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Abstract

We propose a novel defense against all existing gradient based adversarial attacks on deep
neural networks for image classification problems. Our defense is based on a combination
of deep neural networks and simple image transformations. While straight forward in im-
plementation, this defense yields a unique security property which we term buffer zones.
In this paper, we formalize the concept of buffer zones. We argue that our defense based
on buffer zones is secure against state-of-the-art black box attacks. We are able to achieve
this security even when the adversary has access to the entire original training data set and
unlimited query access to the defense. We verify our security claims through experimen-
tation using FashionMNIST, CIFAR-10 and CIFAR-100. We demonstrate < 10% attack
success rate – significantly lower than what other well-known defenses offer – at only a
price of a 15-20% drop in clean accuracy. By using a new intuitive metric we explain why
this trade-off offers a significant improvement over prior work.

1 INTRODUCTION

There are many applications based on Convolution Neural Networks (CNNs) such as image classifi-
cation (Krizhevsky et al. (2012); Simonyan & Zisserman (2015)), object detection (Girshick (2015);
Ren et al. (2015)), semantic segmentation (Shelhamer et al. (2017)) and visual concept discovery
(Wang et al. (2017)). However, it is well-known that CNNs are highly susceptible to small pertur-
bations which are added to benign input images. As shown in (Szegedy et al. (2013); Goodfellow
et al. (2014)), by adding visually imperceptible perturbations to the original image, adversarial ex-
amples can be created. These adversarial examples are misclassifed by the CNN network with high
confidence. Hence, making CNNs secure against this type of attack is a significantly important task.

The strength of an attack is relative to the considered adversarial model. In the white-box setting
parameters of the target/defense model f are given to the adversary – white-box attacks use this
information to model access to an oracle that returns gradients∇f(·). From our analysis of previous
literature, it is clear that a secure white-box defense is extremely challenging to design. We can also
question the realism of having an adversary that knows the model’s weights and architecture. Many
online machine learning services by default only allow black-box access to their models and do
not publish their model parameters (Papernot et al. (2017)). Therefore in this paper, we keep the
classifier defense parameters secret. This disallows white-box attacks and so we focus exclusively
on black-box adversaries in this paper.

In a black-box setting, the adversary may know some general features about the classifier (i.e. that a
CNN is being used) and how the target model is trained. Most importantly, the adversary has query
access to the target model itself and/or access to (part of the) training dataset. The adversary uses
this information to train a synthetic model g. Using the synthetic model, adversarial examples can be
created. The underlying assumption in the black-box setting is that a large percent of the adversarial
examples created with the synthetic model will also fool the target model f .

Our proposed defense assumes a black-box adversary with two important attributes. First, the ad-
versary has unlimited access to an oracle (target model) which returns the final class label F (f(x)).
Here f(x) indicates the score vector enumerating confidence scores for each possible class label
and F (.) computes the class label with the maximum confidence score. The second important at-
tribute our adversary has is access to the entire original training dataset. In this sense, we model the
strongest known black-box adversary which has not yet been studied in the literature.

Defense based on Buffer Zones. We first explain the concept of buffer zones. Next, we argue
how “wide” buffer zones force the black-box adversary to produce a “sufficient large” noise η: As
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discussed in Papernot et al. (2016a) we count an attack successful only if the adversarial noise η
has small magnitude, say ‖η‖ ≤ ε, which cannot be recognized by human beings. Forcing noise
‖η‖ > ε accomplishes our security goal as either the human eye or our defense detects η.

Figure 1.a describes a 2D snapshot of the landscape of a normal classifier. Three different regions
with class labels A,B and C are depicted. Clearly, for any image x which is close to the boundaries
between the regions, the adversary can produce an adversarial example x′ by adding a small noise
η to x. The resulting adversarial image is what we would consider a true adversarial image. Here
we say true in the sense that the difference between x and x′ is almost visually imperceptible to
humans, but it makes the classifier produce a wrong label.

A

B
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B

C

⊥

(b)(a)

Figure 1: (a) Landscape without buffer zone, and (b) Landscape with buffer zone ⊥.

To force the adversary to use a large perturbation η, we create buffer zones⊥ between all the regions
as presented in Figure 1.b. Now the classifier outputs one of the class labels (A, B, or C) or⊥, where
⊥ means “no class is assigned”. We can think of ⊥ as the class label of the buffer zones. In other
words, the adversarial noise η (i.e., perturbation η = x′ − x) must cross over the buffer zones ⊥ in
order to modify label l to label l′. To cross from A to B in Figure 1.b is initially not visible by the
human eye as long as one remains in the original A-region of Figure 1.a and starts to transition into
the B-region of Figure 1.a. However, to cross over into the smaller B-region in Figure 1.b we need
an additional perturbation which we expect will become visible.

Since we only focus on small noise which is not recognized by human beings, the buffer zones ⊥
allow us to defend against adversarial images with small noise. Only large adversarial noise, which
is out of the interest of the attacker as it can be detected by the human eye, can possibly fool our
defense. If the buffer zones are wide, then we accomplish our security goal since small adversarial
noise cannot cross over the buffer zones, however, the prediction/clean accuracy of the defense will
decrease (as it becomes more noise intolerant to both clean and adversarial examples). Notice that it
is well-known in the security community that to provide security to any system, there is an associated
cost; we believe the buffer zone concept is reasonable as experiments for our proposed techniques
for creating mostly wide buffer zones show that the clean accuracy suffers only about 15-20% while
reducing the attacker’s success rate to about 5-10% (a 90% drop in success). Being able to reach
such small attacker’s success rates is a main contribution of our paper.

Performance of a defense. We introduce a new metric to properly understand the combined effect
of (1) a drop γ in clean accuracy from an original clean accuracy p to clean accuracy pd = p− γ for
the defense and (2) a small attacker’s success rate α against the defense. The attacker’s success rate
is defined as the fraction of adversarial examples that produce an adversarial label for images that are
properly classified by the defense. So, in a non-malicious environment we have the original clean
accuracy p while in the malicious environment the probability of proper/accurate classification by
the defense model is (p−γ)(1−α) (since the defense properly labels a fraction p−γ if no adversary
is present and out of these images a fraction α is successfully attacked if an adversary is present).
We call (p − γ)(1 − α) the effective clean accuracy of the defense. Going from a non-malicious
environment to a malicious environment with defense gives a drop in the effective clean accuracy
of1

δ = p− (p− γ)(1− α) = γ + (p− γ)α. (1)

1As an example of the usefulness of δ suppose one wishes to classify a new object by taking say n images
and submit these images to a registration service which implements a classifier with defense. In a malicious
environment the camera which is used for taking pictures or any man-in-the-middle can attempt to transform
the images into adversarial examples (with a targeted new label) which cannot be detected by the human eye.
Nevertheless, the service will see agreement among the produced labels of (in expectation) (p − δ)n images
that are correct labeled with in the worst case the remaining images having the adversarial targeted label. This
is a drop of δn compared to a registration of an object without adversary. The smaller δ, the better the defense.
In order to trust a majority vote among the n image labels we need p− δ > 0.5.
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In order to minimize this drop δ, it turns out to be very important to have α small enough, which is
accomplished in this paper. We use subscripts t and u in δt and δu when differentiating for targeted
attacks and untargeted attacks (since untargeted attacks are easier to pull off, δt ≤ δu).

Contributions. (a) We focus on state-of-the-art (pure and oracle-based) black box attacks where
we strengthen the adversary in that we allow the adversary access to the entire original training
data with query access to the target classifier. Related work on defense strategies is detailed in
Supplemental Material B, where we argue and/or experimentally demonstrate into what extent this
strong adversary can successfully attack well-known defense strategies; a summary is given in Table
1. These defenses typically (except Tramèr et al. (2017)) have an attacker’s success rate of ≥ 50%
with a relative small drop in clean accuracy of < 0.05 with often almost no (close to zero percent)
drop, for data sets such as MNIST and CIFAR-10. Precise calculations show that this corresponds
to δ values of at least 0.29 (Tramèr et al. (2017)), 0.43 (Srisakaokul et al. (2018)), and ≥ 0.65 for
the other defenses. It turns out that for our strong adversary a vanilla network as defense – i.e., we
implement no defense at all against the black-box attacker – has δ = 0.63 for CIFAR-10. The other
considered defenses for CIFAR-10 do not do better than implementing no defense at all.

