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ABSTRACT

In this paper, we address quantitative sample-based evaluation for Generative Ad-
versarial Networks (GANs) on generating domain-specific images, where we im-
prove conventional sample-based evaluation methods on two levels: the feature
representation and the evaluation metric. Unlike most existing evaluation frame-
works which transfer the representation of ImageNet inception model for mapping
images onto the feature space, our method uses a specialized encoder to acquire
fine-grained domain-specific representation. Moreover, for datasets with multi-
ple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a
Gaussian mixture model on the feature space to better fit the feature distribution
with multiple clusters. Experiments and analysis on both the feature level and the
image level were conducted to demonstrate improvements of our proposed frame-
work over the recently proposed state-of-the-art sample-based method FID. To
our best knowledge, we are the first to provide counter examples where FID gives
inconsistent results with human judgments. It is shown in the experiments that
our framework is able to overcome the shortness of FID and improves robustness.
Code will be made available.

1 INTRODUCTION

Generative Adversarial Networks (GANs) have shown outstanding abilities on many computer vi-
sion tasks including generating domain-specific images (Goodfellow et al., 2014a), style transfer
(Zhu et al., 2017), super resolution (Ledig et al., 2017), etc. The basic idea of GANs is to hold a
two-player game between generator and discriminator, where the discriminator aims to distinguish
between real and fake samples while the generator tries to generate samples as real as possible to
fool the discriminator.

Researchers (Radford et al., 2016; Arjovsky et al., 2017; Berthelot et al., 2017; Mao et al., 2017) have
been continuously exploring better GAN architectures. However, developing a widely-accepted
GAN evaluation framework remains to be a challenging topic (Theis et al., 2016). Due to a lack of
GAN benchmark results, newly proposed GAN variants are validated on different evaluation frame-
works and therefore incomparable. Because human judgements are inherently limited by manpower
resource, good quantitative evaluation frameworks are of very high importance to guide future re-
search on designing, selecting, and interpreting GAN models.

There have been varieties of efforts on designing sample-based evaluation for GANs on its ability of
generating domain-specific images. The goal is to measure the distance between the generated sam-
ples and the real in the dataset. Most existing methods utilized the ImageNet (Russakovsky et al.,
2015) inception model to map images onto the feature space. The most widely used criteria is prob-
ably the Inception Score (Salimans et al., 2016), which measures the distance via Kullback-Leiber
Divergence (KLD). However, it is probability based and is unable to report overfitting. Recently,
Frechet Inception Distance (FID) was proposed (Heusel et al., 2017) on improving Inception Score.
It directly measures Frechet Distance on the feature space with the Gaussian assumption. It has been
proved that FID is far better than Inception Score (Huang et al., 2018; Im et al., 2018; Lucic et al.,
2017). However, we argue that assuming normality on the whole feature distribution may lose class
information on labeled datasets.

In this work, we propose an improved quantitative sample-based evaluating criteria. We improve
conventional evaluation methods on two levels: the feature representation and the evaluation metric.
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Unlike most existing methods including the Inception Score (Salimans et al., 2016) and FID (Heusel
et al., 2017), our framework uses a specialized encoder trained on the dataset to get domain-specific
representation. We argue that applying the ImageNet model to either labeled or unlabeled datasets
is ineffective. Moreover, we propose Class-Aware Frechet Distance (CAFD) in our framework to
measure the distribution distance of each class (mode) respectively on the feature space to include
class information. Instead of the single Gaussian assumption, we employ a Gaussian mixture model
(GMM) to better fit the feature distribution. We also include KL divergence (KLD) between mode
distribution of real data and generated samples into the framework to help detect mode dropping.

Experiments and analysis on both the feature level and the image level were conducted to demon-
strate the improved effectiveness of our proposed framework. To our best knowledge, we are the first
(Borji, 2018) to provide counter examples where FID is inconsistent with human judgements (See
Figs. 1 and 2). It is shown in the experiments that our framework is able to overcome the shortness
of existing methods.

