
Under review as a conference paper at ICLR 2020

WHICH TASKS SHOULD BE LEARNED TOGETHER IN
MULTI-TASK LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Many computer vision applications require solving multiple tasks in real-time. A
neural network can be trained to solve multiple tasks simultaneously using multi-
task learning. This saves computation at inference time as only a single network
needs to be evaluated. Unfortunately, this often leads to inferior overall perfor-
mance as task objectives can compete, which consequently poses the question:
which tasks should and should not be learned together in one network when
employing multi-task learning? We systematically study task cooperation and
competition and propose a framework for assigning tasks to a few neural networks
such that cooperating tasks are computed by the same neural network, while com-
peting tasks are computed by different networks. Our framework offers a time-
accuracy trade-off and can produce better accuracy using less inference time than
not only a single large multi-task neural network but also many single-task net-
works.

1 INTRODUCTION

Many applications, especially robotics and autonomous vehicles, are chiefly interested in using
multi-task learning to reduce the inference time and computational complexity required to estimate
many characteristics of visual input. For example, an autonomous vehicle may need to detect the
location of pedestrians, determine a per-pixel depth, and predict objects’ trajectories, all within tens
of milliseconds. In multi-task learning, multiple tasks are solved at the same time, typically with a
single neural network. In addition to reduced inference time, solving a set of tasks jointly rather than
independently can, in theory, have other benefits such as improved prediction accuracy, increased
data efficiency, and reduced training time.

Unfortunately, the quality of predictions are often observed to suffer when a network is tasked with
making multiple predictions. This is because learning objectives can have complex and unknown
dynamics and may compete. In fact, multi-task performance can suffer so much that smaller inde-
pendent networks are often superior (as we will see in the experiments section). We refer to any
situation in which the competing priorities of the network cause poor task performance as crosstalk.

On the other hand, when task objectives do not interfere much with each other, performance on
both tasks can be maintained or even improved when jointly trained. Intuitively, this loss or gain of
quality seems to depend on the relationship between the jointly trained tasks.

Prior work has studied the relationship between tasks for transfer learning (Zamir et al. (2018)).
However, we find that transfer relationships are not highly predictive of multi-task relationships. In
addition to studying multi-task relationships, we attempt to determine how to produce good pre-
diction accuracy under a limited inference time budget by assigning competing tasks to separate
networks and cooperating tasks to the same network.

More concretely, this leads to the following problem: Given a set of tasks, T , and a computational
budget b (e.g., maximum allowable inference time), what is the optimal way to assign tasks to
networks with combined cost≤ b such that a combined measure of task performances is maximized?

To this end, we develop a computational framework for choosing the best tasks to group together
in order to have a small number of separate deep neural networks that completely cover the task set
and that maximize task performance under a given computational budget. We make the intriguing

1

Under review as a conference paper at ICLR 2020

Figure 1:Given �ve tasks to solve, there are many ways that they can be split into task groups for multi-
task learning. How do we �nd the best one? We propose a computational framework that, for instance,
suggests the following grouping to achieve the lowest total loss, using a computational budget of 2.5 units:
train network A to solve Semantic Segmentation, Depth Estimation, and Surface Normal Prediction; train
network B to solve Keypoint Detection, Edge Detection, and Surface Normal Prediction; train network C with
a less computationally expensive encoder to solve Surface Normal Prediction alone; including Surface Normals
as an output in the �rst two networks were found advantageous for improving the other outputs, while the best
Normals were predicted by the third network. This task grouping outperforms all other feasible ones, including
learning all �ve tasks in one large network or using �ve dedicated smaller networks.

observation that the inclusion of an additional task in a network can potentially improve the accuracy
of the other tasks, even though the performance of the added task might be poor. This can be viewed
asregularizingor guiding the loss of one task by adding an additional loss, as often employed in
curriculum learning or network regularization Bengio et al. (2009). Achieving this, of course, de-
pends on picking the proper regularizing task – our system can take advantage of this phenomenon,
as schematically shown in Figure 1.

This paper has two main contributions. In Section 3, we outline a framework for systematically
assigning tasks to networks in order to achieve the best total prediction accuracy with a limited
inference-time budget. We then analyze the resulting accuracy and show that selecting the best
assignment of tasks to groups is critical for good performance. Secondly, in Section 6, we analyze
situations in which multi-task learning helps and when it doesn't, quantify the compatibilities of var-
ious task combinations for multi-task learning, compare them to the transfer learning task af�nities,
and discuss the implications. Moreover, we analyze the factors that in�uence multi-task af�nities.

