
Under review as a conference paper at ICLR 2018

LEARNING TO CONTROL VISUAL ABSTRACTIONS FOR
STRUCTURED EXPLORATION IN DEEP REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration in environments with sparse rewards is a key challenge for reinforce-
ment learning. How do we design agents with generic inductive biases so that they
can explore in a consistent manner instead of just using local exploration schemes
like epsilon-greedy? We propose an unsupervised reinforcement learning agent
which learns a discrete pixel grouping model that preserves spatial geometry of
the sensors and implicitly of the environment as well. We use this representation
to derive geometric intrinsic reward functions, like centroid coordinates and area,
and learn policies to control each one of them with off-policy learning. These poli-
cies form a basis set of behaviors (options) which allows us explore in a consistent
way and use them in a hierarchical reinforcement learning setup to solve for ex-
trinsically defined rewards. We show that our approach can scale to a variety of
domains with competitive performance, including navigation in 3D environments
and Atari games with sparse rewards.

1 INTRODUCTION

Exploration in environments with sparse feedback is a key challenge for deep reinforcement learn-
ing (DRL) research. In DRL, agents typically explore with local exploration strategies like epsilon
greedy or entropy based schemes. We are interested in learning structured exploration algorithms,
grounded in spatio-temporal visual abstractions given raw pixels. In human perception and its devel-
opmental trajectory, spatio-temporal pixel groupings is one of the first visual abstractions to emerge,
which is also used for intrinsically motivated goal-driven behaviors (Spelke & Kinzler, 2007). In-
spired by this insight, we develop a new agent architecture and loss functions to autonomously learn
visual abstractions and ground temporally extended behaviors in them.

Our approach and key contributions can be broken down into two parts: (1) an information theoretic
loss function and a neural network architecture to learn visual groupings (abstractions) given raw
pixels and actions, (2) a hierarchical action-value function agent which explores in the space of
options grounded in the learned visual abstractions, instead of low level actions.

In the first step, we pass images through an encoder which outputs spatial discrete vector-quantized
(VQ‘) grids, with 1 of E discrete components. We train this encoder to maximize the mutual in-
formation between VQ layers at different time steps, in order to obtain a temporally consistent
representation, that preserves controllability and appearance information. We extract segmentation
masks from the VQ layers for the second step, referred to as visual entities. We compute affine ge-
ometric measurements for each entity, namely centroid and area of the corresponding segment. We
use off-policy learning to train action-value function to minimize or maximize these measurements,
referred collectively as the options bank. Controlling these measurements enable higher levels of
behaviors such as approaching an object (maximizing area), avoiding objects (minimize area or min-
imize/maximize centroid coordinates), moving an object away towards the left (minimize centroid
x coordinate), controlling the avatars position on the screen etc.

Finally, given a task reward, we use off-policy learning to train a meta action-value function that
takes actions at fixed intervals and selects either one of the policies in the options bank or low-level
actions. So effectively, this hierarchical action-value function setup solves a semi markov decision
process as in (Sutton et al., 1999; Kulkarni et al., 2016).

1

Under review as a conference paper at ICLR 2018

We demonstrate that our approach can scale to two different domains – navigation in a 3D environ-
ment and challenging Atari games – given raw pixels. Although much work remains in improving
the visual and temporal abstraction discovery models, our results indicate that it is possible to learn
bottom-up structured exploration schemes with simple spatial inductive biases and loss functions.

2 RELATED WORK

Learning visual abstractions has a long history in computer vision with some of the earlier successes
relying on clustering either for inference (Shi & Malik, 2000) or learning (Ren & Malik, 2003).
More recently some of these intuitions were adapted to neural networks as in (Xia & Kulis, 2017).
Instance segmentation algorithms have been developed to output spatio-temporal groupings of pixels
from raw videos (Romera-Paredes & Torr, 2016). However, most of the existing deep learning based
approaches require supervised data. Structured deep generative models (van den Oord et al., 2017)
is another approach to learning disentangled representations from raw videos. Very recently seg-
mentation has been cast as a mutual information maximization problem in (Ji et al., 2018) where the
mutual information is computed between the original image segmentation and the output of its trans-
formation (additive color changes in HSV space, horizontal flips and spatial shifts). That approach
uses the discrete mutual information estimate which makes it only applicable to enforce pixel-label
constraints. For continuous variables recent papers have proposed very promising techniques. Most
relevant to our work are (van den Oord et al., 2018) and (Belghazi et al., 2018).