2 RELATED WORK

Evaluation Methods. Several GAN evaluation methods have been proposed by researchers. While
model-based methods including Parzen window estimation and the annealed importance sampling
(AIS) (Wu et al., 2017) require either density estimation or observation on the inner structure of the
decoder, model-agnostic methods (Heusel et al., 2017; Salimans et al., 2016; Im et al., 2018; Che
et al., 2017; Dziugaite et al., 2015; Lopez-Paz & Oquab, 2017; Li et al., 2015) are more popular in
the GAN community. These methods are sample based. Most of them map images onto the feature
space via an ImageNet pretrained model and measure the similarity of the distribution between the
dataset and the generated data. Maximum mean discrepancy (MMD) was proposed by (Dziugaite
et al., 2015; Li et al., 2015) and it has been further used in classifier two-sample tests (Lopez-Paz
& Oquab, 2017), where statistical hypothesis testing is used to assess whether two sample sets
are from the same distribution. Inception Score (Salimans et al., 2016), along with its improved
version Mode Score (Che et al., 2017), was the most widely used metric in the last two years. FID
(Heusel et al., 2017) was proposed on improving the Inception Score. Recently, several interesting
methods were also proposed including classification accuracy (Shmelkov et al., 2018), precision-
recall measuring (Sajjadi et al., 2018) and skill rating (Olsson et al., 2018). These metrics give
complementary perspectives towards sample-based methods.

Studies on Existing Frameworks. It is common (Barratt & Sharma, 2018) in the literature to
see algorithms which use existing metrics to optimize early stopping, hyperparameter tuning, and
even model architecture. Thus, comparison and analysis on previous evaluation methods have been
attracting more and more attention recently (Theis et al., 2016; Huang et al., 2018; Im et al., 2018;
Lucic et al., 2017). While Inception Score was the most popular metric in the last two years, it was
believed to be misleading in recent literature (Heusel et al., 2017; Huang et al., 2018; Lucic et al.,
2017; Borji, 2018; Barratt & Sharma, 2018). Applying the ImageNet model to encode features
in Inception Score is ineffective (Theis et al., 2016; Barratt & Sharma, 2018; Rosca et al., 2017).
The recently proposed FID has been proved to be far better than Inception Score (Heusel et al.,
2017; Huang et al., 2018; Im et al., 2018). And its robustness was experimentally demonstrated
recently in a technical report (Lucic et al., 2017). However, we argue that FID still has problems and
provide counter examples where FID gives inconsistent results with human judgements. Moreover,
we propose an improved version of evaluation which overcomes its shortness.

3 PROBLEMS ON FID

The evaluation problem can be formulated as modeling the distance between two distributions Pr

and Pg , where Pr denotes the distribution of real samples in the dataset and Pg denotes the distribu-
tions of new samples generated by GAN models.

The main difficulties for GANs on generating domain-specific images can be summarized into three
types below.
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• Lack of generating ability. Either the generator cannot generate useful samples or the
GAN training cannot diverge.

• Mode collapse. Different modes collapse to a new mixed mode in the generated samples.
(e.g. An animal resembling both a horse and a deer.)

• Mode dropping. Only part of the modes in the dataset are generated while some modes
are implicitly ignored. (e.g. The handwritten 5 can hardly be generated by GAN trained on
MNIST.)

Therefore, a good evaluation framework should be consistent to human judgements, penalize on
mode collapse and mode dropping. Most of the conventional methods utilized an ImageNet pre-
trained inception model to map images onto the feature space. Inception Score, which was originally
formulated as Eq. (1), ignored information in the dataset completely. Thus, its original formulation
was considered to be relatively misleading.

IS = exp(Ex[KL(p(y|x)||p(y))]) (1)

The Mode Score was proposed (Che et al., 2017) to overcome this shortness. Its formulation is
shown in Eq. (2). By including the prior distribution of the ground truth labels, Mode Score im-
proved Inception Score (Che et al., 2017) on reporting mode dropping.

MS = exp(Ex[KL(p(y|x)||p(y∗))]−KL(p(y∗)||p(y))) (2)

FID (Heusel et al., 2017), which was formulated in Eq. (3), was proposed on improving Inception
Score (Salimans et al., 2016).

FID(Pr, Pg) = ||µr − µg||+ Tr(Cr + Cg − 2(CrCg)
1
2 ) (3)

(µg, Cg), (µr, Cr) are the first-order and second-order statistics for generated samples and real data
respectively. Unlike the previous two metrics which are probability-based, FID directly measures
Frechet distance on the feature space. It uses an ImageNet model for encoding features and assumes
normality on the whole feature distribution. FID was believed to be better than Inception Score
(Huang et al., 2018; Im et al., 2018; Lucic et al., 2017). However, we argue that FID still has two
major problems (See Section 3.1 and 3.2).

3.1 INEFFECTIVE REPRESENTATION

As both Inception Score (Salimans et al., 2016) and Mode Score (Che et al., 2017) is probability-
based, applying the ImageNet pretrained model on non-ImageNet dataset is relatively meaningless.
This misuse of representation on Inception Score was mentioned previously (Rosca et al., 2017).
However, we argue that applying the ImageNet model to map the generated images to the feature
space in FID can also be misleading.