2 PRIOR WORK

Multi-Task Learning: See Ruder (2017) for a good overview of multi-task learning. The authors
identify two clusters of contemporary techniques that we believe cover the space well, hard param-
eter sharing and soft parameter sharing. In brief, the primary difference between the majority of
the existing works and our study is that we wish to understand the relationships between tasks and
�nd compatible groupings of tasks for any given set of tasks, rather than designing a neural network
architecture to solve a particular �xed set of tasks well.

A known contemporary example of hard parameter sharing in computer vision is UberNet (Kokki-
nos (2017)). The authors tackle 7 computer vision problems using hard parameter sharing. The
authors focus on reducing the computational cost of training for hard parameter sharing, but expe-
rience a rapid degradation in performance as more tasks are added to the network. Hard parameter
sharing is also used in many other works such as (Thrun (1996); Caruana (1997); Nekrasov et al.
(2018); Dvornik et al. (2017); Kendall et al. (2018); Bilen & Vedaldi (2016); Pentina & Lampert
(2017); Doersch & Zisserman (2017); Zamir et al. (2016); Long et al. (2017); Mercier et al. (2018);
d. Miranda et al. (2012); Zhou et al. (2018); Rudd et al. (2016)).

Other works, such as (Sener & Koltun (2018)) and (Chen et al. (2018b)), aim to dynamically re-
weight each task's loss during training. The former work �nds weights that provably lead to a
Pareto-optimal solution, while the latter attempts to �nd weights that balance the in�uence of each
task on network weights. Finally, (Bingel & Søgaard (2017)) studies task interaction for NLP.

In soft or partial parameter sharing, either there is a separate set of parameters per task, or a signif-
icant fraction of the parameters are unshared. The models are tied together either by information
sharing or by requiring parameters to be similar. Examples include (Dai et al. (2016); Duong et al.
(2015); Misra et al. (2016); Tessler et al. (2017); Yang & Hospedales (2017); Lu et al. (2017)).

2

Under review as a conference paper at ICLR 2020

The canonical example of soft parameter sharing can be seen in (Duong et al. (2015)). The authors
are interested in designing a deep dependency parser for languages such as Irish that do not have
much treebank data available. They tie the weights of two networks together by adding an L2
distance penalty between corresponding weights and show substantial improvement.

Another example of soft parameter sharing is Cross-stitch Networks (Misra et al. (2016)). Starting
with separate networks for two tasks, the authors add `cross-stitch units' between them, which allow
each network to peek at the other network's hidden layers. This approach reduces but does not
eliminate task interfearence, and the overall performance is less sensitive to the relative loss weights.

Unlike our method, none of the aforementioned works attempt to discover good groups of tasks to
train together. Also, soft parameter sharing does not reduce inference time, a major goal of ours.

Transfer Learning: Transfer learning (Pratt (1993); Helleputte & Dupont (2009); Silver & Bennett
(2008); Finn et al. (2016); Mihalkova et al. (2007); Niculescu-Mizil & Caruana (2007); Luo et al.
(2017); Razavian et al. (2014); Pan & Yang (2010); Mallya & Lazebnik (2018); Fernando et al.
(2017); Rusu et al. (2016)) is similar to multi-task learning in that solutions are learned for multiple
tasks. Unlike multi-task learning, however, transfer learning methods often assume that a model for
a source task is given and then adapt that model to a target task. Transfer learning methods generally
neither seek any bene�t for source tasks nor a reduction in inference time as their main objective.

Neural Architecture Search (NAS):Many recent works search the space of deep learning architec-
tures to �nd ones that perform well (Zoph & Le, 2017; Liu et al., 2018; Pham et al., 2018; Xie et al.,
2019; Elsken et al., 2019; Zhou et al., 2019; Baker et al., 2017; Real et al., 2018). This is related
to our work as we search the space of task groupings. Just as with NAS, the found task groupings
often perform better than human-engineered ones.