In reinforcement learning research, semi-MDPs and the options framework (Sutton et al., 1999)
have been proposed as a model for temporal abstractions of behaviors. Our work is most similar
to hierarchical-DQN (Kulkarni et al., 2016). However, this approach required hand-crafted instance
segmentation and the agent architecture is not distributed to learn about many intrinsic rewards
learners at the same time. Object-Oriented-MDPs (Diuk et al., 2008) uses object oriented represen-
tations for structured exploration but requires prebuilt symbolic representations. A recent paper also
demonstrates the importance of object based exploration when humans learn to play video games
(Dubey et al., 2018). HRA (Van Seijen et al., 2017) is an agent that used prebuilt object repre-
sentations to obtain state of the art policies on Pacman using object based structured exploration.
Another interesting line of work is (Gregor et al., 2016) which formalizes a notion of empowerment
which ends up as a mutual information between options in the same MDP. Count-based exploration
algorithms have yielded impressive results on hard exploration Atari games (Ostrovski et al., 2017).

The Horde architecture (Sutton et al., 2011) proposed learning many value functions, termed as
Generalized Value Functions (GVFs), using off-policy learning. This work was later extended with
neural networks by Schaul et al. (2015). Our approach automatically constructs GVFs or a UVFA
using the abstract entity based representations. Our work is also related to pixel control (Jader-
berg et al., 2016) as an auxiliary task. However, we learn to control and compose abstract discrete
representations.

Notation. Unless explicitly stated otherwise, we will use calligraphic upper-case letters for sets
and MDPs, upper-case letters for random variables, bold capitals for constants and lower-case letters
for realizations/measurements.

3 MODEL

Consider a Markov Decision ProcessM = (S,A,P, r) (MDP) represented by states s ∈ S, actions
a ∈ A, transition distribution function P : S × A × S → [0, 1] and an extrinsic reward function
defined as r : S × A → R. In a discrete MDP, an agent observes a state st at time t, produces and
action at then the agent can observe st+1 ∼ P(S′|S = st, A = at) and a reward rt+1 = r(st, at).
The agent’s objective is to maximize the expected sum of rewards over time. In this work we are
focusing on visual inputs thus we assume S ⊂ RH×W, where H,W are the height and width of the
image. This is a very important special case in current applications but many of the intuitions and
machinery we develop should carry over to different domains.

2

Under review as a conference paper at ICLR 2018

Image

C
N

N

VQ (V)

[1...E]

C
N

N

C

Global
Embedding

Action
A

Visual Entities

G

Color embedding

V

Fed as activation
Sampled (see Sec. 3.1)

Figure 1: Unsupervised Visual Abstraction Model: There are three mutual information losses be-
ing computed in this process: I(Gt, Gt+∆), I((Gt, Gt+1), At) and I(Vt, Ct). I(Gt, Gt+∆) forces
the VQ to distinguish frames in the same unroll or large temporal segment with frames outside of
this window. I((Gt, Gt+1), At) encourages the VQ to encode action controllable elements in the
frame. I(Vt, Ct) forces the VQ to represent color information.

Our agent also learns an separate abstract representation we call visual entities1 and denote with
v ∈ V , where V ⊂ {1 . . .E}H×W i.e. it assigns an entity id to each location. These are meant to
capture useful information about the state s and form the basis for computing the intrinsic rewards
re,m (see Sec. 3.1). Here e ∈ {1 . . .E} denotes a discrete entity id, where E is the maximum number
of possible entities, and m ∈ {1 . . .M} denotes a geometric feature of e’s derived segmentation
mask, from M possible measurements. In this work the measurements are fixed to what we consider
a sufficient set that captures the essential information for natural 3D navigation and Atari game play,
and settled on centroid cartesian coordinates and entity mask area, which we can both minimize and
maximize, thus in all our experiments M = 6. Temporal changes in these measurements constitute
our intrinsic reward functions2 which induce E ×M additional MDPs Oe,m = (S,A,P, re,m).
These intrisic rewards will induce behaviors which should hopefully provide structured exploration
in the original MDP i.e. picking a random Qe,m is more likely to lead to higher reward than epsilon
greedy exploration.