While both of the (Barratt & Sharma, 2018; Rosca et al., 2017) mentioned that applying the Ima-
geNet pretrained model to the probability-based metric Inception Score (Salimans et al., 2016) is
inadequate, the trend for applying it to feature-based metric such as FID (Heusel et al., 2017) is
widely followed. (Barratt & Sharma, 2018) pointed out that because classes are unmatched, the
p(y|x) and p(y∗) in the formulation of Inception Score are meaningless. However, we argue that
applying the ImageNet model for mapping the generated images to the feature space in FID can also
be misleading for the two reasons below.

First, On labeled datasets with multiple classes, the class labels unmatch those in ImageNet. For
example, the class ‘Bird’ in CIFAR-10 (Krizhevsky & Hinton, 2009) is divided into several sophis-
ticated category labels in ImageNet. This will make the CNN representations trained on ImageNet
is either meaningless or over-complicated. Specifically, some features distinguishing the “acoustic
guitar” from “electric guitar” are hardly useful on CIFAR-10 while fine-grained features distin-
guishing “African hunting dog” from “Cape hunting dog” (which all belong to the category “dog”
in CIFAR-10) are not needed as well.
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On unlabeled datasets with images from a single class such as CelebA (Liu et al., 2015), applying
the ImageNet inception model is also inappropriate. The categories of ImageNet labels are so so-
phisticated that the trained model needs to encode diverse features on various objects. However,
this will get encoded features limited to a relatively low-dimensional subspace lack of fine-grained
information. For example, the ImageNet models can hardly distinguish different faces. In Section
5.1, we designed experiments on both the feature level and the image level to demonstrate the effects
of using different representations.

3.2 SINGLE GAUSSIAN VS. MIXTURE GAUSSIAN

We argue that the single Gaussian assumption in FID is over-simplified. As the training decreases
intra-class distance and increases inter-class distance, the features are distributed in groups by their
class labels. Thus, we propose that on datasets with multiple classes, the feature distribution is better
fitted by a Gaussian mixture model.

Considering the specific Gaussian mixture model where x ∼ N(µi, Ci) with probability pi, we can
derive the first and second moment of the feature distribution in Eq. (4) and Eq. (5).

µ = E(x) = E(E(x|y)) =
∑

piµi (4)

C = var(x) = E(var(x|y)) + var(E(x|y))

=
∑

piCi +
∑

pi(µi − µ)(µi − µ)T
(5)

It should be noted that when the feature is n-dimensional and there are K classes in total, there are a
total ofK(n

2+n
2 +n+1) variables in the model. However, directly modeling the whole distribution

Gaussian as in FID will result in n2+n
2 + n degrees of freedom, which is a relatively small number.

Thus, FID detects mode-related problems in an implicit way. Either simply dropping a mode or
linearly combining images increases FID by unintentionally changing the mean µ. However, FID
gets to be misleading when the deficiency type becomes more complicated (See Figure 2).

4 PROPOSED FRAMEWORK

4.1 DOMAIN-SPECIFIC ENCODER

As discussed in Section 3.1, applying the ImageNet inception model to either labeled or unlabeled
datasets is ineffective. We argue that a specialized domain-specific encoder should be used for
sample-based evaluation. While the features encoded by the ImageNet model are limited within a
low-dimensional subspace, the domain-specific model could encode more fine-grained information,
making the encoded features much more effective. Specifically, we propose to use the widely used
variational autoencoder (VAE) (Kingma & Welling, 2014) to acquire the specialized embedding for
a specific dataset. In labeled datasets, we can add a cross-entropy loss for training the VAE model.
In Section 5.1, we show that simply training an autoencoder can already get better domain-specific
representations on CelebA (Liu et al., 2015).

4.2 CLASS-AWARE FRECHET DISTANCE

Before introducing our improved evaluation metric, we would firstly take a step back towards exist-
ing popular metrics. Both Inception Score (Salimans et al., 2016) and Mode Score (Che et al., 2017)
measure distance between probability distribution while FID (Heusel et al., 2017) directly measures
distance on the feature space. Probability-based metrics better handle mode-related problems (with
the correct use of a domain-specific encoder), while directly measuring distance between features
better models the generating ability. In fact, we believe these two perspectives are complementary.
Thus, we propose a class-aware metric on the feature space to combine the two perspectives together.
For datasets with multiple classes, the feature distribution is better fit with mixture Gaussian (See
Section 3.2). Thus, we propose Class-Aware Frechet Distance (CAFD) to include class informa-
tion. Specifically, we compute probability-based Frechet Distance between real data and generated
samples in each class respectively.
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Table 1: Frechet distance on different classes of MNIST dataset.

