syntactic relations between
uncontextualized word representations can be approximated by simple vector arithmetic (Mikolov
et al., 2013a;b; Levy & Goldberg, 2014).

To learn f , we start with groups of sentences that the sentences within each group are known to share
their structure but differ in their lexical semantics. We call the sentences in each group structurally
equivalent. Figure 1 shows an example of two structurally equivalent sets. Acquiring such sets
is challenging, especially if we do not assume a known syntactic formalism and cannot mine for
sentences based on their observed tree structures. To this end, we automatically generate the sets
starting with known sentences and sampling variants from a language model (§3.1). Our sentence-
set generation procedure ensures that words from the same set that share an index also share their
structural function. We call such words corresponding.

Figure 1: Two groups of structurally-equivalent sentences. In each group, the first sentence is origi-
nal sentence from Wikipedia, and the sentences below it were generated by the process of repeated
BERT substitution. Some sets of corresponding words–that is, words that share the same structural
function–are highlighted in the same color.
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We now proceed to learn a function f to map contextualized vectors of corresponding words (and
the relations between them, as described above) to neighbouring points in the space.

We train f such that the representation assigned to positive pairs — pairs that share indices and
come from the same equivalent set — is distinguished from the representations of negative pairs
— challenging pairs that come from different sentences, and thus do not share the structure of the
original pair, but can, potentially, share their lexical meaning. We do so using Triplet loss, which
pushes the representations of pairs coming from the same group closer together (§3.3). Figure 2
sketches the network.

Figure 2: An illustration of triplet-loss calculation. Pairs of words are represented by the difference
between their transformation f , which is identical for all words. The pairs of words in the anchor and
positive sentences are lexically different, but structurally similar. The negative example presented
here is especially challenging, as it is lexically similar, but structurally different.

3.1 GENERATING STRUCTURALLY-SIMILAR SENTENCES

In order to generate sentences that approximately share their structure, we sequentially replace con-
tent words in the sentence with other content words, while aiming to maintain the grammatically of
the sentence, and keep its structure intact. Replacing words with words of the same POS, as done
in Gulordava et al. (2018), does not answer to those requirements, as this method does not respect
various restrictions that apply to words that share different function within the sentence. For exam-
ple, verb argument structure dictates limitations on the arguments the predicate receives, and verbs
differ in properties such as whether or not they accept a complement.

Replacing verbs with other verbs does not guarantee fulfilling these limitations. Since we do not
want to rely on syntactic annotation (apart from the level of POS tags) when performing this re-
placement, we opted to use a pre-trained language model – BERT – under the assumption that strong
neural language models do implicitly encode many of the syntactic restrictions that apply to words
in different grammatical functions (e.g., we assume that BERT would not predict a transitive verb in
the place of an intransitive verb, or a verb that accepts a complement in the place of a verb that does
not accept a complement). While this assumption seems to hold with regard to basic distinctions
such as transitive vs. intransitive verbs, its validity is less clear in the more nuanced cases, in which
small differences in the surface level can translate to substantial differences in the deep structure –
such as replacing a control verb with a raising verb. This is a limitation of the current approach,
although we find that the average sentence we generate is grammatical and similar in structure to
the original sentence. Moreover, as our goal is to expose the structural similarity encoded in neu-
ral language models, we find it reasonable to only capture the distinctions that are captured by a
state-of-the-art neural language model.

Implementation Concretely, we rely on a BERT masked LM model. We start each group with
a Wikipedia sentence, for which we generate k = 6 equivalent sentences by iterating over the
sentence from left to right sequentially, masking the ith word, and replacing it with one of BERT’s
top-30 predictions. Crucially, to increase semantic variability, we perform the replacement in place
(online), that is, after randomly choosing a guess w, we insert w to the sentence at index i, and
continue guessing the i + 1 word based on the modified sentence.5 We exclude a closed set of
a few dozens of words (mostly function words) and keep them unchanged in all k variations of a

5We note that this process bears some similarity to Gibbs sampling from BERT conditioned LM.
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sentence. To the extent that BERT learns to recover corrupted sentences by suggesting replacements
that respect the probability distribution of actual natural language, the suggestions would be both
semantically and structurally correct. We further maintain structural correctness by maintaining the
POS, and encourage semantic diversity by the auto-regressive replacement process. We find that
the average sentence is grammatical and maintain the structure of the original sentence, although
some generated sentences violate these requirements. In the appendix §?? we show some additional
generated groups, and highlight some recurring errors.