Our agent architecture tries to leverage this additional structure. The top level MDP M is repre-
sented by Qmeta which outputs action ameta

t at time t (switched every T time steps), where the action
space is discrete 1 of (E ×M) + 1 possible actions. In our implementation this is modelled by
composite actions E + 1 and M i.e. ameta

t = (et,mt) with et ∈ {1 . . .E + 1} and mt ∈ {1 . . .M}.
We also learn (E ×M) + 1 separate Q functions: (E ×M) that each solve one of the Oe,m and
one for the original MDP Qtask. These Q functions are defined over the environment action set and
differ only in the reward function (see Figure 2 for schematic representation).

3.1 VISUAL ABSTRACTIONS

Our agent relies on an abstraction model that assigns each pixel in the image to one of E separate
abstractions or entities. To obtain this representation, the image is passed through a convolutional
network (CNN) encoder to output a spatial grid of the same resolution as the original image. Then
a vector quantized layer V (van den Oord et al., 2017) assigns the planar activations to 1 of E enti-
ties. From the agents perspective this means all the pixels that are being grouped together become
indistinguishable thus providing the visual abstraction we desire.

Let us define f : RH×W → {1 . . .E}H×W the function that takes the observation st at time t and
computes an abstract representation corresponding to it vt = f(st). The key question is how to train
f . One way is to make it representative of the current state. In most of the current literature, this is

1We use visual entities and visual abstractions interchangeably. Both terms capture the most important
qualities of the representation: 1) emergent nature and 2) discreteness.

2If the mask is empty then the centroid is (0, 0) and area is zero.

3

Under review as a conference paper at ICLR 2018

Entity Masks

Option Bank: Induced by
using geometric intrinsic

reward per mask

C
N

N

Visual Entities

C
N

N LSTM

Replay Buffer

Select from
Used as reward
Store/Sample
Feed activations

...

1..
.E

1..
.E

Figure 2: Agent Architecture: (a) The input st is used to compute the visual entities vt. Their
one-hot encoding is a set of E {0, 1} masks. These are used to compute geometric measurements
such as: area and centroid positions (Sec. 3). Temporal differences in these constitute intrinsic
rewards rint for an option bank. (b) The input is separately passed through different a CNN and
LSTM network, whose output is then fed to: Qtask, Qmeta and options bank with E×M Q functions.
Qmeta and Qtask are both trained with external task reward but the options bank is trained with the
previously computed measurements rint. To act, Qmeta outputs a new action every T steps. Its
actions correspond to selecting and executing either: (1) one of the Q functions in the options bank
or (2) the Qtask policy. The selected Q function is then used to produce the actions returned to the
environment. All Q functions are trained simultaneously, off-policy, from a shared replay buffer D.

achieved by training a function g : {1 . . .E}H×W → RH×W such that g(f(st)) ' st. This ensures
that the representation preserves all the information about the state which is a sufficient condition for
the purpose. It is not hard to see however that it potentially wastes model capacity on unimportant
factors of variation. In this work we aim instead for a necessary condition for constraining the
representation. To this end we train f to be an injective function i.e. such that a decoding function g
can distinguish between states by looking at the representation ∀x 6= y =⇒ g(f(x)) 6= g(f(y)).

Our approach is to formulate classification losses to promote distinguishability between different
states at different levels of the representation. This was shown, in works like (Barber & Agakov,
2004; Belghazi et al., 2018; van den Oord et al., 2018), to be equivalent to maximizing a lower-bound
mutual information between random variables of the representation3. By choosing the appropriate
random variables and sampling strategies from the joint distribution and marginals we can specify
the right representation invariances as follows (see Figure 1 for an overview):

Preserving global information. The main term driving the representation learning is a global in-
formation term. To estimate it, the VQ layer output at time t, vt, is further processed by another
CNN encoder to output a frame level embedding vector Gt. We train a non-parametric classifier to
distinguish pairs of frames from the same trajectory from pairs of frames from different trajectories.
For that we form pairs (gt, gt+∆), where ∆ is sampled randomly, from pairs (gt, g

′), where g′ is
sampled randomly from a different trajectory. Training this classifier lets us indirectly maximize
a lower-bound on I(Gt, Gt+∆). This forces V to preserve enough information that distinguishes
this particular trajectory from other ones which tends to remove all irrelevant information like tex-
tures and unchanging “background” elements and preserve useful moving elements. Note that as
long as predictions are stable across time there is no pressure exerted by this cost to simplify the
representation.