class 0 1 2 3 4 5
dist 64.8± 0.5 18.9± 0.2 80.5± 1.1 81.3± 0.3 64.5± 0.6 79.0± 0.4
class 6 7 8 9 average
dist 65.2± 0.3 46.8± 0.3 90.4± 0.3 59.8± 0.2 65.1± 0.4

As previously discussed in Section 4.1, we train a domain-specific VAE along with the cross entropy
on datasets with multiple classes and use its learned representations. In our evaluation framework,
we also made use of the predicted probability p(y|x). To calculate the expected mean of each class
in a specific set S of generated samples, we can derive the formulation below in Eq. (6).

µg
i = E[x|yi] =

∑
xj∈S

xjp(xj |yi) =
∑
xj∈S

xj
p(xj , yi)

p(yi)

=
∑
xj∈S

xj
p(yi|xj)p(xj)∑

x∗∈S p(yi|x∗)p(x∗)

i.i.d
=

∑
xj∈S

xj
p(yi|xj)∑

x∗∈S p(yi|x∗)
=

∑
xj∈S

wijxj

(6)

where

wij =
p(yi|xj)∑

x∗∈S p(yi|x∗)
(7)

Similarly, The covariance matrix in each class is shown in Eq. (8).

Cg
i =

∑
x∈S

wij(xj − µi)(xj − µi)
T (8)

We compute Frechet distance in each of the K classes and average the results to get Class-Aware
Frechet Distance (CAFD) in Eq. (9).

CAFD(Pr, Pg) =
1

K

K∑
i=1

{||µr
i − µ

g
i ||+ Tr(Cr

i + Cg
i − 2(Cr

i C
g
i )

1
2 )} (9)

This improved form based on mixture Gaussian assumption can better evaluate the actual distance
compared to the original FID. Moreover, when CAFD is applied to evaluating a specific GAN model,
we could get better class-aware understanding towards the generating ability. For example, as shown
in Table 1, the selected model generates digit 1 well but struggles on other classes. This information
will provide guidance for researchers on how well their generative models perform on each mode
and may explain what specific problems exist.

As both FID and CAFD aim to model how well domain-specific images are generated, they are not
designed to deal with mode dropping, where some of the modes are missed in the generated samples.
Thus, motivated by Mode Score (Che et al., 2017), we propose that KL divergenceKL(p(y∗)||p(y))
should be included as auxiliary scores into the evaluation framework.

To sum up, the correct use of encoder, the CAFD and the KL divergence term combine for a complete
sample-based evaluation framework. Our proposed method combines the advantages of Inception
Score (Salimans et al., 2016), Mode Score (Che et al., 2017) and FID (Heusel et al., 2017) and
overcomes their shortness.

4.3 DISCUSSION

Our method is sensitive to different representations. Different selection of encoders can result in
changes on the evaluation results. Experiments in Section 5.1 demonstrate that the ImageNet in-
ception model will give misleading results (See Figure 1). Thus, a domain-specific encoder should
be used in each evaluation pipeline. Because the representation is not fixed, the correct use (with
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Table 2: Results on the explained variance of principle component analysis (PCA) on features en-
coded by different represenations. ‘Exp’ denotes ‘explained variance’, ‘Ac-Exp’ denotes ‘accumu-
lated explained variance’. Although the architecture of ImageNet inception model is much more
complex than the domain-specific autoencoder and VAE, the features encoded by ImageNet model
are limited in a relatively low-dimensional subspace.

ImageNet Autoencoder VAE
Component Exp Ac-Exp Exp Ac-Exp Exp Ac-Exp
1 9.35% 9.35% 5.58% 5.58% 3.02% 3.02%
2 7.04% 16.39% 4.66% 10.24% 2.24% 5.26%
3 3.88% 20.27% 3.93% 14.17% 2.08% 7.34%
4 2.67% 22.95% 3.66% 17.83% 2.00% 9.34%
5 2.47% 25.42% 3.41% 21.24% 1.91% 11.25%

domain-specific representation) of Inception Score, Mode Score and FID all suffer from this sensi-
tivity problem. It is worth emphasizing that different generative methods should be compared only
under the same encoder.

Unlike Inception Score, because CAFD measures distance on the feature space as FID does, it is able
to report overfitting. By measuring CAFD with respect to training set and test set respectively, re-
searchers can get understanding towards whether their GAN models overfit the training data. More-
over, the intermediate results can provide researchers comprehensive understanding towards their
GAN models (e.g. See Table 1).