The sets in Figure 1 were generated using this method.

3.2 WORD REPRESENTATION

We use the method to generate N = 150, 000 equivalent sets Ei of structurally equivalent sentences,
and collect the contextualized vector representations of words in these sets, resulting in 1,500,000
training pairs and 200,000 evaluation pairs for the training process of f . We experiment with both
ELMo and BERT-based contextualized representations. In average, we sample 11 pairs from each
group of equivalent sentences. For ELMo, we represent each word in context as a concatenation
of the last two ELMo layers (excluding the word embedding layer, which is not contextualized and
therefore irrelevant for structure), resulting in representations of dimension 2048. For BERT, we
concatenate the mean of the words’ representation across all 23 layers of BERT-Large, with the
representation of layer 16, which was found by Hewitt & Manning (2019) most indicative of syntax.

3.3 TRIPLET LOSS

We learn the mapping function f using triplet loss (Figure 2).

Concretely, given a group of equivalent sentences Ei, we randomly choose two sentences to be the
anchor sentence SA, and the positive sentence SP , and sample two different word indices {i1, i2}.
Let SA[i1] be the contextualized representation of the i1th word in sentence SA. The words SA[i1]
and SA[i2] from the anchor sentence would form a representation of a pair of words, which should
be close to the pair SP [i1],SP [i2] from the positive sentence.

We represent pairs as their differences after transformation, resulting in the anchor pair V A and
positive pair V P :

V A = f(SA[i1])− f(SA[i2]) SA ∈ Ei (1)

V P = f(SP [i1])− f(SP [i2]) SP ∈ Ei (2)

where f is the parameterized syntactic transformation we aim to learn. We also consider a negative
pair:

V N = f(SN [j1])− f(SN [j2]) SN 6∈ Ei (3)
coming from sentence SN which is not in the equivalent set.

As f has shared parameters for both words in the pair, it can thus be considered a part of a Siamese
network, making our learning procedure an instance of a triplet Siamese network Schroff et al.
(2015). We choose f to be a simple model: a single linear layer that maps from dimensionality 2048
to 75. The dimensional of the transformation was chosen according to development set performance.

We use triplet loss (Schroff et al., 2015) to move the representation of the anchor vector V A closer to
the representation of the positive vector V P and farther apart from the representation of the negative
vector V N . Following Hoffer & Ailon (2015), we calculate the softmax version of the triplet loss:

Ltriplet(V A, V P , V N ) =
edist(V

A,V P )

edist(V A,V P ) + edist(V A,V N )
(4)

where dist(x, y) = 1 − x>y
‖x‖‖y‖ is the cosine-distance between the vectors x and y. Note that

Ltriplet → 0 as dist(V A,V P )
dist(V A,V N )

→ 0, as expected. The triplet objective is optimized end-to-end using
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the Adam optimizer (Kingma & Ba, 2015). We train for 5 epochs with a mini-batch of size 500 6,
and take the last model as the final syntactic extractor. During training, the gradient backpropagates
through the pair vectors to the parameters f of the Siamese model, to get representations of individ-
ual words that are similar for corresponding words in equivalent sentences. We note that we do not
back-propagate the gradient to the contextualized vectors: we keep them intact, and only adjust the
learned transformation.