3We write our losses as I because of this fact but this is an approximation.

4

Under review as a conference paper at ICLR 2018

Preserving controllable information. Secondly, we want the controllable information to be pre-
served in the abstract representation. That is, we want to know what aspects of the input were
changed as a result of the action. We achieve this by training to predict which action was taken
in a particular transition based on our representation. For that we add another loss, denoted by
I((Gt, Gt+1), At), that maximizes a lower-bound on mutual information between the a pair of con-
secutive frames and the action that was taken in the transition.

Preserving local appearance information. Finally, for hard exploration Atari games, where in-
puts change very little e.g. Montezuma’s Revenge much of the initial experience is from the first
room, we add an appearance term4. This term is meant to align the abstract representation with ap-
pearance changes i.e. promote abstractions have consistent colors. For that we feed the input image
into a shallow CNN encoder which outputs an embedding C of the local color and texture structure
of the image. We would like for the abstract representation to follow the appearance changes thus
we maximize a lower bound on mutual information I(Vt, Ct) in the same way as before. The pos-
itive pairs spatially aligned V and C embeddings, and the negative pairs are obtained by sampling
appearance embeddings from other spatial locations and pairing them with non-sampled V . This
promotes V representations that represent well appearance under the representational constraints of
the VQ representation.

To learn the agents’ abstract representation we minimize a weighted sum of these classification
losses

Labs(θabs) =
∑
t

−αgEg0∼P(G′|gt)
gi∼P(G)

log qg(Zg = 0|(g0, . . . , gK), gt) (1)

−αc log qc(at|(gt, gt+1))− αaEcit∼P(Ct)
vt∼P(Vt)

log qa(Zc = 0|cit, vt) (2)

where we denote by lower case letter the samples from the corresponding uppercase random vari-
ables. P(G) is the time independent marginal distribution over Gt’s. We model qg as

qg(Zg = 0|(g0, . . . gK), gt) =
expφ(g0, gt)∑K
i=0 expφ(gi, gt)

(3)

with φ(., .) being the cosine similarity over the embeddings andK is a hyper parameter denoting the
number of samples. We can similarly derive the third term. This is possible because the embeddings
have the same dimensionality. The second term is a cross entropy based action classifier.

3.2 BEHAVIOR ABSTRACTION

The agent is represented primarily by three sets of Q functions: Qmeta, Qtask and {Q1,1, . . . Qe,m}
from the options bank. Each Q function has a corresponding policy we denote by π, in our exper-
iments these are epsilon greedy policies with respect to the corresponding Q function. We denote
T to be the fixed temporal commitment window for Qmeta, which means that it acts every T steps.
Note that Qtask and Qe,m act at each environment time step. We can express all three Q func-
tions as: (1) Qmeta(s, (e,m)) = E

[∑∞
t′=t γ

t′−trt′ |st = s, ameta
t = (e,m), πmeta

]
, (2) Qtask(s, a) =

E
[∑∞

t′=t γ
t′−trt′ |st = s, atask

t = a, πtask
]

and (3) Qe,m(s, a) = E
[∑∞

t′=t γ
t′−tre,mt′ |st = s, at =

a, πe,m
]
.

We represent each Q function with a deep Q network (Mnih et al., 2015), for instance Qtask(s, a) ≈
Qtask(s, a; θtask). Each Q ∈ {Qtask, Qmeta, Q1,1, ..., Qe,m} can be trained by minimizing corre-
sponding loss functions – Ltask(θtask),Lmeta(θmeta) and {L1,1

bank(θ1,1), ...,Le,mbank(θe,m)}. We
store experiences (st, (et,mt, at), rt, st+1) in D, a shared buffer from which all the different Q
functions can sample to perform their updates. The transitions are stored in such a way as to be able
to sample trajectories.

The Q-learning (Sutton & Barto, 1998) objective can be written as minimizing the loss:

Ltask(θtask) = E(sτ ,aτ ,rτ ,sτ+1)τ∼D[(Rτ −Qtask(sτ , aτ ; θtask))2] (4)

4We found that for tasks that have richer visual variation this was not necessary.