Defense Data set Attack Att. success rate Or. Accuracy Def. Accuracy δ

BUZz CIFAR-10 Mixed BB - iFGSM 6.9% (this paper) 88.35% (CIFAR-10) 68.32% (CIFAR-10) 0.247
(Tramèr et al. (2017)) CIFAR-10 Mixed BB -FGSM 34% (this paper) 85% (CIFAR-10) 85% (CIFAR-10) 0.29

(Srisakaokul et al. (2018)) CIFAR-10 Mixed BB - iFGSM 50% (this paper) 86% (CIFAR-10) 86% (CIFAR-10) 0.43
No defense CIFAR-10 Mixed BB - iFGSM 72% (this paper) 88% (CIFAR-10) 88% (CIFAR-10) 0.63

(Guo et al. (2017)) CIFAR-10 Mixed BB - iFGSM 77% (this paper) 84% (CIFAR-10) 84% (CIFAR-10) 0.65
(Feinman et al. (2017)) CIFAR-10 Pure BB - C&W ≥ 80% (Carlini & Wagner (2017a)) 82.6% (CIFAR-10) 82.6% (CIFAR-10) 0.661
(Papernot et al. (2016a)) MNIST Oracle BB - FGSM 70% (Papernot et al. (2017)) 99.51% (MNIST) 98.14% (MNIST) 0.701

(Xie et al. (2018)) CIFAR-10 Mixed BB - iFGSM 86.5% (this paper) 84% (CIFAR-10) 59% (CIFAR-10) 0.76
(Metzen et al. (2017)) MNIST Pure BB - C&W ≥ 84% (Carlini & Wagner (2017b)) 91.5% (MNIST) 91.5% (MNIST) 0.769

(Meng & Chen (2017)) MNIST & CIFAR-10 Pure BB - C&W ≥ 99% (Carlini & Wagner (2017b)) 90.6% (CIFAR-10) 86.8% (CIFAR-10) 0.897

Table 1: Attacker’s success rate of black-box attacks for state-of-the-art defenses
(b) To the best of our knowledge, there are no papers on defenses against adversarial machine learn-
ing based on our concept of buffer zones. This new concept offers a conceptually simple and efficient
defense strategy with rigorous security argument.

(c) We realize wide buffer zones by combining multiple classifiers with a majority vote based on
a threshold together with image transformations that are unique for each of the classifiers. In Sec-
tion 4 we verify our security claims through experimentation using FashionMNIST, CIFAR-10 and
CIFAR-100 and show for untargeted attacks a drop in clean accuracy of 0.158, 0.200, and 0.170 in
return for small attacker’s success rates α < 9%, < 7%, and < 10%, respectively. This gives δu
values 0.226, 0.247, and 0.216 showing a significant improvement over prior work – it makes sense
to sacrifice some clean accuracy in return for a much smaller attacker’s success rate.2 For CIFAR-10
we conclude that BUZz with δ = 0.247 (and α = 7%) improves over Tramèr et al. (2017) with
δ = 0.29 (and α = 34%); both are far better than any other defense, and since both use complimen-
tary techniques we expect to be able to combine both to improve δ in future work. (All the above
and this observation demonstrate the usefulness of our new δ-metric.)

Finally, we will make all our code, including replicated defenses and attacks, available online.

Outline. We give an overview of known attacks in Section 2 and a mathematical formulation of a
black-box adversary is given in Supplemental Material A. Related work on white-box and black-box
defenses is given in Supplemental Material B where we also analyze (by argument and experiment)
white-box defenses against black-box adversaries – this benchmarks our work. In Section 3 we detail
BUZz, our defense based on buffer zones. Section 4 has experiments and simulations showing the
attacker’s success rates versus clean rates. Supplemental Material C enumerates pseudo code for
the implemented attacks and more experimental results are given in Supplemental Material D. We
conclude in Section 5.

2 ATTACKS

Adversarial Examples in an image classification task. See (Yuan et al. (2017)), the general
scheme of a successful attack can be described as follows. The adversary is given a trained im-

2BUZz does better for targeted attacks with attacker’s success rates α < 3.5%, < 5%, and < 7% leading
to δt values 0.144, 0.161, and 0.04. Here, in order to achieve δt = 0.0423 for CIFAR-100 it turns out to be
best not to implement any defense (no BUZz) – the data set must have made it already hard for a successful
targeted state-of-the-art black-box attack!
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age classifier (e.g, CNN network) f which outputs a class label l for a given input data (i.e., image)
x. The adversary will add a perturbation η to the original input x to get an adversarial example
(or a modified data input) x′, i.e., x′ = x + η. Normally, η should be small to make the adversar-
ial example barely recognizable by humans. Yet, the adversary may be able to fool the classifier
f to produce any class label l′( 6= l) as she wants. Assume that f(x) = (s1, s2, . . . , sk) is a k-
dimensional vector of confidence scores sj of class labels j. We call f(x) the score vector with
0 ≤ sj ≤ 1,

∑k
j=1 sj = 1, and k the number of class labels. The class label l is computed as

l = F (f(x)) = argmax
i∈[1,...,k]

{s1, s2, . . . , sk}.

Given x ∈ [0, 1]d and l′ 6= l = F (f(x)), the attacker wishes to ideally solve

min
x′∈[0,1]d

‖x′ − x‖ such that F (f(x′)) = l′ 6= l = F (f(x)), (2)

where l and l′ are the output label of x and x′, ‖ · ‖ denotes the distance between two data samples,
and d is the number of dimensions of x. η = x′ − x is the perturbation added on x. In this
optimization problem, we minimize the perturbation η while the label l′ is fixed (this represents a
targeted attack). This problem becomes easier when the attacker has more information about f(·): In
some adversarial models, the adversary may know parameters/weights that define the target model
f . Some classification applications may directly output vector f(x) instead of F (f(x)) and this
gives more information about the target model.

By adding a sufficient large noise η to any given benign input image, we can fool any existing image
classifier. However, as discussed in (Papernot et al. (2016a)) we count an attack successful only if the
adversarial noise η has small magnitude, say ‖η‖ ≤ ε, which cannot be recognized by human beings
(ε indicates this transition from noise not being recognized to noise that is visually perceptible). In
this sense the attacker is already successful as soon as a sufficiently small perturbation η (‖η‖ ≤ ε)
is found that realizes label l′. That is, finding the minimal possible perturbation η in (2) is not
necessary.

Attack Methodologies. Attacks can be partitioned into two main categories based on their ap-
proach. The first kind are white-box attacks where the adversary knows the parameters of de-
fense/target model/classifier f and uses these parameters to compute gradients. One can think of
this scenario as having oracle access to gradients ∇f(x) for input images x. The attacker only uses
this type of oracle access to compute adversarial examples.

The second kind are black-box attacks where the adversary does not know the parameters of f , but
does have black-box access to the target model itself. One can think of this scenario as having oracle
access to class labels F (f(x)) or score vector values f(x) (the latter gives more information and
models a stronger attacker). In addition to having black-box access to the target model, the adver-
sary may know and use (part of) the original training data (this can be used to train an adversarial
synthetic model which resembles the target model). Since the oracles given to the white-box and
black-box attackers are different/complimentary, white-box defenses and black-box defenses deal
with different attack methodologies.

White-box Attacks. (Yuan et al. (2017)) constructs perturbation η with the help of gradient ∇f(·):
for example, η = ε×sign(∇xL(x, l; θ) in the Fast Gradient Sign Method (FGSM) by (Goodfellow
et al. (2014)), where θ represents the parameters of f , L is a loss function (e.g, cross entropy) of
model f . (ε can be thought of as relating to the maximum amount of noise which is not visually
perceptible.)

Black-box Attacks. Black-box attacks use non-gradient information of classifier f such as (part
of) the original training data set X0 (Papernot et al. (2016b)) and/or a set X1 of adaptively chosen
queries to f (i.e., {(x, f(x)) : x ∈ X1} or {(x, l = F (f(x))) : x ∈ X1}) (Papernot et al. (2017))
– querries in X1 are not in the training data set X0. These type of attacks exploit the transferability
property of adversarial examples (Papernot et al. (2016b); Liu et al. (2017)): Based on information
X0 and X1 the adversary trains its own copy of the proposed defense. This is called the adversarial
synthetic network/model and is used to create adversarial examples for the target model. (Liu et al.
(2017)) shows that the transferability property of adversarial examples between different models
which have the same topology/architecture and are trained over the same dataset is very high, i.e.,
nearly 100% for ImageNet (Russakovsky et al. (2015)). This explains why the adversarial examples
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generated for the synthetic network can often be successful adversarial examples for the defense
network.

Black-box attacks can be partitioned into three following categories:

• Pure black-box attack (Szegedy et al. (2014); Papernot et al. (2016b); Athalye et al.
(2018a); Liu et al. (2017)). The adversary is only given knowledge of a training data setX0.
Based on this information, the adversary builds his own classifier g which is used to produce
adversarial examples using an existing white-box attack methodology. These adversarial
examples of g may also be the adversarial examples of f due to the transferability property
between f and g.

• Oracle based black-box attack (Papernot et al. (2017)). The adversary is allowed to
adaptively query target classifier f , which gives informationX1. Based on this information,
the adversary builds his own classifier g which is used to produce adversarial examples
using an existing white-box attack methodology. Again, the generated adversarial examples
for g may also be able fool classifier f due to the transferability property between f and g.
Compared to the native (pure) black box attack, this attack is supposed to be more efficient
because g is intentionally trained to be similar to f . Hence, the transferability between f
and g may be significantly higher.

• Zeroth Order Optimization based black-box attack (Chen et al. (2017)). The adversary
does not build any assistant classifier g as done in the previous black-box attacks. Instead,
the adversary adaptively queries {x, f(x), F (f(x))} to approximate the gradient∇f based
on a derivative-free optimization approach. Using the approximated∇f , the adversary can
build adversarial examples by directly working with the classifier f .

In this paper, we analyze a mixed black-box attack where the synthetic network g is built based
on the training data set X0 of the target model f and is based on adaptively chosen queries X1.
Our mixed black-box attack is more powerful than both the pure black-box attack and oracle based
black-box attack. Supplemental material C provides pseudo code.