5 EXPERIMENTS

5.1 STUDY ON REPRESENTATION

In this section, we study the representation for mapping the generated images onto the feature space.
As discussed in Section 4.1, applying the pretrained ImageNet inception model to sample-based
evaluation methods is inappropriate. We firstly investigated the features generated by different en-
coders on CelebA (Liu et al., 2015), which is a widely used dataset containing more than 200k face
images. Then, we gave an intuitive demonstration where FID (Heusel et al., 2017) using ImageNet
pretrained representations gives inconsistent results with human judgements.

We give two proposals of domain-specific encoders in the experiment: an autoencoder and a VAE
(Kingma & Welling, 2014). Both proposed encoders share a similar network architecture which is
the inverse structure of the 4-conv DCGAN (Radford et al., 2016). The embedding is dimensioned
2048, which is the same as the dimension of ImageNet features. We train both models for 25 epochs.
The loss weight of the KLD term in VAE is 1e-5.

5.1.1 FEATURE ANALYSIS

We conducted principle component analysis (PCA) on three feature sets encoded on CelebA (Liu
et al., 2015): 1) ImageNet inception model. 2) proposed autoencoder 3) proposed VAE. Table 2
shows the percent of explained variance on the first 5 components. Although the ImageNet model
should have much greater representation capability than the 4-conv encoder, its first two components
has much higher explained variance (9.35% and 7.04%). This supports our claim that the features
encoded by ImageNet are limited in a low-dimensional subspace. It can be also noted that VAE
better makes use of the feature space compared to the naive autoencoder.

5.1.2 CELEBA: HACK AND COMPARISON

To better demonstrate the deficiency of the ImageNet model, we performed three different types of
adjustments on the first 10,000 images on CelebA (Liu et al., 2015): a) Random noise uniformly
distributed in [-33,33] was applied on each pixel. b) Each image was divided into 8x8=64 regions
and seven of them were sheltered by a pixel sampled from the face. c) Each image was first divided
into 4x4=16 regions and random exchanges were performed twice.
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(a) noise (FID=75.9) (b) sheltering (FID=74.3) (c) exchange (FID=70.9)

Figure 1: Examples where FID gives inconsistent results with human judgements (a < b < c) on
CelebA (Liu et al., 2015). The ImageNet inception model fails to encode fine-grained features on
faces. a) Random noise uniformly distributed in [-33,33] was applied on each pixel. b) Each image
was divided into 8x8=64 regions and seven of them were sheltered by a pixel sampled from the face.
c) Each image was first divided into 4x4=16 regions and random exchanges were performed twice.

Table 3: FID results on different representations. Only domain-specific encoders including AE and
VAE used in our proposed method provides consistent results with human judgements.

noise sheltering exchange
ImageNet 76 74 71
Discriminator 122466 48322 28557
AutoEncoder 83 21417 38609
VAE <1.0 41.1 111.8
Human Good Bad Worst

Results are shown in Figure 1. With the ImageNet inception model, it is obvious that FID gave
inconsistent results with human judgements (See Table 5). In fact, when similar adjustments were
conducted with the overall color maintained, FID fluctuated within only a small range. The Ima-
geNet model mainly extracts general features on color, shape to better classify objects in the world
while domain-specific facial textures cannot be well represented.

For comparison, we applied the trained autoencoder and VAE onto the case. Also, we tried to apply
the representation of the discriminator after GAN training, which was previously proposed in (Che
et al., 2017). Specifically, we use the features right before the final fc layer for the discriminator.
Results are shown in Table 3. It is shown that only representations derived from the domain-specific
encoder including the autoencoder and VAE are effective and give results consistent with human
judgements. The discriminator which learns to discriminate fake samples from the real cannot learn
good representation for distance measurement.

Thus, for datasets where images are from a single class such as CelebA (Liu et al., 2015) and LSUN
Bedrooms (Yu et al., 2015), the representation should be acquired via training a domain-specific en-
coder such as a VAE. In this way our sample-based evaluation employs specialized representations,
which can provide more fine-grained information related to the specific domain.

5.2 STUDY ON EVALUATION METRIC

In this section, we used the domain-specific representations and studied the improvements of the
evaluation metric CAFD proposed in our framework against the state-of-the-art metric FID (Heusel
et al., 2017). In datasets with multiple classes, the Gaussian mixture model in CAFD will better fit
the feature distribution. First, we performed user study to demonstrate the improved consistency of
our method. Then, An intuitive case for further demonstration is given where CAFD shows great
robustness while FID fails to give consistent results with human judgements. For implementation
details, on the MNIST dataset, we trained a variational autoencoder (VAE) (Kingma & Welling,
2014) with the kl loss weight 1e-5 for the specialized encoder and added the cross-entropy term
with a loss weight of 1.0.
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Table 4: The fraction of pairs on which each met-
ric agrees with human judgements on MNIST.
The count of agreed pairs over the count of total
pairs (210) is reported.