Task Relationships: Our work is most related toTaskonomy(Zamir et al. (2018)), where the au-
thors studied the relationships between visual tasks fortransfer learningand introduced a dataset
with over 4 million images and corresponding labels for 26 tasks. This was followed by a number of
recent works, which further analyzed task relationships (Pal & Balasubramanian (2019); Dwivedi &
Roig. (2019); Achille et al. (2019); Wang et al. (2019)) for transfer learning. While they extract rela-
tionships between these tasks fortransfer learning, we are interested in themulti-task learningset-
ting. Interestingly, we �nd notable differences between transfer task af�nity and multi-task af�nity.
Their method also differs in that they are interested in labeled-data ef�ciency and not inference-time
ef�ciency. Finally, the transfer quanti�cation approach taken by Taskonomy (readout functions) is
only capable of �nding relationships between the high-level bottleneck representations developed
for each task, whereas structural similarities between tasks at all levels are potentially relevant for
multi-task learning.

3 TASK GROUPINGFRAMEWORK

Our goal is to �nd an assignment of tasks to networks that results in the best overall loss. Our
strategy is to select from a large set of candidate networks to include in our �nal solution.

We de�ne the problem as follows: We want to minimize the overall loss on a set of tasksT =
f t1; t2; :::; tk g given a limited inference time budget,b, which is the total amount of time we have
to complete all tasks. Each neural network that solves some subset ofT and that could potentially
be a part of the �nal solution is denoted byn. It has an associated inference time cost,cn , and a
loss for each task,L (n; t i) (which is 1 for each task the network does not attempt to solve). A
solutionS is a set of networks that together solve all tasks. The computational cost of a solution
is cost(S) =

P
n 2 S cn . The loss of a solution on a task,L (S; t i), is the lowest loss on that

task among the solution's networks1, L (S; t i) = min n 2 S L (n; t i). The overall performance for a
solution isL (S) =

P
t i 2T L (S; t i).

We want to �nd the solution with the lowest overall loss and a cost that is under our budget,Sb =
argminS :cost(S) � b L (S).

1In principle, it may be possible to create an even better-performing ensemble when multiple networks solve
the same task, though we do not explore this.

3

Under review as a conference paper at ICLR 2020

3.1 WHICH CANDIDATE NETWORKS TOCONSIDER?

For a given task setT , we wish to determine not just how well eachpair of tasks performs when
trained together, but also how well eachcombinationof tasks performs together so that we can
capture higher-order task relationships. To that end, our candidate set of networks contains all
2jT j � 1 possible groupings:

� jT j
1

�
networks with one task,

� jT j
2

�
networks with two tasks,

� jT j
3

�

networks with three tasks, etc. For the �ve tasks we use in our experiments, this is 31 networks, of
which �ve are single-task networks.

The size of the networks is another design choice, and to somewhat explore its effects we also
include 5 single task networks each with half of the computational cost of a standard network. This
brings our total up to 36 networks.

3.2 NETWORK SELECTION

Consider the situation in which we have an initial candidate setC0 = f n1; n2; :::; nm g of fully-
trained networks that each solve some subset of our task setT . Our goal is to choose a subset ofC0
that solve all the tasks with total inference time under budgetb and the lowest overall loss. More
formally, we want to �nd a solutionSb = argmin S � C 0 :cost(S) � b L (S).

It can be shown that solving this problem is NP-hard in general (reduction from SET-COVER). How-
ever, many techniques exist that can optimally solvemostreasonably-sized instances of problems
like these in acceptable amounts of time. All of these techniques produce the same solutions. We
chose to use a branch-and-bound-like algorithm for �nding our optimal solutions (shown as Al-
gorithm 1 in the Appendix), but in principle the exact same solutions could be achieved by other
optimization methods, such as encoding the problem as a binary integer program (BIP) and solving
it in a way similar to Taskonomy (Zamir et al. (2018)).

Most contemporary MTL works use fewer than 4 unique task types, but in principal, the NP-hard
nature of the optimization problem does limit the number of candidate solutions that can be consid-
ered. However, using synthetic inputs, we found that our branch-and-bound like approach requires
less time than network training for all2jT j � 1 + jT j candidates for fewer than ten tasks. Scaling
beyond that would require approximations or stronger optimization techniques.

3.3 APPROXIMATIONS FORREDUCING TRAINING TIME COMPLEXITY

This section describes two techniques for reducing the training time required to obtain a collection
of networks as input to the network selection algorithm. Our goal is to produce task groupings
with results similar to the ones produced by the complete search, but with less training time burden.
Both techniques involve predicting the performance of a network without actually training it to
convergence. The �rst technique involves training each of the networks for a short amount of time,
and the second involves inferring how networks trained on more than two tasks will perform based
on how networks trained on two tasks perform.