As explained and motivated in the introduction, we restrict ourselves to the black-box setting where
we keep secret the parameters of our defense classifier, called BUZz (see next section), and we
do not reveal score vectors – this disallows white-box attacks and zeroth order optimization based
black-box attacks.

3 BUZZ: A DEFENSE BASED ON BUFFER ZONES

Design Philosophy. Since each single network gives a classifier with aligned boundaries (i.e. no
buffer zones), we propose to combine multiple classifiers (each with its own aligned boundaries)
to produce a composed classifier which will provide a non-empty buffer zone. To create a buffer
zone we use majority voting among the individual classifiers with a threshold mechanism. E.g.,
the threshold may be such that only if all individual classifiers agree on the same label l, then the
composed classifier outputs l, otherwise, it outputs ⊥. Because the transferability among all the
individual classifiers is not perfect, they will disagree if an image has ’too much’ noise and this
leads to an output ⊥. The area where they disagree is the buffer zone.3

Although majority voting based on a threshold leads to the existence of a buffer zone, the resulting
buffer zone may not be wide enough to prevent a successful attack using small adversarial noise. If
we are able to decrease/diminish the transferability among the different classifiers, then this leads to
a wider buffer zone. To decrease the transferability, we must make the individual classifiers more
unique. This can be done by, for each CNN network, first uniquely transforming the inputted image
x. Since the transformations are different for each of the classifiers that participate in the majority

3 The buffer zone concept offers a first immediate insight: A defense with only one single classifier with
buffer zones may be hard to develop because of its nature – a single network does not produce buffer zones
between regions unless (1) another class label ⊥ for the buffer zone can be trained, but how does one construct
proper training data? or (2) the score vector is used to mathematically define a subspace of score vectors that
should map to ⊥, but how can one achieve acceptable clean accuracy at the same time? For this reason our
technique for creating a non-empty buffer zone uses multiple classifiers.
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Figure 2: General Design of BUZz.

vote, transferability will be reduced. We will discuss what kind of transformations reduce the clean
accuracy the least.

The created buffer zones may be mostly wide, but there will exist narrow parts. Since the narrow
parts allow a successful attack based on small adversarial noise, the attacker will want to search
for a narrow part around a given image x. In order to make such a search less efficient and less
often successful, the distinct transformations are kept secret. That is, only the distribution (or set)
from which the transformations are drawn is known to the adversary (the concrete transformation
selections/parameters are kept secret). We will make the adversarial model explicit once we have
detailed our defense mechanism:

BUZz using multiple classifiers and secret image transformations. Our defense is composed of
multiple CNNs as depicted in Figure 2b. Each CNN has two unique image transformations as shown
in Figure 2a. The first is a fixed randomized linear transformation c(x) = Ax + b, where A is a
matrix and b is a vector. After the linear transformation a resizing operation i is applied to the image
before it is fed into the CNN. The CNN corresponding to c and i is trained on clean data {i(c(x))}.
This results in a weight vector w. Them protected layers in Figure 2b are described by ’parameters’
(cj , ij , wj)

m
j=1.

When a user wants to query the defense, input x is submitted to each layer which computes its
corresponding image transformation and executes its CNN. The outputs of the layers are class labels
(lj)

m
j=1. The final class label of BUZz, i.e., the composition of the m protected layers, is a majority

vote based on a threshold κ. In our experiments we use unanimous voting, i.e., if the networks do
not all output the same class label then the adversarial/undetermined class label ⊥ is given as the
output (i.e., κ = m).

Adversarial Model. In our adversarial model we assume that no score vectors are revealed (which
makes the attacker incapable of executing a zeroth order optimization based black-box attack) and
we assume that the parameters (cj , ij , wj)mj=1 are kept secret, i.e., the attacker has no direct knowl-
edge about the weights of the CNN networks, matrices A and vectors b, and the amount of image
resizing for each layer (this makes the attacker incapable of executing a white-box attack).

Our adversarial model allows a mixed black-box attacker having more capabilities (is stronger) than
the strongest black-box adversary in literature: Just like in (Papernot et al. (2017)), the adversary
is allowed to query the defense as many times as they desire and is practically possible, they may
generate synthetic data X1 and they can train a synthetic network. Based on this synthetic network
they can carry out white-box attacks and test their efficiency (attack success rate) on the defense.
We give the adversary one additional and extremely powerful ability that (Papernot et al. (2017))
does not. We allow the adversary access to the entire original training data set X0 as an initial set.
This gives the adversary access to a huge amount of training data, an order of magnitude higher than
what (Papernot et al. (2017)) gives in the original attack.

In supplemental material A we mathematically formalize the adversary (as is done in crypto/security
literature) as an adversarial algorithm in order to make precise the adversary’s capabilities.

Image Transformations. From (Guo et al. (2017)) we know adversarial examples are sensitive to
image transformations which either distort the value of the pixels in the image or change the original
spatial location of the pixels. However, it is well established (Goodfellow et al. (2016)) that CNNs
rely on certain spatial patterns being present in the data in order to classify clean (non-adversarial)
data. Hence, we want an image transformation that keeps such patterns ‘invariant’ while introducing
distortions that make the attacker’s task less likely to succeed.

6



Under review as a conference paper at ICLR 2020

In the literature, previous defenses with only a single network have suggested multiple different
image transformations (Meng & Chen (2017); Xie et al. (2018)). Through experimentation we
decided to employ two image transformations for each protected layer. The first transformation is a
simple resizing operation, where we resize the image before giving it as input to the CNN. Resizing
to a smaller dimension than the original image may result in lost pixel information and by extension
hurt the network’s performance on clean data. Therefore we only consider resizing operations which
increase the size of the image. The other transformation we use is a linear transformation: c(x) =
Ax + b where x is an n by n pixels input image, A is a fixed n by n matrix and b a fixed n by n
pixels ’noise’ sample. Depending on the data set we can control the trade off between the attacker’s
success rate and clean accuracy using the linear transformation. For example if only b is random
(with small magnitude) andA is identity, it results in less image distortion (so higher clean accuracy)
but also less security (more adversarial samples bypass the defense).4

Security Argument. In the context of Papernot’s oracle based black-box attack and pure black-box
attack, the adversarial noise η is created based on a white-box attack for a synthetic network g of
BUZz. It means that the noise η is specifically developed for g. Since the x′ = x + η is inputted
into every protected layer of BUZz, the j-th layer will apply its CNN network on a noisy image
ij(cj(x

′)) = ij(cj(x+ η)), which due to the linearity of ij(cj(·)) is equal to ij(cj(x)) + ij(cj(η)).
Therefore, layers receive different inputted noises ij(cj(η)) 6= η. Hence, the protected layers have
different behavior from one another and from synthetic network g for any given adversarial example
x′ = x+ η. This widens the buffer zones as it is less likely that each protected layer reacts the same
to η in terms of miss-classification.

4 EXPERIMENTAL RESULTS

In this section we discuss our experiments for CIFAR-10; Supplemental Material D has also exper-
iments for FashionMNIST and CIFAR-100. Supplemental material C provides exact details in the
form of pseudo codes and tables with attack parameters; below is a concise summary in words.

We implemented the mixed black-box attack, i.e., the state-of-the-art oracle based black-box attack
of Papernot et al. (2017) where in addition the adversary has access to the entire training data set.
The attack first generates a synthetic network by taking the initial training data set X0 and learning
the parameters θg of a single vanilla network g – for the training we use Adam (Kingma & Ba
(2014)) with learning rate 0.0001, batch size 64, 100 epochs, and no data augmentation. During the
first iteration the Jacobian matrix of the score vector g is computed in each image x ∈ X0. The
signs of the entries in the Jacobian matrix that correspond to x’s class label (according to the target
model) form a vector which is scaled with λ = 0.1 and added to x. This leads to an augmented data
set X1 which consists of these new images together with X0. We use black-box access to the target
model to learn the labels for the images in X1. During next iterations we double the data set 5 times
and learn a more accurate synthetic network g.

Second, the attacker uses Carlini’s single synthetic network g (Carlini & Wagner (2016)) and ap-
plies a targeted/non-targeted iterative/non-iterative FGSM attack (we use the cleverhans library, see
https://github.com/tensorflow/cleverhans) to produce an adversarial example x′
for image x. (We do not use the C&W attack (Carlini & Wagner (2016)) because our experiments
show a much lower attacker’s success rate.) During each FGSM iteration the black-box adversary
has the capability to use black-box access to the target model to verify whether the produced x′ in
that iteration has a desired label l′. We use 10 iterations in iterative FGSM with ε = 10/256 (giving
a 1/256 scaling vector in each of the 10 iterations). In non-iterative FGSM we pick ε = 1/20.