Method easy hard
Inception Score 158 / 210 104 / 210
Mode Score 172 / 210 118 / 210
FID 201 / 210 142 / 210
Ours 206 / 210 151 / 210

Table 5: Human judgements on Figure 1.

Vote for the best (a) (b) (c)
1st 23 2 0
2nd 2 23 0
3rd 0 0 25

Table 6: Human judgements on Figure 2.

(a) (b)
Vote for the better 25 0

(a) generated (FID=49.9) (b) hack (FID=25.4)

Figure 2: Examples where FID gives inconsistent results with human judgements on MNIST. Due
to the over-simplified Gaussian assumption, FID can be hacked by mode collapse. a) Samples
generated by a GAN model. b) Handmade images via axis permutation and FGSM (Goodfellow
et al., 2014b). We use the domain-specific representation of VAE for embedding images. (See Table
7)

5.2.1 USER STUDY

Evaluating the evaluation metrics is a non-trivial task, as the best criterion is the consistency with
human judgements. Therefore, we performed user study to compare our proposed method with
the existing ones including Inception Score (Salimans et al., 2016), Mode Score (Che et al., 2017)
and FID (Heusel et al., 2017). Our setting is consistent with (Im et al., 2018). 15 volunteers were
first trained to tell generated samples from the groundtruth in the dataset. Then, paired image sets
were randomly sampled and volunteers were asked to tell the better sets. Finally, we counted pairs
where the metric agreed the voted results by the volunteers. We conducted experiments on MNIST
with two settings for the experiments: ‘easy’ and ‘hard’. The ‘easy’ setting is where random pairs
are sampled from the intermediate results of GAN training, while the ‘hard’ setting is where only
random pairs with the difference of FID of two sampled sets within a threshold are included. Table
4 shows the results. It is worth noting that in hard cases, the results of Inception Score (Salimans
et al., 2016) are relatively meaningless (50%), which makes it hard to be applied as guidance for
improving the quality of generated images by GANs. In both ‘easy’ and ‘hard’ settings, our method
gets consistent gain compared to baseline approaches.

5.2.2 MNIST: HACK AND COMPARISON

In this experiment, we gave an intuitive case where FID fails to give consistent results with human
judgements. We used two different settings of representations and focused on the evaluation metric
within each setting. Specifically, Besides the VAE, we also train a classifier on MNIST and use its
representation as a supporting experimental setting.
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Table 7: Results of FID, CAFD and KLD on MNIST. Lower scores infer better image quality. The
‘test’ denotes the MNIST test set, ‘adjusted’ denotes the features after axis permutation. ‘generated’
denotes samples generated by a specific GAN model. ‘hack’ denotes the image sets after FGSM
(Goodfellow et al., 2014a). We use two setting of different representations in this experiment: a
domain-specific classifier and a VAE. For VAE, ‘generated’ and ‘hack’ are the sampled images in
Figure 2. Compared to FID, CAFD are more robust to feature-level adjustments.

classifier FID CAFD VAE FID CAFD
test 0 0 test 0 0
adjusted 0 539.8 adjusted 0 246.2
generated 73.1 201.4 generated 49.9 80.7
hack 72.8 468.6 hack 25.4 211.6
train 22.0 99.8 train 6.0 31.5

FID, as an overall statistical measure, is able to detect either a single mode dropping or a trivial
linear combination of two images. However, as its formulation has relatively limited constraints, it
can be hacked in complicated scenarios. Considering the features extracted from MNIST test data,
which has a zero FID with itself. We performed operations below on the features.

Step 1 Performed principle component analysis (PCA) on the original features.
Step 2 Normalized each axis to zero mean and unit variance.
Step 3 Switched the normalized projection of the first two component.
Step 4 Unnormalized the data and reconstructed features.

The adjusted features are completely different with the original one with zero FID maintained. The
over-simplified Gaussian assumption on overall distribution cannot tell the differences while our
proposed method is able to report the changes with CAFD raising from 0 to 246.2 (539.8) for VAE
(classifier). (See Table 7)

Furthermore, We used FGSM (Goodfellow et al., 2014b) to reconstruct the images from the adjusted
features in both settings. Specifically, we first trained an decoder for initialization via an AutoEn-
coder with the encoder fixed. Then, we performed pixelwise adjustment via FGSM (Goodfellow
et al., 2014b) to lower the reconstruction error. Because the used encoder has a relatively simple
structure, the final reconstruction error is still relatively high after optimized. For comparison, We
trained a simple WGAN-GP (Gulrajani et al., 2017) model and took samples (generated by interme-
diate models during training) with comparable FID with our constructed images. Visualization for
the VAE setting are shown in Figure 2.