3.3.1 EARLY STOPPINGPRIOR TO CONVERGENCE

We found a moderately high correlation (Pearson'sr = 0 :49) between the validation loss of our
neural networks after a pass through just 20% of our data and the �nal test loss of the fully trained
networks. This implies that the task relationship trends stabilize early. We �ne that we can get decent
results by running network selection on the lightly trained networks, and then simply training the
chosen networks to convergence.

For our setup, this technique reduces the training time burden by about20x over fully training all
candiate networks and would require fewer than 150 GPU hours to execute. This is only 35%
training-time overhead. Obviously, this technique does come with a prediction accuracy penalty.
Because the correlation between early network performance and �nal network performance is not
perfect, the decisions made by network selection are no longer guaranteed to be optimal once net-
works are trained to convergence. We call this approximation the Early Stopping Approximation
(ESA) and present the results of using this technique in Section 5.

4

Under review as a conference paper at ICLR 2020

3.3.2 PREDICT HIGHER-ORDER FROM LOWER-ORDER

Do the performances of a network trained with tasksA andB , another trained with tasksA andC,
and a third trained with tasksB andC tell us anything about the performance of a network trained
on tasksA, B , andC? As it turns out, the answer is yes. Although this ignores complex task
interactions and nonlinearities, a simple average of the �rst-order networks' accuracies was a good
indicator of the accuracy of a higher-order network. Experimentally, this prediction strategy has an
average max ratio error of only 5.2% on our candidate networks.

Using this strategy, we can predict the performance of all networks with three or more tasks using
the performance of all of the fully trained two task networks. First, simply train all networks with
two or fewer tasks to convergence. Then predict the performance of higher-order networks. Finally,
run network selection on both groups.

With our setup (see Section 4), this strategy saves training time by only about 50%, compared
with 95% for the early stopping approximation, and it still comes with a prediction quality penalty.
However, this technique requires only a quadratic number of networks to be trained rather than an
exponential number, and would therefore win out when the number of tasks is large.

We call this strategy the Higher Order Approximation (HOA), and present its results in Section 5.

4 EXPERIMENTAL SETUP

We perform our evaluation using the Taskonomy dataset (Zamir et al. (2018)), which is currently the
largest multi-task dataset in vision with diverse tasks. The data was obtained from 3D scans of about
600 buildings. There are 4,076,375 examples, which we divided into 3,974,199 training instances,
52,000 validation instances, and 50,176 test instances. There was no overlap in the buildings that
appeared in the training and test sets. All data labels were normalized (�x = 0 ; � = 1).

Our framework is agnostic to the particular set of tasks. We have chosen to perform the study using
�ve tasks in Taskonomy:Semantic Segmentation, Depth Estimation, Surface Normal Prediction,
Keypoint Detection, andEdge Detection, so that one semantic task, two 3D tasks, and two 2D tasks
are included. These tasks were chosen to be representative of major task categories, but also to
have enough overlap in order to test the hypothesis that similar tasks will train well together. Cross-
entropy loss was used for Semantic Segmentation, while anL1 loss was used for all other tasks.

Network Architecture: The proposed framework can work with any network architecture. In our
experiments, all of the networks used a standard encoder-decoder architecture with a modi�ed Xcep-
tion (Chollet (2017)) encoder. Our choice of architecture is not critical and was chosen for reason-
ably fast inference time performance. The Xception network encoder was simpli�ed to have 17
layers and the middle �ow layers were reduced to having 512 rather than 728 channels. All max-
pooling layers were replaced by2 � 2 convolution layers with a stride of 2 (similar to Chen et al.
(2018a)). The full-size encoder had about 4 million parameters. All networks had an input image
size of 256x256. We measure inference time in units of the time taken to do inference for one of our
full-size encoders. We call this aStandard Network Time (SNT). This corresponds to 2.28 billion
multiply-adds and about 4 ms/image on a single Nvidia RTX 2080 Ti.

Our decoders were designed to be lightweight and have four transposed convolutional layers (Noh
et al. (2015)) and four separable convolutional layers (Chollet (2017)). Every decoder has about
116,000 parameters. All training was done using PyTorch (Paszke et al. (2017)) with Apex for fp16
acceleration (Micikevicius et al. (2017)).