5

Under review as a conference paper at ICLR 2018

General Artificial Intelligence

Figure 3: Unsupervised Visual Abstractions: Inputs and inferred visual abstractions using our
model. Each row represents temporally close frames from different environments including naviga-
tion and Atari. The colors in the abstraction images correspond to visual instances with temporally
consistent labels.

where Rτ =
∑τ+U−1
t=τ γt+τrt + γt+U maxa′ Q

task(sτ+U, a
′; θtask), where U is the length of the

unroll. The loss function Lmeta and all the Le,mbank can be written in a similar fashion. In our
experiments we use Q(λ) and learn all parameters with stochastic gradient descent by sampling
experience trajectories from the shared replay buffer (see Algorithm 1 for details).

4 EXPERIMENTS

The implementation has a learning setup inspired by the batched actor critic agent (Espeholt et al.,
2018), with a central GPU learner and multiple actors (64 in most experiments). See 6 for details
regarding visual abstraction architecture and agent network architecture.

The exploration setup. For the baseline we have 3 types of actors differing only in the exploration
parameter corresponding to high exploitation, high exploration and medium exploration. From the
total number of 64 actors that corresponds to 20, 10 and 34 respectively with epsilon values of .001,
.5, .01. Both the meta agent and base policies require exploration so we keep the same split but the
high exploration is considered independently for the base and meta policies i.e. half the actors have
εmeta = .5 and εbase = .01 and half have εmeta = .1 and εbase = .5. Furthermore we split equally
the medium exploration actors in 3 groups with (εmeta = .01, εbase = .1), (εmeta = .33, εbase =
.001) and (εmeta = .01, εbase = .1) respectively. This provides much more stable learning at both
the higher and lower levels of the behavior hierarchy.

4.1 NAVIGATION

We tested our approach on a 3D navigation domain with sparse rewards and hard exploration re-
quirements. The domain, whose top down view (not visible to the agent) is shown in figure 4,
contains four rooms each having a textured number at the entrance. The agent receives the image
observation as well as hint, a number from 1 to 4, which indicates the number of the room which
contains the target object, a green sphere. The goal is to reach the target as often as possible in the

6

Under review as a conference paper at ICLR 2018

Algorithm 1 Learning algorithm
1: Inputs: N number of episodes, εbase and εmeta exploration parameters, T the commitment

length, λtask, λmeta, λbank cost function parameters
2: Initialize experience replay buffer D and parameters {θmeta, θtask, θ1,1, ..., θe,m} for the meta-

control agent, task agent and options models respectively.
3: for i = 1 to N do
4: Initialize environment and get start state s
5: s0 ← s
6: while st is not terminal do
7: if t ≡ 0 mod T then
8: ameta

t = (et,mt)← EPSGREEDY(st, εmeta, θmeta)
9: end if

10: Compute abstract features vt from st (Section 3.1).
11: Compute intrinsic rewards rint = (re,m| ∀e ≤ E,m ≤M) from vt and vt−1

12: if et ≤ E then
13: at ← EPSGREEDY(st, εbase, Q

et,mt) % selected Q function from bank
14: else
15: at ← EPSGREEDY(st, εbase, Qtask) % selected Qtask

16: end if
17: Execute at and obtain next state st+1 and extrinsic reward rt from environment
18: Store transition (st, (et,mt, at), rt, st+1) in D
19: Use RMSProp to optimize Labs(θabs) %see eq. (2))
20: Use RMSProp to optimize λtaskLtask + λmetaLmeta + λbank

1
ME

∑E
e=1

∑M
m=1 L

e,m
bank

(see eq. (4))
21: end while
22: end for

(a) (b) (c)

Figure 4: Navigation domain. (a) Top-down view of a 3D Maze. The agent observes pixels from
the first person view. The task is described in section 4.1. (b) The green curve denotes an optimal
agent with access to ground truth visual abstractions. Our learnt model achieves close to optimal
performance while the baseline fails to solve the task. (c) Plot showing how the meta control policy
switches between options bank and task control policies. Time increases top to bottom. The right
most column is the task policy and all other columns denote option policies. Initially the agent uses
the options policies to explore and then gradually shift over to the task policy as training progresses.