It is obvious that the quality of constructed images are much worse than the generated samples. Af-
ter axis permutation, the constructed images suffers from mode collapse. There are many pictures
in the right which resemble more than one digits and are hard to recognize. However, for the VAE
(classifier) setting, it still received a FID of 25.4 (72.8) lower than 49.9 (73.1) received by gener-
ated samples. For comparison, The results of CAFD on these cases are shown in Table 7. While
FID gives misleading results, CAFD are much more robust on the adjusted features. Compared to
the constructed images (211.6 (468.6)), the generated images received a much lower CAFD (80.7
(201.4)), which is consistent with human judgements. (See Table 6) Thus, results for both settings
demonstrates the improved effectiveness of the evaluation metric in our proposed evaluation frame-
work.

6 CONCLUSIONS

In this paper, we aimed to tackle the very important problem of evaluating the Generative Adver-
sarial Networks. We presented an improved sample-based evaluation, which improves conventional
methods on both representation and evaluation metric. We argue that a domain-specific encoder is
needed and propose Class-Aware Frechet Distance to better fit the feature distribution. To our best
knowledge, we are the first to provide counter examples where the state-of-the-art FID method is
inconsistent with human judgements. Experiments and analysis on both the feature level and the
image level have shown that our framework is more effective.
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Table 8: The classification results on CIFAR-10 (Krizhevsky & Hinton, 2009) images using in-
ception model trained on ImageNet. The class labels ’Bird’ and ’Dog’ are divided into several
subclasses.

Rank CIFAR-10 ’Bird’ Frequency CIFAR-10 ’Dog’ Frequency
1 Fox Squirrel 10.1% Japanese spaniel 9.8%
2 Limpkin 6.9% Dandie Dinmont 5.2%
3 Black Stork 6.4% English foxhound 4.6%
4 Black Grouse 5.3% Toy terrier 3.2%
5 Brambling 4.1% Bluetick 2.8%

APPENDIX

A MISMATCHED IMAGENET LABELS

We used Inception-v3 (Szegedy et al., 2015) model trained on ImageNet to classify the 5000 images
labeled ‘Bird’ and 5000 images labeled ‘Dog’ in CIFAR-10 (Krizhevsky & Hinton, 2009) dataset
respectively. Table 8 shows the results. The images from the single class ‘Bird’ in CIFAR-10 is
classified into various subclasses, where surprisingly the top class is Fox Squirrel (which is not
a Bird class) with a 10.1% frequency. The classification results are extremely diverse. It can be
inferred that the Inception-v3 model trained on ImageNet does not map images with the label ‘Bird’
onto a simple subspace. Results on the label ‘Dog’ show similar patterns. Features determining
whether a dog is a Japanese spaniel or an English foxhound are relatively unnecessary on CIFAR-
10. Thus, the ImageNet representation cannot well fit non-ImageNet datasets.

Therefore, the encoder should be specifically trained for datasets of which the labels are different
from ImageNet. To attain effective representations on non-ImageNet datasets, we need to ensure
that the class labels of data used for training GAN models are consistent with those of data used for
training the encoder.

B NORMALITY TEST

The Gaussian assumption on the features were commonly used in the literature. Although there are
non-linear operations such as relu and max-pooling in the neural network, assuming the normality
simplifies the model and enables numerical expression. However, in labeled dataset with multiple
classes, the Gaussian assumption is relatively over-simplified.

In this experiment, we performed Anderson-Darling test (AD-test) (Scholz & Stephens, 1987) to
quantatively study the normality of the data. Specifically, to test the multivariate normality on a set
of features, we first performed principle component analysis (PCA) on the data, and then applied
AD-test to the first 10 components and averaged the results. We compared the test results on each
class and the whole training set on MNIST. We used a simple 2-conv structure trained on the MNIST
classification task as our feature encoder with a output dimension 1024. To reduce the influence
of sample number on the results, we divided the whole features randomly into 10 sets to study the
normality of the mixed features. Results are shown in Table 9. Although the p-value of both features
are small, features within a single class get much greater results than the mixed features. It can be
inferred that compared to the whole training set, features within each class are much more Gaussian.
Thus, the basic assumption of CAFD in our proposed framework is more reasonable compared to
the FID (Heusel et al., 2017) method.