Trained Networks: As described in Section 3.1, we trained 31 networks with full sized encoders
and standard decoders. 26 were multi-task networks and 5 were single task networks. Another �ve
single-task networks were trained, each having a half-size encoder and a standard decoder. These 36
networks were included in network optimization asC0. 20 smaller, single-task networks of various
sizes were also trained to be used in the baselines and the analysis of Section 6, but not used for
network selection. In order to produce our smaller models, we shrunk the number of channels in
every layer of the encoder such that it had the appropriate number of parameters and �ops.

The training loss we used was the unweighted mean of the losses for the included tasks. Networks
were trained with an initial learning rate of 0.2, which was reduced by half every time the training

5

Under review as a conference paper at ICLR 2020

loss stopped decreasing. Networks were trained until their validation loss stopped improving, typ-
ically requiring only 4-8 passes through the dataset. The network with the highest validation loss
(checked after each epoch of 20% of our data) was saved.

The performance scores used for network selection were calculated on the validation set. We com-
puted solutions for inference time budgets from 1 to 5 at increments of 0.5. Each solution chosen
was evaluated on the test set.

4.1 BASELINES

We compare our results with conventional methods, such as �ve single-task networks and a single
network with all tasks trained jointly.

We also compare with two multi-task methods in the literature. The �rst one is Sener & Koltun
(2018). We found that their algorithm under-weighted the Semantic Segmentation task too aggres-
sively, leading to poor performance on the task and poor performance overall compared to a simple
sum of task losses. We speculate that this is because semantic segmentation's loss behaves differ-
ently from the other losses. Next we compared to GradNorm (Chen et al. (2018b)). The results
here were also slightly worse than classical MTL with uniform task weights. In any event, these
techniques are orthogonal to ours and can be used in conjunction for situations in which they lead to
better solutions than simply summing losses.

Finally, we compare our results to two control baselines illustrative of the importance of making
good choices about which tasks to train together, `Random' and `Pessimal.' `Random' is a solution
consisting of valid random task groupings that solve our �ve tasks. The reported values are the
average of a thousand random trials. `Pessimal' is a solution in which we choose the networks that
lead to the worst overall performance, though the solution's performance on each task is still the
best among its networks.

Each baseline was evaluated with multiple encoder sizes so that all models' results could be com-
pared at many inference time budgets.

5 TASK GROUPINGEVALUATION

Figure 2:The task groups picked by each of our
techniques for integer budgets between 1 and 5.
Networks are shown as� (full-size) or� (half-size).
Networks are connected to the tasks for which they
compute predictions.s: Semantic Segmentation, d:
Depth Estimation, n: Surface Normal Prediction,
k: Keypoint Detection, e: Edge Detection. Dotted
edges represent unused decoders. For example, the
highlighted solution consists of two half-size net-
works and a full-size network. The full-size net-
work solves Depth Estimation, Surface Normal Pre-
diction, and Keypoint Detection. One half-size net-
work solves Semantic Segmentation and the other
solves Edge Detection. The total loss for all �ve
tasks is 0.455. The groupings for fractional budgets
are shown in the appendix.

Figure 2 shows the task groups that were chosen for each technique, and Figure 3 shows the per-
formance of these groups along with those of our baselines. We can see that each of our methods
outperforms our traditional baselines for every computational budget.

When the computational budget is only 1 SNT, all of our methods must select the same model—a
traditional multi-task network with a 1 SNT encoder and �ve decoders. This strategy outperforms
GradNorm, Sener & Koltun (2018), and individual training. However, solutions that utilize multiple
networks outperform this traditional strategy for every budget> 1.5—better performance can always
be achieved by grouping tasks according to their compatibility.

6

	Introduction
	Prior Work
	Task Grouping Framework
	Which Candidate Networks to Consider?
	Network Selection
	Approximations for Reducing Training Time Complexity
	Early Stopping Prior to Convergence
	Predict Higher-Order From Lower-Order

	Experimental Setup
	Baselines

	Task Grouping Evaluation
	Analyses of Task Relationships
	Conclusion
	Appendix
	Network Selection Algorithm
	Analysis on smaller task sets
	Depth and Normals in a More Typical Setting
	Tabular Data