The CNN networks in the vanilla network and each of the protected layers of BUZz
(the target model) each have the VGG16 architecture (see https://neurohive.io/en/
popular-networks/vgg16/8) and are trained on clean data {(ij(cj(x)), l)}, where l is the
to-be-learned class label for x. BUZz uses anonymous voting with κ equal to the number of net-
works. The image transformations are selected from mappings c(x) = x + b (we use the identity
matrix for A) where the entries of b are non-zero with probability p = 0.35 and non-zero entries

4We note that the positive results reported in this paper open the door for the exploration of many more pos-
sible image transformations. Other transformations such as the affine transformation, zero padding images and
pixel shuffling could yield even better trade off between security and clean accuracy in multi model defenses.
We leave these possibilities as future work.
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Table 2: Mixed black-box attack on CIFAR-10

Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.8835 0.7599 0.6832 0.6091
FGSM Targeted 0.831 0.951 0.985 0.995
iFGSM Targeted 0.766 0.978 0.998 1

FGSM Untargeted 0.297 0.797 0.931 0.976
iFGSM Untargeted 0.282 0.814 0.963 0.992

Table 3: δ values for mixed black-box attacks on FashionMNIST, CIFAR-10, and CIFAR-100

Defense targeted δt Defense untargeted δu

FashionMNIST 4-Networks 0.144 8-Networks 0.226
CIFAR-10 2-Networks 0.161 4-Networks 0.247

CIFAR-100 Vanilla 0.0423 2-Networks 0.216

are uniformly selected from the interval [−0.5,+0.5]. Images x are 32× 32× 3 where 3 stands for
the red, blue, green values (each in [−0.5,+0.5]) of a pixel. The same non-zero entry of b is added
to each of the red, blue, green values of the corresponding pixel in x. (We can think of an image
transformation cj(x) as an extra randomly fixed layer added to the layers which form the j-th CNN.)
We tested three BUZz designs: One with 8 networks each using a different image resizing operation
from 32 to 32, 40, 48, 64, 72, 80, 96, 104. The second with 4 networks being the subset of the 8
networks that use image resizing operations from 32 to 32, 48, 72, 96. The third with 2 networks
being a subset of the 8 networks that use image resizing operations from 32 to 32 and 104.

Table 2 depicts the results of the four possible target/untargeted iterative/non-iterative FGSM attacks
against a plain vanilla network without image transformation and BUZz with 2, 4, and 8 networks
respectively. The defense rate is defined as 1− α, where α is the attacker success rate computed as
the fraction of 1000 test data (with the property that the target model produces the correct label) for
which the adversary produces a successful adversarial example x′ that changes the label to a desired
label l′. The clean rate and defense rate5 are an average over 5 runs where each run anew selects
random image transformations in BUZz. The experiments show that the min and max values over
runs are not far apart indicating that most random image transformation selections according to the
recipe described above give similar results.

For BUZz with 4 networks for CIFAR-10 we see a 0.2003 drop in clean accuracy from 0.8835 to
0.6832. In return for this drop in clean accuracy we see a defense rate of ≥ 0.931, i.e., an attacker’s
success rate < 7%. Also for FashionMNIST and CIFAR-100 (for BUZz with 8 resp. 2 networks)
we see drops in clean accuracy of 0.1577 and 0.1703 in order to achieve an attacker’s success rate
of < 10% and < 9% (see supplemental material D). This leads to the δ values reported in the
introduction. Table 3 shows the best BUZz configurations with targeted and untargeted δ values.

5 CONCLUSION

We introduced a new concept called buffer zones which is at the core of a new adversarial ML de-
fense, coined BUZZ. BUZz defends against black-box adversaries with oracle access to the target
model (BUZz) and knowledge of the entire training data set. BUZz uses threshold voting over mul-
tiple networks that each are preceeded with a secret/hidden image transformation. Experiments for
FashionMNIST, CIFAR-10, and CIFAR-100 for carefully designed classes of image transformations
in BUZz show that at the cost of drop in clean accuracy of 15-20% the attacker’s success rate is only
5-10% – much less than the best attacker’s success rates ≥ 34% achieved by other well known de-
fenses for these data sets. We have argued this to be an acceptable trade-off for better security by
using a new metric (called δ value).

5One would expect a lower defense rate for iFGSM attacks compared to FGSM attacks. This is not reflected
in the table due to the choices of ε taken from literature which are different for iFGSM and FGSM. For future
work we anticipate a detailed sensitive study with respect to ε.
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A ADVERSARIAL MODEL

The strength of an attack is relative to the considered adversarial model. In adversarial Machine
Learning (ML) the assumed capabilities of an attacker are a mix of:

Having knowledge of the parameters and architecture of the defense network/classifier. The
architecture and methodology of how the defense network is trained is about how the
defense operates and its underlying philosophy. In cryptography this is similar to the actual
design of a security primitive and this is never assumed to be hidden as this would lead to
the undesirable practice of security by obscurity. The secret key of the security primitive is
kept private; the method of how the secrect key is generated using a probabilistic algorithm
is public. Similarly, the parameters of a defense network can be considered to be private
while the method of their training is public. If the adversarial model does not assume the
parameters to be private, then all is public and we call this a white-box setting. If the
parameters are considered to be private and not given to the attacker (for ‘free’), then we
call this a black-box setting.

Having access to the defense classifier a.k.a. target model. If the parameters are kept private,
then the next best adversarial capability is having access to the target model as a black-
box. The idea is that the adversary can adaptively query the target model with own input
images for which class labels are being returned. Here, we have two flavors: only a class
label is returned, or more information is given in the form of a score vector which entries
represent confidences scores of each of the classes (the returned class label is the one with
maximal confidence score).
In the white-box setting where all parameters are known, the attacker can reproduce the
target model and access the target model as a black-box. Confusing in adversarial ML is
that white-box attacks are the ones that ‘only’ use the parameters in the white-box setting
to learn gradients of the target model which are used to produce adversarial examples –
these attacks do not consider/use black-box access. This means that white-box defenses are
not necessarily analysed against black-box attacks where the adversary only has black-box
access to the target model with possibly the added capability described below.

Having access to (part of the) training data. The training data which is used to train the parame-
ters of the defense network is often public knowledge. Knowing the methodology of how
the defense network is trained, an adversary can apply the same methodology to train its
own synthetic defense network – and this can be used to find adversarial examples. The
synthetic network will not be exactly the same as the defense network since training is done
by randomized (often SGD-like) algorithms where training data is used in random order.
This means that knowledge of the training data is less informative than knowledge of the
parameters as in the white-box setting.

The white-box setting describes the capabilities of the strongest adversary, while the black-box
setting describes a weaker adversary who cannot exactly reproduce the target model (and can only
estimate the target model by training a synthetic network). White-box attacks on the other hand
restrict the adversary in that only oracle access to the gradient of f is allowed. Black-box attacks
only allow oracle access to the target model itself and oracle access to training data. In this sense
white-box attacks in adversarial ML literature exclude access to the above black-box oracles. This
means that even though a white-box defense may be able to resist a white-box attack, it can still be
vulnerable to a black-box attack. Vice versa, even though a white-box defense may be broken under
a white-box attack, it may still survive in the black-box setting.

Taking BUZz as an example, we may mathematically formalize the black-box adversary6 (as is done
in crypto/security literature) as an adversarial algorithm AT which has access to

• a random oracle representing l ← BUZzθ(x) where parameters θ = (cj , ij , wj)
m
j=1, input

x is an image, and l is the outputted label of the target classifier BUZz (the collected (x, l)
is the set X1 of Section 2), and

6Similarly a white-box adversary with only oracle access to gradient information can be modeled.

11



Under review as a conference paper at ICLR 2020

• a random oracle ξD which outputs at mostD times ‘training data’ according to the distribu-
tion from which the training data is taken from (the collected (x, l) is the set X0 of Section
2); by abuse of notation ξ denotes the distribution itself.

Subscript T denotes the allowed number of computation steps plus oracle accesses to BUZzθ and
ξD. In our experiments we test the most powerful existing black-box attacks and do not mention
T ; here, T just means the amount of steps allowed by existing practical attack methodologies. If an
attacker with unlimited access (T = ∞) to BUZzθ can scan region boundaries, then this achieves
optimal success rates.

Subscript D in ξD indicates the number of training data an attacker is allowed to use for the attack.
D represents an important metric in machine learning as the amount of training data cannot be
assumed infinite (with respect to the application there is a concrete limit to how many training data
is available; collecting samples from ξ is not straightforward, e.g., making a true new picture/image
of a plane takes effort). How strong we make e.g. Papernot’s black-box attack is based on how
much training data we give it: In their paper D = 150 is used for MNIST in order to train a
synthetic network while in our experiments we use D = 50K which is the entire original training
data set of CIFAR-10 (and leaves 10K test data). Since the attack uses the synthetic network in a
(targeted or untargeted) white-box attack (with small enough ε) to generate an adversarial example,
the probability of successfully changing the label depends on how similar the synthetic network
classifies data compared to the target model with defense – it depends on the tranferability between
the synthetic and defense classifiers and transferability improves for larger D.

The aim of the adversary is to produce a perturbation η ← AξD,BUZzθ
T (x) (just based on the

oracle accesses described above indicated by superscripts and based on input x) which is visually
imperceptible, i.e. ‖η‖ ≤ ε, and for which x′ = x+ η gives a different label: The attacker’s success
rate for untargeted black-box attacks is defined as the probability

Prx←ξ(η ← AξD,BUZzθ
T (x), ‖η‖ ≤ ε, BUZzθ(x+ η) /∈ {⊥,BUZzθ(x)} | BUZzθ(x) 6= ⊥).

For targeted black-box attacks we replace BUZzθ(x+η) /∈ {⊥,BUZzθ(x)} by BUZzθ(x+η) = l′,
replace BUZzθ(x) 6= ⊥ by BUZzθ(x) /∈ {⊥, l′}, and take the probability over both x ← ξ and
l′ ← [1..k]. In the above notations we do not explicitly state that the adversary also has knowledge
of the distribution from which θ is taken, i.e., the adversary knows the philosophy behind our defense
together with what type of image transformations are being used and knows the architecture in terms
of number of nodes and connections at each layer of the CNN networks and how they are trained.