Hard negative sampling We obtain the negative vectors V N using hard negative sampling. For
each mini-batch B, we collect 500 {VA

i , VP
i } pairs, each pair taken from an equivalent set Ei. The

negative instances VN
i are obtained by searching the batch for a vector that is closest to the anchor

and comes from a different set:

V N
i = argmin

V A
j 6=i∈B

dist(V A
i , V A

j ) (5)

where dist is again the cosine distance. In addition, we enforce a symmetry between the anchor and
positive vectors, by adding a pair (positive, anchor) for each pair (anchor, positive) in B.

That is, V N
i is the “most misleading” word-pair vector: it comes from a sentence that has a different

structure than the structure of VA
i sentence, but is the closest to VA

i in the mini-batch 7.

4 EXPERIMENTS AND ANALYSIS

We have trained the syntactic transformation f in a way that should encourage it to retain the struc-
tural information encoded in contextualized vectors, but discard other information. We assess the
representations our model acquired in an unsupervised manner, by evaluating the extant to which
the local neighbors of each transformed contextualized vector f(x) share known structural proper-
ties, such as grammatical function within the sentence. For the baseline, we expect the neighbors
of each vector to share a mix of semantic and syntactic properties. For the transformed vectors, we
expect the neighbors to share mainly syntactic properties. Finally, we demonstrate that in a few-
shot setting, our representations outperform the original ELMO representation, indicating they are
indeed distilled from syntax, and discard other information that is encoded in ELMO vectors but is
irrelevant for the extraction of the structure of a sentence.

Corpus For training the transformation f , we rely on 150,000 sentences from Wikipedia, tokenized
and POS-tagged by spaCy 8. The POS tags are used in the equivalent set generation to filter replace-
ment words. Apart from POS tagging, we do not rely on any syntactic annotation during training.
The evaluation sentences for the experiments mentioned below are sampled from a collection of
1,000,000 original and unmodified Wikipedia sentences (different from those used in the model
training).

4.1 QUALITATIVE ANALYSIS

t-SNE Visualization Figure 3 shows a 2-dimensional t-SNE projection (Maaten & Hinton, 2008)
of 15,000 random content words. The left panel projects the original ELMo states, while the right
panel is the syntactically transformed ones. The points are colored according to the dependency
label (relation to parent) of the corresponding word, assigned by the spacy parser.

As can be seen, in the original ELMo representation most states – apart from those characterized by
a specific part-of-speech, such as amod (adjectives, in orange) or nummod (numbers, in light green)
– do not fit well into a single cluster. In contrast, the syntactically transformed vectors are more
neatly clustered, with some clusters, such as direct objects (brown) and prepositional-objects (blue),
that are relatively separated after, but not before, the transformation. Interestingly, some functions
that used to be a single group in ELMo (like the adjectives in orange, or the noun-compounds in

6A large enough mini-batch is necessary to find challenging negative examples.
7We implicitly assume that any pair coming from a different group of equivalent sentences is a valid negative

example – that is, does not share the structural relation that exists between the anchor pair’s words. This is a
relatively mild assumption, as due to sparsity, in high probability two different sentences do not share the very
same structure

8https://spacy.io/
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ELMo Transformed

Figure 3: t-SNE projection of ELMO states, colored by syntactic function, before (left) and after
(right) the syntactic transformation.

green) are now split into several clusters, corresponding to their use in different sentence positions,
separating for examples adjectives that are used in subject positions from those in object position
or within prepositional phrases. Additionally, as noun compounds (“maple” in “maple syrup”) and
adjectival modifiers (“tasty” in “tasty syrup”) are relatively structurally similar (they appear between
determiners and nouns within noun phrases, and can move with the noun phrase to different posi-
tions), they are split and grouped together in the representation (the green and orange clouds).

To quantify the difference, we run K-means clustering on the projected vectors, and calculate the
average cluster purity score as the relative proportion of the most common dependency label in each
cluster. The higher this value is, the more the division to clusters reflect division to grammatical
functions (dependency labels). We run the clustering with different K values: 10, 20, 40, 80. We
find an increase in class purity following our transformation: from scores of 22.6%, 26.8%, 32.6%
and 36.4% (respectively) for the original vectors, to scores of 24.3%, 33.4%, 42.1% and 48.0%
(respectively) for the transformed vectors.