7

Under review as a conference paper at ICLR 2018

Figure 5: Quantitative results on the Atari domain: Average returns per episode on 3 Atari
games where exploration is considered very challenging. On these domains we achieve better or
comparable results to a strong baseline.

limited time budget (250 steps). Once the goal is reached the target is relocated in another randomly
chosen room and the hint is updated accordingly. To solve the task the agent needs to associate
the hint with its position in the environment, which in turn means exploring far away regions in the
maze because the target may move in a far away place. The policy bank provides exactly this type
of exploration basis set. A baseline agent with the same architecture but without the policy bank
cannot solve this task in 100M steps see Figure 4. In this domain we can also query the environ-
ment representation to determine if a given pixel comes from either a wall, the skyline, floor, one of
the textured numbers or the target sphere. An agent with our proposed architecture but computing
intrinsic rewards based on this priviledged information solves the tasks easily. Most interestingly,
an agent that uses the abstraction inference method we propose can also solve it too, though with
slightly worse performance.

To gain an insight into the evolution of the agent policy, we plot in Figure 4 (c), a histogram of the
Qmeta policy actions during training (time is on the vertical axes and flows from top to bottom). The
leftmost 20 actions represent the policy bank and the rightmost one represents Qtask. We can see
that the agent uses most of the policies in the bank but as training progresses learns to rely more and
more on Qtask which is the optimal behavior.

4.2 ATARI

We have run our agent with the same architecture and parameters on hard exploration Atari games
where we can show that our agent has better performance than the baseline with a comparable
architecture and losses (see Figure 5).

4.3 DM LAB

In order to see if our model scales to more visually challenging environments we have run our agent
on 3 varied “DMLab-30” levels(Beattie et al., 2016). We show the training curves as a function of
time in Figure 6. In the “non-match” task the agent teleports first to a room with one object then a
room with two, one of which is the same as before. To get a positive reward the agent has to move
on top of the other object, otherwise it receives a negative reward. The sequence continues for a
fixed number of steps. Humans achieve 66 points and a state of the art agent gets 26. Our Q learner
baseline achieves only 9 points whereas our proposed agent achieves 33. Though this is meant to be
a memory task structured exploration seems to help achieve much better scores than the baselines.

We have also considered an experiment on the “keys doors” task. In this task the agent has to
successively pickup keys to unlock doors which seems like a task structure were our representation
could be more effective than the baseline. We found that, though both methods are competitive, our
representation was not sufficent to learn a better policy. We think that this may be due to noise in the
abstraction inference as well as a planning aspect that is not well enough handled in our agent in its
current form. Finally, our agent is outperformed by the baseline on the challenging watermaze task.
This is most likely due to the policy bank exploring mostly straight trajectories rather than circular
ones which are more appropriate on this task.

8

Under review as a conference paper at ICLR 2018

Figure 6: Quantitative results on the DMLab domain: Average returns per episode on 3 DMLab
levels.

5 DISCUSSION

We have shown that it is possible to design unsupervised structured exploration schemes for model-
free DRL agents, with competitive performance on a range of environments given just raw pixels.

One of the biggest open question moving forward is to find strategies to balance structure or induc-
tive biases and performance. Our current solution was to augment the meta-controller with Qtask

along with the options bank as sub-behaviors. The typical strategy that agents follow is to rely on
the options bank early in training and then use this experience to train the Qtask policy for optimality
as training progresses. This is reasonable given that the options models may not cover the optimal
policy but could serve as a good exploration algorithm throughout training. As new unsupervised
architectures and losses are discovered, we expect to narrow the gap between the optimal desired
behaviors and the options bank.

Learning visual entities from pixels is still a challenging open problem in unsupervised learning
and computer vision. We expect novel sampling schemes in our proposed architecture to improve
the entity discovery results. Other unsupervised video segmentation algorithms and discrete latent
variable models could also be used to boost the discovery process.

REFERENCES

David Barber and Felix V. Agakov. Information maximization in noisy channels : A variational
approach. In S. Thrun, L. K. Saul, and B. Schölkopf (eds.), Advances in Neural Information
Processing Systems 16, pp. 201–208. MIT Press, 2004.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, De-
von Hjelm, and Aaron Courville. Mutual information neural estimation. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Research, pp. 531–540, Stockholmsmssan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/
v80/belghazi18a.html.

Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation for efficient
reinforcement learning. In Proceedings of the 25th international conference on Machine learning,
pp. 240–247. ACM, 2008.

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and Alexei A Efros. Investigat-
ing human priors for playing video games. arXiv preprint arXiv:1802.10217, 2018.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
scalable distributed deep-rl with importance weighted actor-learner architectures. In ICML, vol-
ume 80 of JMLR Workshop and Conference Proceedings, pp. 1406–1415. JMLR.org, 2018.

9

http://proceedings.mlr.press/v80/belghazi18a.html
http://proceedings.mlr.press/v80/belghazi18a.html

Under review as a conference paper at ICLR 2018

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. CoRR,
abs/1611.07507, 2016. URL http://arxiv.org/abs/1611.07507.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Xu Ji, João F. Henriques, and Andrea Vedaldi. Invariant information distillation for unsupervised
image segmentation and clustering. CoRR, abs/1807.06653, 2018.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
neural information processing systems, pp. 3675–3683, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. In ICML, volume 70 of Proceedings of Machine Learning
Research, pp. 2721–2730. PMLR, 2017.

Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmentation. In ICCV, pp.
10–17. IEEE Computer Society, 2003.

Bernardino Romera-Paredes and Philip Hilaire Sean Torr. Recurrent instance segmentation. In
European Conference on Computer Vision, pp. 312–329. Springer, 2016.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312–1320, 2015.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 22(8):888–905, August 2000. ISSN 0162-8828. doi: 10.1109/34.868688. URL
https://doi.org/10.1109/34.868688.

Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–96,
2007.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pp. 761–768. International Foundation for Autonomous Agents
and Multiagent Systems, 2011.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, pp. 6306–6315, 2017.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 5392–5402, 2017.

10

http://arxiv.org/abs/1611.07507
https://doi.org/10.1109/34.868688

Under review as a conference paper at ICLR 2018

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Du-
eling network architectures for deep reinforcement learning. In Maria Florina Balcan and Kil-
ian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning Research, pp. 1995–2003, New York, New
York, USA, 20–22 Jun 2016. PMLR. URL http://proceedings.mlr.press/v48/
wangf16.html.

Xide Xia and Brian Kulis. W-net: A deep model for fully unsupervised image segmentation. CoRR,
abs/1711.08506, 2017.

11

http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html

Under review as a conference paper at ICLR 2018

6 SUPPLEMENTARY MATERIAL

Visual Abstraction Architecture. The encoder for the abstractions is a set of 3 convolutional lay-
ers 3×3 kernels with 64 features each followed by ReLU nonlinearities. After a 1×1 convolutional
layer with 8 outputs the features are l2 normalized. We found that to work better in practice with
the VQ layer sitting on top. The VQ layer has 8 elements unless otherwise stated. Since the strides
are always 1 the VQ output has the same spatial dimensions as the input image. The global loss is
a stack of convolutions 3 × 3, followed by a 2 × 2 max pooling with stride two to reduce the res-
olution of the output and then a ReLU non-linearity. The output is then flattened to give the global
embedding of the abstract representation. The image embedding is a two-layer 8 filter convnet with
a ReLU non-linearity inbetween.

Agent architecture. The agent architecture is a standard 3 layer convolutional stack similar to
Mnih et al. (2015) with 512 hidden unit output and an LSTM on top. The output of the LSTM is
fed into an visual abstraction selection Q function, a measurement selection Q function, a regular
task Q function layer and the policy bank i.e. a layer with M × E × num actions outputs. The Q
function layers are all dueling heads as in Wang et al. (2016).

Setup and baseline. Our setup is very similar to the one in (Espeholt et al., 2018). Multiple actors
(64 in most examples) in the acting loop that send trajectories to a shared learner which processes
them in batched fashion (batch size of 32). The main difference is the use of value based Q(λ) loss
(with a λ value of .85) instead of actor-critic with off-policy correction. The baseline agent has the
same exact architecture and loss as our agent. In fact if we ignored the meta control Q function and
the options bank we get our baseline exactly.

12

	Introduction
	Related Work
	Model
	Visual Abstractions
	Behavior Abstraction

	Experiments
	Navigation
	Atari
	DM Lab

	Discussion
	Supplementary Material