The above formalism helps in making the adversarial model in terms of adversarial capabilities
precise. We will not explicitly use the formalism as we cannot prove statements about general
classes of adversarial algorithms A (our defense does not allow ‘standard’ reduction proofs to some
hard computational problem as is done in crypto).

From a cryptographer’s perspective we want the above probability (i.e., the attacker’s success rate)
to be very small, even negligible in some security parameter λwhere image x is poly(λ)-sized. First,
in ML we have concrete data sets with images of certain fixed sizes for which we want to design
defense strategies against adversarial ML. So, such an asymptotic goal makes no sense. Second,
it turns out that it is very difficult to obtain a defense strategy that can make the attacker’s success
rate very small, say 0.1%, without sacrificing the clean accuracy all together. In this paper we have
been able to reduce the attacker’s success rate down to about 5-10% while only reducing the clean
accuracy by 15-20%.

B RELATED WORK: COMPARISON TO KNOWN DEFENSES

White-Box Defenses. White-box defenses are any defense with an adversarial model that allows
the adversary oracle access to the gradient of the target model. These defenses include (Papernot
et al. (2016a); Kurakin et al. (2016); Tramèr et al. (2017); Cao & Gong (2017); Metzen et al. (2017);
Feinman et al. (2017); Xie et al. (2018); Meng & Chen (2017); Srisakaokul et al. (2018)) to name a
few. A complete list is given in (Athalye et al. (2018a); Carlini & Wagner (2017a)) except for the
unpublished work (Srisakaokul et al. (2018)) which appeared later. So far, any defense with public
weights and architecture turns out to be vulnerable to FGSM, IFGSM, or Carlini type attacks (Carlini
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& Wagner (2017a;b); Athalye et al. (2018a); Liu et al. (2017); we will argue the vulnerability of
(Srisakaokul et al. (2018)) below).

In order to implement a white-box attack (Yuan et al. (2017)) constructs perturbation η with the
help of gradient ∇f(·): for example, η = ε × sign(∇xL(x, l; θ) in the Fast Gradient Sign Method
(FGSM) by (Goodfellow et al. (2014)), where θ represents the parameters of f , L is a loss function
(e.g, cross entropy) of model f . (ε can be thought of as relating to the maximum amount of noise
which is not visually perceptible.) To defend against adversarial examples, many methodologies
have been proposed and they all employ the same strategy, i.e., gradient masking (Papernot et al.
(2017)) respectively obfuscated gradient (Athalye et al. (2018a)). As pointed out in (Athalye et al.
(2018a)), there are three main methods for realizing this strategy: shattered gradients, stochastic
gradients and exploding & vanishing gradients. In (Athalye et al. (2018a)), the authors propose
three different types of attacks:

1. Backward Pass Differentiable Approximation (BPDA). The attack is applied for pro-
tected network f(t(x)) where t(x) is not differentiable and t(x) ≈ x. The adversary will
replace t(x) in the backward phase for computing the gradient by x and thus, he can com-
pute the approximated gradient∇xf(t(x))|x=x̂ ≈ ∇xf(x)|x=t(x̂).

2. Expectation over Transformation (EOT). In this case, the adversary computes the gradi-
ent of Et∼T f(t(x)) where t(x) is a random transformation and t is sampled from a distri-
bution T . The gradient can be computed as∇Et∼T f(t(x)) = Et∼T∇f(t(x)).

3. Reparameterization. The protected network f(t(x)) has t(x) which performs some opti-
mization loop to transform the input x to a new input x̂. This step will make the gradient
exploding or vanishing, i.e., the adversary cannot compute the gradient. To cope with this
defense, Athalye et al. (2018a) proposes to make a change-of-variable x = h(z) for some
h(·) such that t(h(z)) = h(z) for all z but h(·) is differentiable.

In literature, many white-box defenses have shown a predictable cat and mouse type of security
game. In this repeated chain of events, the defender creates a network defense and the attacker
comes up with a new type of attack that breaks the defense. The defender then creates a new defense
which the attacker again breaks. While this occurs frequently in security, a simple example of
this occurring in the field of adversarial machine learning is the FGSM attack breaking standard
CNNs, the distillation defense mitigating FGSM, and the distillation defenses subsequent break by
(Carlini (Papernot et al. (2016a); Carlini & Wagner (2017b))). Alternatively, in an even worse case,
the defense can be immediately broken without the need for new attack strategies. In adversarial
machine learning an example of this is the autoencoder defense of (Meng & Chen (2017)) which is
vulnerable to the attack in (Carlini & Wagner (2017b)). From our analysis of the previous literature
it is clear that a secure pure white-box defense is extremely challenging to design.

Black-Box Defenses based on a Single Network. We discuss how the white-box defenses of (Pa-
pernot et al. (2016a); Kurakin et al. (2016); Tramèr et al. (2017); Cao & Gong (2017); Metzen et al.
(2017); Feinman et al. (2017); Xie et al. (2018); Meng & Chen (2017); Guo et al. (2017); Srisakaokul
et al. (2018)) are vulnerable in a black-box setting. As shown in (Papernot et al. (2017)), the adver-
sary can build a synthetic network g which simulates the target vanilla network. This can be used to
produce high transferability adversarial examples (that transfer to the target model with significant
success). Boundary alignment is the well-known explanation, see (Papernot et al. (2016b)).

(Papernot et al. (2016a)) proposes a single network defense with a better adversarial robustness
property based on distillation: First, given a training data set, a network is built and trained. After
this, the softmax output (i.e., score vector) of the network is used to train another network with the
original training data set. This process is called ’distillation’ and the distilled network is argued
to have better robustness against white-box attacks. However, (Carlini & Wagner (2016)) showed a
white-box attack against this defense. Moreover, (Papernot et al. (2017)) showed that for the MNIST
dataset, the success rate of Papernot’s black-box attack (untargeted) is at least 70%.

In (Kurakin et al. (2016)), the authors discuss how to train the network for ImageNet with adversarial
examples to make it robust against adversarial machine learning. During each epoch in the training
process, adversarial examples are generated and again used in the training process. According to
Table 4 in (Kurakin et al. (2016)), the success rate of (untargeted) pure black box attack on ImageNet
using FGSM is high ≥ 50%. The authors in (Tramèr et al. (2017)) also claim that the adversarial
training in (Kurakin et al. (2016)) may not be useful.
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(Tramèr et al. (2017)) proposes another type of adversarial training method. The adversarial ex-
amples are generated by doing attacks on different networks with different attack methods. After
this the designer trains the new network with the generated adversarial examples. The authors ar-
gued that this adversarial training can make the adversarially trained network more robust against
(pure) black-box attacks because it is trained with adversarial examples from different sources (i.e.,
pre-trained networks). In other words, the network is supposed to have better robustness against
black-box attack generalization across models. As shown in (Athalye et al. (2018b)), the adversari-
ally trained network is vulnerable to white-box attack. Regarding pure black-box attack, as reported
in Table 4 in (Tramèr et al. (2017)), the success rate of (untargeted) pure black box attack on Ima-
geNet using FGSM – the best known black box attack that has been executed on this defense – is
≥ 27%. We verify the efficiency of this approach for CIFAR-10 in this paper. We do the adversarial
retraining using data from 8 other networks to build a 9th network. The 8 other networks are from
the Mul-Def paper Srisakaokul et al. (2018) (we also rigorously discuss this paper next few para-
graphs). Network 0, is a vanilla VGG. Network 1 is a VGG with 30% adv training from network 0.
Network 2 is a VGG with 30% adv training (15% from network 0, 15% from network 1). Etc. until
we get to Network 8. After training we run the full Papernot attack on Network 8. The full result
we can find in Table 4, i.e., Adv Retrained 1-Net. The defense has clean prediction accuracy of 85%
and the best attack on the defense is untargeted FGSM or iFGSM with success rate of 34%.

(Cao & Gong (2017)) proposes a white-box defense based on the following trick: for a given sample
x, the defense collects many samples x′1, · · · , x′n in a small hypercube centered at x. Then, the
outputted class label is the one which gains the majority vote among F (f(x′1)), · · · , F (f(x′n))
where F is the output function of network f . We argue that this defense is vulnerable to black-
box attacks because of the following reasons. The adversary can build a synthetic network g with
very high transferability between f and g (Papernot et al. (2016b); Liu et al. (2017)). After this,
the attacker looks for adversarial examples which can gain the majority vote in the same setting
as proposed above in (Cao & Gong (2017)). We believe that there exist many such adversarial
examples, in particular, if the clean x is very close to the decision boundary, then the adversarial
example x′ = x + η can lie deeply in another region and its distance to the decision boundary is
larger than that of x. Hence, x′ now gains the majority vote and fools the defense. This example
also shows the importance of our buffer zone concept as a defense mechanism.

In (Metzen et al. (2017)), the authors constructed a defense of a single network f with an additional
‘detector’ network g. The ‘detector network’ is built based on the training data set of the main
network f together with adversarial examples generated for training data samples. The detector
network is used to distinguish clean samples from adversarial samples. The authors in (Carlini &
Wagner (2017a)) showed white-box and black-box attacks on this defense. The success rate of
untargeted pure black-box attack on MNIST using the C&W attack by (Carlini & Wagner (2016)) is
at least 84%.