Examples Below are a few query words (Q) and their closest neighbours before (N) and after
(NT) the transformation. Note the high structural similarity of the entire sentence, as well as the
function of the word within it (Q1: last word of subject NP in a middle clause, Q2: possessed noun
in sentence initial subject NP, Q3: head of relative clause of a direct object):

Q:in this way of thinking, an impacting projectile goes into an ice-rich layer – but no further .
N:they generally have a pre-engraved rifling band to engage the rifled launch tube , spin-stabilizing
the projectile , hence the term “ rifle ” .
NT:to achieve a large explosive yield, a linear implosion weapon needs more material, about 13
kgs.

Q: the mint ’s director at the time , nicolas peinado , was also an architect and made the initial
plans.
N: the director is angry at crazy loop and glares at him , even trying to get a woman to kick crazy
loop out of the show ( which goes unsuccessfully ) .
NT: jetley ’s mother , kaushaliya rani , was the daughter of high court advocate shivram jhingan .

Q: their first project is software that lets players connect the company ’s controller to their device
N: you could try use norton safe web , which lets you enter a website and show whether there seems
to be anything bad in it .
NT: the city offers a route-finding website that allows users to map personalized bike routes

4.2 QUANTITATIVE EVALUATION

We expect our transformed vectors to capture more structural and less lexical similarities than the
source vectors. We expect each vectors’ neighbors in space to share the structural function of the
word over which the vector was collected, but not necessarily share its lexical meaning. We focus
on the following structural properties:
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Dep. edge Head’s dep. edge Tree path Tree path Tree path Depth Lexical Match
(complete) (L=3) (L=2) (correlation)

Baseline (all) 0.580 0.473 0.166 0.353 0.566 0.448 0.736
Transformed (all) 0.699 0.603 0.253 0.523 0.735 0.561 0.284
Transformed-untrained (all) 0.461 0.430 0.142 0.319 0.528 0.407 0.680
Baseline (difficult) 0.509 0.460 0.160 0.347 0.564 0.430 0.776
Transformed (difficult) 0.671 0.591 0.260 0.534 0.751 0.576 0.274

Table 1: Results in the closest-word queries, before and after the application of the syntactic trans-
formation. ”Basline” refers to unmodified ELMo vectors, ”Transformed” refers to ELMo vectors
after the learned syntactic transformation f , and “Transformed-untrained” refers to ElMo vectors,
after a transformation that was trained on a randomely-initialized ELMo. ”Difficult” refers to eval-
uation on the subset of POS tags which are most structurally diverse.

• Dependency-tree edge of a given word (dep-edge), that represents its function (subject,
object etc.)

• The dependency edge of the word parent’s (head’s dep-edge) in the tree – to represent
higher level structure, such as a subject that resides within a relative clause, as in the word
‘man” in the phrase “the child that the man saw”.

• Depth in the dependency tree (distance from the root of the sentence tree).

• Constituency-parse paths: Consider, for example, the sentence “They saw the moon with
the telescope”. The word “Telescope” is a part of a noun-phrase “The telescope”, which
resides inside a prepositional phrase “with the telescope”, which is part of the Verbal phrase
“”Saw with the telescope”. The complete constituency path for this word is therefore “NP-
PP-VP”. We calculate the complete tree path to the root (Tree-path-complete), as well as
paths limited to lengths 2 and 3.

For this evaluation, we parse 400,000 random sentences taken from the 1-million-sentences
Wikipedia sample, run ELMo and BERT to collect the contextualized representations of the sen-
tences’ words, and randomly choose 400,000 query word vectors (excluding function words). We
then retrieve, for each query vector x, the value vector y that is closest to x in cosine-distance, and
record the percentage of closest-vector pairs (x, y) that share each of the structural properties listed
above. For the tree depth property, we calculate the Pearson correlation between the depths of the
queries and the retrieved values. We use Spacy parser for dependency-parsing, and the Berkeley
Neural Parser (Kitaev & Klein, 2018) for constituency parsing. We exclude function words from the
evaluation.