C A BENCHMARK FOR POPULAR GANS

The idea of Generative Adversarial Network was originally proposed in (Goodfellow et al., 2014a).
It has been applied to various computer vision tasks (Zhu et al., 2017; Ledig et al., 2017; Zhu et al.,
2016; Isola et al., 2017). Researchers have been continuously developing better GAN architectures
(Gurumurthy et al., 2017; Huang et al., 2017) and training strategies (Arora et al., 2017; Hoang
et al., 2018) on generating domain-specific images. Deep convolutional networks were firstly in-
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Table 9: P-value results of AD-test (Scholz & Stephens, 1987) on features of each class and the
whole training images. The whole features were randomly divided into 10 sets. Compared to the
mixed features, features encoding images from a single class are more Gaussian.

set number 0 1 2 3 4
class 1.1× 10−1 3.9× 10−19 3.8× 10−3 7.4× 10−2 5.7× 10−2

mixed 3.2× 10−13 1.1× 10−5 5.4× 10−7 2.2× 10−11 9.0× 10−9

set number 5 6 7 8 9
class 5.6× 10−2 9.3× 10−2 1.0× 10−2 5.0× 10−2 2.4× 10−2

mixed 6.9× 10−4 1.4× 10−12 2.7× 10−6 3.2× 10−8 1.7× 10−11

Table 10: CAFD Results of different GAN models on MNIST and FASHION-MNIST (Xiao et al.,
2017). We use VAE (Kingma & Welling, 2014) trained on specific datasets as the feature encoder.

MNIST FASHION-MNIST
(Xiao et al., 2017)

DCGAN (Radford
et al., 2016)

81.7± 0.6 103.9± 0.7

LSGAN (Mao et al.,
2017)

75.0± 0.7 55.4± 0.6

BEGAN (Berthelot
et al., 2017)

72.9± 0.4 69.6± 0.7

EBGAN (Zhao et al.,
2017)

80.1± 0.4 92.0± 0.8

DRAGAN (Kodali
et al., 2017)

64.9±0.6 50.9±0.3

WGAN (Arjovsky
et al., 2017)

85.5± 0.4 55.9± 0.4

WGAN-GP (Gulra-
jani et al., 2017)

69.3±0.4 48.6± 0.3

troduced to the GAN community by (Radford et al., 2016). Wasserstein GAN (WGAN) (Arjovsky
et al., 2017) was proposed to significantly improve convergence on GAN training. Recently, several
variants were proposed (Berthelot et al., 2017; Mao et al., 2017; Che et al., 2017; Dziugaite et al.,
2015; Zhao et al., 2017; Kodali et al., 2017; Gulrajani et al., 2017) to improve the image quality
generated by GAN models.

In order to benmark the performance of GANs on generating domain-specific images, we conducted
experiments on 7 popular GAN models1 including DCGAN (Radford et al., 2016), LSGAN (Mao
et al., 2017), BEGAN (Berthelot et al., 2017), EBGAN (Zhao et al., 2017), DRAGAN (Kodali et al.,
2017), WGAN (Arjovsky et al., 2017), WGAN-GP (Gulrajani et al., 2017). Our experiments were
performed on MNIST and FASHION-MNIST (Xiao et al., 2017). We will include other popular
datasets such as CIFAR-10 (Krizhevsky & Hinton, 2009), CelebA (Liu et al., 2015) and ImageNet
(Russakovsky et al., 2015) in the future.

Results are shown in Table 10. All of the tested models converge well. DCGAN (Radford et al.,
2016), which is the first to introduce convolutional neural networks into generative models, struggles
more on convergence than the newly proposed GAN variants. DRAGAN (Kodali et al., 2017) and
WGAN-GP (Gulrajani et al., 2017) get the top two scores on both datasets. Both BEGAN (Berthelot
et al., 2017) and WGAN (Arjovsky et al., 2017) focus more on stable training, while the qualities
of their generated images are not the best. WGAN-GP (Gulrajani et al., 2017) improves WGAN
(Arjovsky et al., 2017) by using norm penalizing to replace weight clipping. It generates higher
quality images compared to its baseline. DRAGAN (Kodali et al., 2017) utilizes a gradient penalty
scheme and mitigates the problem of mode collapse. It is worth noting that the recently proposed
DRAGAN (Kodali et al., 2017) and WGAN-GP (Gulrajani et al., 2017) outperform other models by
a relatively large margin. We can infer that the development of exploring better GAN architectures
and training strategies is still highly active.

1We used the off-the-shelf tensorflow package https://github.com/hwalsuklee/
tensorflow-generative-model-collections.
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