In (Feinman et al. (2017)), the authors built a detector to distinguish adversarial examples from
clean examples using Bayesian uncertainty estimate or Kernel Density Estimator. The key idea is
that since the adversarial and clean examples do not belong to the same manifolds, the defender
can build a detector. (Carlini & Wagner (2017a)) showed a white-box attack on this defense and
clearly claim that the defense does not work if the dataset is CIFAR-10 for both white-box attack
and black-box attack, i.e., the success rate of untargeted pure attack seems at least 80% based on
their explanation.

Table 4: Mixed black-box attacks on defenses Randomized 1-Net (Xie et al. (2018)), Adv Retrained
1-Net (Tramèr et al. (2017)), Mul-Def 2,4,8-Net (Srisakaokul et al. (2018)), Mixed Arch 2-Net (Liu
et al. (2017)) and BUZz 2, 4, 8-Net.

Clean Accuracy FGSM targeted iFGSM targeted FGSM untargeted iFGSM untargeted

Randomized 1-Net (Xie et al. (2018)) 0.58 0.83 0.72 0.32 0.13
Adv Retrained 1-Net (Tramèr et al. (2017)) 0.85 0.93 0.93 0.66 0.67

BUZz 1-Net 0.83 0.84 0.73 0.26 0.22
Mul-Def 2-Net (Srisakaokul et al. (2018)) 0.86 0.85 0.82 0.44 0.39

Mixed Arch 2-Net (Liu et al. (2017)) 0.71 0.96 0.98 0.82 0.87
BUZz 2-Net 0.75 0.95 0.97 0.82 0.83

Mul-Def 4-Net (Srisakaokul et al. (2018)) 0.86 0.90 0.86 0.54 0.48
BUZz 4-Net 0.68 0.98 0.99 0.93 0.96

Mul-Def 8-Net (Srisakaokul et al. (2018)) 0.85 0.92 0.87 0.59 0.50
BUZz 8-Net 0.61 0.99 1.00 0.97 0.98
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Figure 3: Mixed black-box attack on defenses Xie et al. (2018) (randomized 1 network), Guo et al.
(2017) (mul-sec 1 network), and Srisakaokul et al. (2018) (mul-def 2, 4, and 8 network) for CIFAR-
10. The setup of the attacks for this experiment is the same as the attacks in Section 4 and Supple-
mental Materials C and D.

(Xie et al. (2018)) has a single network and uniformly selects an image transformation from an
a-priori fixed set of a small number of image transformations to defeat white-box attacks. In the
white-box setting (Athalye et al. (2018a)) shows that this defense does not work. But is this de-
fense secure against black-box attacks? To maintain a sufficiently high clean accuracy, the random
image transformations should not have high randomness. Hence, the boundaries of any single net-
work/classifier and the network/classifier with one of the random image transformations may be
highly aligned. This implies that the adversarial examples created for any classifier will likely trans-
fer to the network with randomization operations. This is confirmed by experiments reported in the
column “Randomized 1 Network” in Figure 3. We can see that the defense accuracy (i.e., clean ac-
curacy for the defense model) drops to 0.59 and the attacker’s success rate of the untargeted mixed
black-box attack (using iFGSM) is 0.865 (the table entry depicts the defense rate 0.135 defined as 1
minus the attacker’s success rate).

Similarly, the defense proposed in (Meng & Chen (2017)) – a defense with a single network and
multiple different auto-encoders as image transformations from which one is selected at random per
query – is not secure against pure black-box attacks, i.e., the success rate of targeted pure black-box
attack on the defense using C&W attack for CIFAR-10 and MNIST is at least 99%, see (Carlini &
Wagner (2017b)).

In (Guo et al. (2017)), the designer selects a set of possible image transformations for a single net-
work and keeps the selection of the chosen image transformation secret. The image transformation
will distort the noise as explained in (Guo et al. (2017)). This is BUZz for a single protection layer
(without multiple networks and threshold voting). However, there is no buffer zones for any sin-
gle network and thus, there exist many adversarial examples with small noises. We have validated
this claim for BUZz with a single protection layer because it is very close to the one in (Guo et al.
(2017)). In column “BUZz 1-Net” in Figure 3, the best attack is untargeted one and the success rate
for CIFAR-10 is 77% (corresponding to defense rate 0.226).

Black-Box Defenses based on Multiple Networks. In (Liu et al. (2017)), the authors study the
transferability between different networks which have different structures for the ImageNet dataset.
The authors report that the transferability between the networks is small (claimed to be ’close to
zero’). For this reason, it may be possible to have the BUZz defense where protected layers represent
different networks with different architectures. However, experimentally we have built a defense
with VGG16 and Resent20 trained on CIFAR10. As reported in Table 4 and Figure 2, the 2-net
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BUZz with 2 VGG16 and 2-net BUZz with 1 VGG and 1 Resnet (Mixed Arch 2-Net) have the same
performance. It implies that having different architecture does not give us any advantage in BUZz
defense.

In unpublished work (Srisakaokul et al. (2018)) the authors have proposed a defense against white-
box attacks based on multiple networks with the same architecture. The authors develop their de-
fense based on a retraining technique. First, the authors apply adversarial attacks on each network to
generate a set of adversarial examples. For example, for each network j a white-box attack produces
a set of adversarial examples Sj . Next network j will be retrained with the clean training data set
together with some of the adversarial sets Sh, h 6= j. The authors argue that all the networks cannot
be fooled at the same time for a given adversarial example and this leads to a low(er) attacker’s
success rate. The final outputted class label is the predicted label of one of the networks chosen at
random among all networks; this gives high clean accuracy.

With respect to white-box attacks, the defense in (Srisakaokul et al. (2018)) seems not secure: For
verifying resistance against white-box attacks, (Srisakaokul et al. (2018)), only attacks each model
separately instead of attacking all the models at the same time as is done in Ensemble Pattern Attacks
in Section 4 in (Xie et al. (2018)). Hence, the authors should do the Ensemble Pattern Attack on
their defense to have a completed claim on white-box resistance.

For testing resistance against Papernot’s black-box attack, the authors only work with an initial set
of 150 samples and 5 runs. This gives an augmented set of only 24 · 150 = 2400 samples used for
building the synthetic model (compared to an augmented set of 25 ·50K samples in our experiments).
Hence, the performance of synthetic model g is very poor and as a result a lower attacker’s success
rate. Nevertheless, even with a poor synthetic network (that is, very weak black-box adversary) the
reported success rate of the Papernot’s attack with FGSM is still high, i.e., around 18%/27% for
MNIST and CIFAR-10 (see Table 5 in (Srisakaokul et al. (2018))). We performed experiments for
our strong mixed black-box adversary and found an attacker’s success rate of 50% for the best attack
on the best defense (Mul-Def 8 Network in Figure 3).

We summarize the attacker’s success rate of the black-box attacks on the aforementioned defenses
in Table 5. In the table the original accuracy denotes the clean accuracy for the classifier without
implemented defense and defender accuracy denotes the clean accuracy with implemented defense.
We can see that all defenses do not want to sacrifice clean accuracy p – generally at most a drop of
about 5%, see (Meng & Chen (2017)), with a larger drop of 25% in (Xie et al. (2018)). As a result
of aiming at keeping the clean accuracy the same, the attacker’s success rate α remains very high,
typically α ≥ 0.75 for experiments with MNIST, CIFAR-10, and CIFAR-100 as in this paper with
(Tramèr et al. (2017); Srisakaokul et al. (2018)) being the exception with about 50%. These high
attacker’s success rates give a drop in the effective clean accuracy of δ = p − (p − γ)(1 − α) ≥
p − p(1 − 0.5) = 0.5p; the δ values are listed in the table. We do not differentiate the δ values for
targeted resp. untargeted attacks. We see that δ ∼ 0.29, 0.43 for (Tramèr et al. (2017); Srisakaokul
et al. (2018)) and δ ≥ 0.65 for other defenses.

For ImageNet, not studied in our paper, we have δ equal to 0.211 in (Tramèr et al. (2017)) and
0.396 in (Kurakin et al. (2016)), albeit for the weaker pure black-box adversary (without access
to the entire training data set). First, for the stronger adversary analysed in this paper we expect
these δ values to become higher. Second, since Tramèr et al. (2017) has (compared to δ = 0.247
for BUZz) a higher δ = 0.29 for the stronger adversary for CIFAR-10, we expect to also see this
reflected in a smaller δ for ImageNet for BUZz compared to Tramèr et al. (2017) (after fine tuning
image transformations). We leave exact experiments for future work. Third, even if BUZz would
do similar when comparing δ to Tramèr et al. (2017) for ImageNet, BUZz would still be the better
choice: This is because even though the δ values are the same, the attack success rate for BUZz is
expected to be 5-10%, much less than 27% of Tramèr et al. (2017) for the weaker adversary. This
means that there is much less adversarial control in BUZz compared to Tramèr et al. (2017). (This
has already been shown to be true for CIFAR-10 in Table 5.)