Easier and Harder cases The baseline models tend to retrieve words that are lexically similar.
Since certain words tend to appear at above-chance probability in certain structural functions, this
can make the baseline be “right for the wrong reason”, as the success in the closest-word test reflects
lexical similarity, rather than grammatical generalization of the model. To control for this confound-
ing, we sort the different POS tags according to the entropy of their dependency-labels distribution,
and repeat the evaluation only for words belonging to those POS tags having the highest entropy
(those POS tags are the most structurally variant, and tend to appear in different structural func-
tions). We find that the performance of the baselines (ELMo, BERT models) on those words drops
significantly, while the performance of our model are only mildly influenced, further indicating the
superiority of our model in capturing structural rather than lexical information.

Results The results for ELMo are presented in Table 4. For BERT, we witnessed similar, but some-
what lower, accuracy: for example, 68.1% dependency-edge accuracy, 56.5% head’s dependency-
edge accuracy, and 22.1% complete constituency-path accuracy. The results for BERT are available
in the appendix §C, and for the reminder of the paper, we focus in ELMo. We observe significant
improvement over the baseline for all tests. The correlation between the depth in tree of the query
and the value words, for examples, rises from 44.8% to 56.1%, indicating that our model encourages
the structural property of the depth of the word to be more saliently encoded in its representation
compared with the baseline. The most notable relative improvement is recorded with regard to full
constituency-path to the root: from 16.6% before the structural transformation, to 25.3% after it –
an improvement of 52%. In addition to the increase in syntax-related properties, we observe a sharp
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drop – from 73.6% to 28.4% – – in the proportion of query-value pairs that are lexically identical
(lexical match, Table 4). This indicates our transformation f removes much of the lexical informa-
tion, which is irrelevant for structure. To assess to what extent the improvements stems from the
information encoded in ELMo, rather than being an artifact of the triplet-loss training, we also eval-
uate on a transformation f that was trained on a randomly-initialized ELMo, a surprisingly strong
baseline (Conneau et al., 2018). We find this model performs substantially worse than the baseline
(Table 4, “Transformed-untrained (all)”).

4.3 MINIMAL SUPERVISION FOR STRUCTURE DISTILLATION: FEW-SHOT PARSING

The absolute nearest-neighbour accuracy values may appear to be relatively low: for example, only
67.6% of the (query, value) pairs share the same dependency edge.

As the model acquires its representation without being exposed to human-mandated syntactic con-
vention, some of the apparent discrepancies in nearest neighbours may be due to the fact the model
acquires different kind of generalization, or learned a representation that emphasizes different kinds
of similarities. Still, we expect the resulting (75 dimensional) representations to contain distilled
structure information that is mappable to human notions of syntax. To test this, we compare
dependency-parsers trained on our representation and on the source representation. If our repre-
sentation indeed captures structural information, we expect it to excel on a low data regime. To
this end, we test our hypothesis with few-shot dependency parsing setup, where we train a model to
predict syntactic trees representation with only a few hundred labeled examples.

We use an off-the-shelf dependency parser (Dozat & Manning, 2016) and first swap the pre-trained
Glove embeddings (Pennington et al., 2014) with ELMo contextualized embeddings (Peters et al.,
2018). In order to have a fair comparison with our method, we use the concatenation of the two
last layers of Elmo; we refer to this experiment as elmo. As our representation is much smaller than
ELMo’s (75 as opposed to 2048), a potential issue for a low data regime is the high parameter number
to optimize in the later case, therefore a lower dimension can achieve better results. We design two
additional baseline experiments to remedy this potential issue: (1) Using PCA in order to reduce
the representation dimensionality. We randomly chose 1M words from Wikipedia, calculated their
representation with ELMo embeddings and performed PCA. This transformation is applied during
training on top of ELMo representation while keeping the 75 first components. This experiment
is referred to as elmo-pca. This representation should perform well if the most salient information
in the ELMo representations are structural. We exepct it to not be the case. (2) Automatically
learning a matrix that reduces the embedding dimension. This matrix is learned during training and
can potentially extract the relevant structural information from the representations. We refer to this
experiment as elmo-reduced.