C PSEUDO ALGORITHMS: BLACK-BOX ATTACK & BUZZ

Synthetic network. Algorithm 1 depicts the construction of a synthetic network g for the oracle
based black-box attack from Papernot et al. (2017). The attacker uses as input an oracle O which
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Defense Data set Attack Att. success rate Or. Accuracy Def. Accuracy δ

(Tramèr et al. (2017)) ImageNet Pure BB -FGSM ≈ 27% (Tramèr et al. (2017)) 78% (ImageNet) 78% (ImageNet) 0.211
(Kurakin et al. (2016)) ImageNet Pure BB- FGSM ≥ 50% (Kurakin et al. (2016)) 78.4%(ImageNet) 77.6% (ImageNet) 0.396
(Tramèr et al. (2017)) CIFAR-10 Mixed BB -FGSM 34% (this paper) 85% (CIFAR-10) 85% (CIFAR-10) 0.29

(Srisakaokul et al. (2018)) CIFAR-10 Mixed BB - iFGSM 50% (this paper) 86% (CIFAR-10) 86% (CIFAR-10) 0.43
(Guo et al. (2017)) CIFAR-10 Mixed BB - iFGSM 77% (this paper) 84% (CIFAR-10) 84% (CIFAR-10) 0.65

(Feinman et al. (2017)) CIFAR-10 Pure BB - C&W ≥ 80% (Carlini & Wagner (2017a)) 82.6% (CIFAR-10) 82.6% (CIFAR-10) 0.661
(Xie et al. (2018)) CIFAR-10 Mixed BB - iFGSM 86.5% (this paper) 84% (CIFAR-10) 59% (CIFAR-10) 0.76

(Meng & Chen (2017)) MNIST & CIFAR-10 Pure BB - C&W ≥ 99% (Carlini & Wagner (2017b)) 90.6% (CIFAR-10) 86.8% (CIFAR-10) 0.897
(Papernot et al. (2016a)) MNIST Oracle BB - FGSM 70% (Papernot et al. (2017)) 99.51% (MNIST) 98.14% (MNIST) 0.701
(Metzen et al. (2017)) MNIST Pure BB - C&W ≥ 84% (Carlini & Wagner (2017b)) 91.5% (MNIST) 91.5% (MNIST) 0.769

Table 5: Attacker’s success rate of black-box attacks for state-of-the-art defenses

represents black-box access to the target model f which only returns the final class label F (f(x))
for a query x (and not the score vector f(x)). Initially, the attacker has (part of) the training data set
X , i.e., he knowsD = {(x, F (f(x))) : x ∈ X0} for some X0 ⊆ X . Notice that for a single iteration
N = 1, Algorithm 1 therefore reduces to an algorithm which does not need any oracle access to
O; this reduced algorithm is the one used in the pure black-box attack (Carlini & Wagner (2017b);
Athalye et al. (2018a); Liu et al. (2017)). In this paper we assume the strongest black-box adversary
in Algorithm 1 with access to the entire training data set X0 = X (notice that this excludes test data
for evaluating the attack success rate).

In order to construct a synthetic network the attacker chooses a-priori a substitute architecture G
for which the synthetic model parameters θg need to be trained. The attacker uses known image-
label pairs in D to train θg using a training method M (e.g., Adam (Kingma & Ba (2014))). In each
iteration the known data is doubled using the following data augmentation technique: For each image
x in the current data set D, black-box access to the target model gives label l = O(x). The Jacobian
of the synthetic network score vector g with respect to its parameters θg is evaluated/computed
for image x. The signs of the column in the Jacobian matrix that correspond to class label l are
multiplied with a (small) constant λ – this constitutes a vector which is added to x. This gives one
new image for each x and this leads to a doubling ofD. After N iterations the algorithm outputs the
trained parameters θg for the final augmented data set D.

Algorithm 1 Construction of synthetic network g in Papernot’s oracle based black-box attack

1: Input:
2: O represents black-box access to F (f(·)) for target model f with output function F ;
3: X0 ⊆ X , where X is the training data set of target model f ;
4: substitute architecture G
5: training method M;
6: constant λ;
7: number N of synthetic training epochs
8: Output:
9: synthetic model g defined by parameters θg

10: (g also has output function F which selects the max confidence score;
11: g fits architecture G)
12:
13: Algorithm:
14: for N iterations do
15: D ← {(x,O(x)) : x ∈ Xt}
16: θg = M(G,D)
17: Xt+1 ← {x+ λ · sgn(Jθg (x)[O(x)]) : x ∈ Xt} ∪ Xt
18: end for
19: Output θg

The precise set-up for our experiments is given in Tables 6, 7, and 8. Table 6 details the used training
method M in Algorithm 1. For the evaluated data sets Fashion MNIST, CIFAR-10, and CIFAR-100
without data augmentation, we enumerate in Table 7 the amount |X0| of training data together with
parameters λ and N in Algorithm 1 (λ = 0.1 and N = 6 are taken from the oracle based black-box
attack paper of Papernot et al. (2017); notice that a test data set of size 10.000 is standard practice;
all remaining data serves training and this is entirely accessible by the attacker).
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Table 8 depicts the architecture G of the CNN network of the synthetic network g for the different
data sets; the structure has several layers (not to be confused with ’protection layer’ in BUZz which
is an image transformation together with a whole CNN in itself). The adversary attempts to attack
BUZz and will first learn a synthetic network g with architecture G (used as input in Algorithm
1) that corresponds to Table 8. Notice that the image transformations are kept secret and for this
reason the attacker can at best train a synthetic vanilla network. Of course the attacker does know
the set from which the image transformations in BUZz are taken and can potentially try to learn a
synthetic CNN for each possible image transformation and do some majority vote (like BUZz) on the
outputted labels generated by these CNNs. However, there are exponentially many transformations
making such an attack infeasible. For future research we will investigate whether a small sized
subset of ’representative’ image transformations can be used to generate a synthetic model which
can be used to attack BUZz in a more effective way. Nevertheless, we believe that BUZz will
remain secure because of the security argument given in Section 3 where is shown how a single
perturbation η leads to very different perturbations at each protected layer in BUZz. This leads to
’wide’ buffer zones and their mere existence is enough to achieve our security goal – security is
not derived from keeping the image transformations private. Keeping these transformations private
just makes it harder for the adversary to construct a more effective attack but the resulting attack is
expected to still have small attacker’s success rates. We leave this study for future work.

Table 6: Training parameters used in the experiments

Training Parameter Value

Optimization Method ADAM
Learning Rate 0.0001

Batch Size 64
Epochs 100

Data Augmentation None

Table 7: Papernot Black-Box Attack Parameters

|X0| N λ Testing set

CIFAR-10 50000 6 0.1 10000
CIFAR-100 50000 6 0.1 10000

Fashion MNIST 60000 6 0.1 10000

Table 8: Architectures of synthetic neural networks g from (Carlini & Wagner (2017a))

Layer Type Fashion MNIST and CIFAR-10 CIFAR-100

Convolution + ReLU 3 × 3 × 64 3 × 3 × 64
Convolution + ReLU 3 × 3 × 64 3 × 3 × 64

Max Pooling 2 × 2 2 × 2
Convolution + ReLU 3 × 3 × 128 3 × 3 × 128
Convolution + ReLU 3 × 3 × 128 3 × 3 × 128

Max Pooling 2 × 2 2 × 2
Fully Connected + ReLU 256 256
Fully Connected + ReLU 256 256

Softmax 10 100

White-box attack on the synthetic network. The targeted iterative Fast Gradient Sign Method
(FGSM) of (Goodfellow et al. (2014)) is given in Algorithm 2 (for our implementation we use
the cleverhans library, see https://github.com/tensorflow/cleverhans). The non-
iterative variant has outer loop size H = 1. For a untargeted attack no adversarial label l′ is given as
input and the loss function L is only a function of x, l, and θg (the loss function L should be properly
defined to make the attack targeted attack or untargeted). The algorithm walks in H iterations along
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the gradient towards the boundary of x’s region (where a region with label l′ should start). The
maximum perturbation will have entries in the interval [−ε,+ε] (since each of the H iterations at
most add ε/H).

When Algorithm 2 is used as a pure black-box attack, then no oracle access is available and com-
parison l′ = O(x) is replaced by comparison l′ = F (g(x)), which uses the synthetic network. In
this paper we assume the stronger black-box adversary who has oracle access in Algorithm 2.

Algorithm 2 Targeted iterative Fast Gradient Sign Method

1: Input:
2: O represents black-box access to F (f(·)) for target model f with output function F ;
3: parameters θg of a synthetic network g;
4: loss function L for the attack,
5: threshold ε > 0,
6: outer iteration size H ,
7: benign image x with true label l,
8: adversarial target label l′,
9: Output:

10: adversarial example x′
11:
12: Algorithm:
13: for H iterations do
14: x = x− (ε/H) · sgn(∇xL(x, l, l′; θg))
15: if l′ = O(x) then
16: output x′ = x
17: break;
18: end if
19: end for

In (Carlini & Wagner (2016)), the authors propose a powerful non-iterative attack (coined as C&W
attack), which can also be used to produce adversarial examples with small noise. The authors use
some optimization method OPT (e.g Adam (Kingma & Ba (2014))) to find η which minimizes
‖η‖p + c ·L(x+ η, l, θg) for a untargeted attack (or ‖η‖p −L(x+ η, l, l′, θg) for a targeted attack);
the output of OPT is x′ = x+η. Here, ‖·‖p denotes the p-norm, L is the objective function defined
in Carlini & Wagner (2016) for a given synthetic network g with parameters θg . We do not use the
C&W algorithm of (Carlini & Wagner (2016)) because it achieves a lower attacker’s success rate
compared to iterative FGSM in our setup: For example, the C&W7 L2 untargeted attacker’s success
rate for 1000 samples is only 0.006 on our 2 Network BUZz CIFAR-10 defense. This translates to
an overwhelmingly large 99.4% defense rate. Contrast this to the attacker’s success rate based on
the untargeted iFGSM for our 2-Network BUZz defense which is ≈ 0.186� 0.006 (see Table 2).