Lastly, we examine the performance of our representation, where we apply our structural extraction
method on top of ELMo representation. We refer to this experiment as syntax.
We run the few-shot setup with multiple training size values: 50, 100, 200, 500. The results—for
both labeled (LAS) and unlabeled (UAS) attachment scores—are presented in Figure 4, and the
numerical results are available in the appendix §B.

We notice that in the lower training size regime, we obtain the best performances compared to all
baselines. The more training data is used, the gap between our representation and the baselines
reduced, but the syntax representation still outperforms elmo. Reducing the dimensions with PCA
(elmo-pca) works considerably worse than ELMo, indicating that the most salient information is
indeed not structural, and the PCA loses important information. Reducing the dimensions with a
learned matrix (elmo-reduced) works substantially better than ELMo, and achieve the same UAS as
our representation from 200 training sentences onward. However, our transformation was learned in
an unsupervised fashion, without access to the syntactic trees. Finally, when considering the labeled
attachment score, where the model is tasked at predicting not only the child-parent relation but also
its label, our syntax representation outperforms elmo-reduced.

5 CONCLUSION

In this work, we propose an unsupervised method for the distillation of structural information from
neural contextualized word representations. We used a process of sequential BERT-based substitu-
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Figure 4: Results of the few shot parsing setup

tion to create a large number of sentences which are structurally similar, but semantically different.
By controlling for one aspect – structure – while changing the other – lexical choice, we learn a
metric (via triplet loss) under which pairs of words that come from structurally-similar sentences are
close in space. We demonstrated that the representations acquired by this method share structural
properties with their neighbors in space, and show that with a minimal supervision, those represen-
tations outperform ELMo in the task of few-shots parsing. The method presented here is a first step
towards a better disentanglement between various kinds of information that is represented in neural
sequence models.

The method used to create the structurally equivalent sentences can be useful by its own for other
goals, such as augmenting parse-tree banks (which are often scarce and require large resources to
annotate). In a future work, we aim to extend this method to allow for a more soft alignment between
structurally-equivalent sentences.
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A APPENDIX

B COMPLETE PARSING RESULTS

Model Number of sentences
50 100 200 500

ELMO 0.52 0.64 0.75 0.82
ELMO-reduced 0.55 0.65 0.75 0.82

ELMO-PCA 0.55 0.65 0.73 0.79
ELMO-syntax (ours) 0.61 0.70 0.76 0.83

Table 2: Labeled parsing scores (LAS)

Model Number of sentences
50 100 200 500

ELMO 0.60 0.71 0.81 0.87
ELMO-reduced 0.68 0.76 0.83 0.88

ELMO-PCA 0.63 0.72 0.79 0.85
ELMO-syntax (ours) 0.69 0.78 0.82 0.87

Table 3: Unlabeled parsing scores (UAS)

C BERT CLOSEST-WORD RESULTS

Dep. edge Head’s dep. edge Tree path Tree path Tree path Depth Lexical Match
(complete) (L=3) (L=2) (correlation)

Baseline (all) 0.549 0.432 0.146 0.310 0.522 0.436 0.829
Transformed (all) 0.681 0.565 0.221 0.471 0.697 0.597 0.319
Baseline (difficult) 0.478 0.429 0.143 0.310 0.521 0.428 0.820
Transformed (difficult) 0.652 0.565 0.225 0.482 0.714 0.601 0.300

Table 4: Results in the closest-word queries, before and after the application of the syntactic trans-
formation. ”Basline” refers to unmodified vectors derived from BERT, and ”Transformed” refers to
the vectors after the learned syntactic transformation f . ”Difficult” refers to evaluation on the subset
of POS tags which are most structurally diverse.
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