Table 9: Parameters for iFGSM and FGSM in the mixed black-box attack on BUZz for CIFAR-10,
CIFAR-100 and Fashion MNIST

εuntargeted Huntargeted εtargeted Htargeted

CIFAR-10 10/256 10 1/20 10
CIFAR-100 10/256 10 1/20 10

Fashion MNIST 0.1 10 0.3 10

We enumerate in Table 9 the parameters ε and H used in our experiments – we have taken these
from literature (Meng & Chen (2017)). Notice that literature often reports ε/H as the step size in
FGSM while we list values for ε which corresponds to the size of the final perturbation that leads
to the adversarial example (and as such we can interpret ε as the threshold for noise being visually
perceptible by the human eye).

7We use the library in https://github.com/carlini/nn_robust_attacks to implement the
C&W attack.
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Success rate black-box attack. In order to implement the black-box attack we first run Algorithm
1 which outputs the parameters of a synthetic network g. Next, out of the test data (each data set has
10.000 samples in our set-up) we randomly select 1000 (this is custom in literature) samples (x, l)
which the target model f (i.e., BUZz in this paper) correctly classifies. For each of the 1000 samples
we run Algorithm 2 to produce 1000 adversarial examples. The attacker’s success rate is the fraction
of adversarial examples which change l to the desired new randomly selected l′ in a targeted attack
or any other label l′ for an untargeted attack.

Image transformations for BUZz. In the BUZz, we use image transformations that are com-
posed of a resizing operation i(x) and a linear transformation c(x) = Ax + b. An input im-
age x at a protected layer in BUZz is linearly transformed into an image i(c(x)) before it en-
ters the corresponding CNN network with VGG16 architecture for CIFAR-10 and CIFAR-100
(see https://neurohive.io/en/popular-networks/vgg16/8) or minivgg architec-
ture for FashionMNIST (see TODO). In a network implementation one can think of i(c(x)) as an
extra layer in the CNN architecture of VGG16 itself (here ’layer’ should not be confused with the
terminology ’protected layer’).

For the resize operations i(·) used in each of the protected layers in BUZz, we choose sizes that
are larger than the original dimensions of the image data. We do this to prevent loss of information
in the images that down sizing would create (and this would hurt the clean accuracy of BUZz).
In our experiments we use BUZz with 2, 4, and 8 protected layers. Each protected layer gets its
own resize operation i(·). When using 8 protected layers, we use image resizing operations from
32 to 32, 40, 48, 64, 72, 80, 96, 104. Each protected layer will be differentiated from each other
protected layer due to the difference in how much resizing each layer implements. This will lead to
less transferability between the protected layers and as a result we expect to see a wider buffer zone
which diminishes the attacker’s success rate. When using 4 protected layers, we use a copy of the 4
protected layers from BUZz with 8 networks that correspond to the image resizing operations from
32 to 32, 48, 72, 96. When using 2 protected layers, we use a copy of the 2 protected layers from
BUZz with 8 networks that correspond to the image resizing operations from 32 to 32 and 104. In our
implementation we use resizing operation from github https://github.com/cihangxie/
NIPS2017_adv_challenge_defense (Xie et al. (2018)).

For each protected layer, the linear transformation c(x) = Ax + b is randomly chosen from some
statistical distribution (the distribution is public knowledge and therefore known by the adversary).
Design of the statistical distribution depends on the complexity of the considered data set (in our
case we experiment with FashionMNIST, CIFAR-10, and CIFAR-100). Transformation c(x) takes
an image of size n1 × n2×3 as input and considers this as a vector of length k = n1n2n3. Here,
n1 and n2 denote the horizontal and vertical width in pixels of image x; n3 = 3 means that each
pixel has a red, blue, and green values; n3 = 1 means that each pixel only has one black/white
value. CIFAR-10 and CIFAR-100 have 32 × 32 × 3 images and FashionMNIST has 28 × 28 × 1
images. All the values in vector x are converted from integers [0..255] to the range [−0.5,+0.5] of
real numbers. Notice that the entries of c(x) may have their values outside of this range.

In our implementation we do not consider x to be in vector representation; we think of x as n3 times
a n1 × n2 matrix. For example, x = (X1, X2, X3) for n3 = 1. We restrict c(x) = Ax+ b to linear
operations

c(X1, X2, X3) = (X1A1 + b1, X2A2 + b2, X3A3 + b3),

where Ai are n2 × n2 matrices and bi are n1 × n2 matrices.

For CIFAR-10 and CIFAR-100 we take matrices Ai to be identity matrices (this also makes A the
identity matrix in the vector representation of c(x)) and we use the same matrix b for each of the
matrices bi, i.e.,

b′ = b1 = b2 = b3.

This means that we use the same random offset in the red, blue, and green values of a pixel. The
reason for making this design decision is because for CIFAR-10 and CIFAR-100 we found that fully
random A creates large drops in clean accuracy, even when the network is trained to learn such
distortions. As a result, for data sets with high spatial complexity like CIFAR-10 and CIFAR-100,
we do not select A randomly. We choose A to be the identity matrix. Likewise for b′ we only
randomly generate 35% of the matrix values and leave the rest as 0. For the randomly generated
values, we choose them from a uniform distribution from −0.5 to 0.5.
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For datasets with less spatial complexity like FashionMNIST, we equate matrices A′ = A1 = A2 =
A3 and b′ = b1 = b2 = b3 and select A′ and b′ as random matrices: The values of A′ and b′ are
selected from a Gaussian distribution with µ = 0 and σ = 0.1.

D EXPERIMENTAL RESULTS

We reported our experimental results for CIFAR-10 in Section 4 for 5 runs (see Table 2). Here, one
run is implemented by first choosing matrices A′ and B′ from the distribution corresponding to the
considered data set for each protected layer. Next the attacker’s success rate and clean accuracy of
the defense are simulated. For each next run, matrices A′ and B′ are again chosen anew.

As shown in Figure 5 for CIFAR-10, the average result for 5 runs is not much different from that of
1 run. Moreover, we also report the result of the best case of the attack among 5 runs in Table 10.
As one can see, different runs give very similar results. This shows that BUZz is not sensitive to the
choice of A′ and B′ (worst and best cases are close to one another).

Table 10: Mixed black-box attack on CIFAR-10– the best case

Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.8835 0.76 0.69 0.62
FGSM Targeted 0.831 0.96 0.99 0.99
iFGSM Targeted 0.766 0.98 0.99 1

FGSM Untargeted 0.297 0.85 0.94 0.97
iFGSM Untargeted 0.282 0.87 0.97 0.99

Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.9356 0.8537 0.8204 0.7779

FGSM Targeted 0.737 0.925 0.965 0.99

IFGSM Targeted 0.652 0.97 0.991 0.997

FGSM Untargeted 0.102 0.676 0.833 0.913

IFGSM Untargeted 0.164 0.78 0.878 0.96
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Figure 4: Mixed Black-Box Attack on FashionMNIST, single run.

For completeness, we also did experiments for pure black-box attacks. The results are in Figures 7,
8, and 9 for a single run. The numbers confirm the mixed black-box attack being stronger than the
pure black-box attack.

We also mention that for the vanilla network for CIFAR-10 https://github.com/
kuangliu/pytorch-cifar shows a clean accuracy of 92.6% which is more than the reported
88.4% in our experiments – this is due to our limited training time (limited resources). For the vanilla
network for CIFAR-100 without data augmentation https://github.com/SamKirkiles/
vgg-cifar100 shows a clean accuracy of 64% which is similar to the clean accuracy of 63%
reported here. For the vanilla network for FashionMNIST https://www.pyimagesearch.
com/2019/02/11/fashion-mnist-with-keras-and-deep-learning/ shows a
clean accuracy of 94% which is equal to the clean accuracy reported here.

Discussion. From the experiments on FashionMNIST, CIFAR-10, CIFAR-100, we see the success
of untargeted mixed black-box attacks on vanilla nets is significantly higher than that of the targeted
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Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.8835 0.7599 0.6832 0.6091

FGSM Targeted 0.831 0.951 0.985 0.995

IFGSM Targeted 0.766 0.978 0.998 1

FGSM Untargeted 0.297 0.797 0.931 0.976

IFGSM Untargeted 0.282 0.814 0.963 0.992
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Figure 5: Mixed Black-Box Attack on CIFAR-10, single run.

Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.6316 0.4613 0.3768 0.3066

FGSM Targeted 0.961 0.996 1 1

IFGSM Targeted 0.933 0.999 1 1

FGSM Untargeted 0.228 0.907 0.968 0.995

IFGSM Untargeted 0.254 0.901 0.984 0.998
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Figure 6: Mixed Black-Box Attack on CIFAR-100, single run.

attacks. Moreover, the success of targeted attacks on the vanilla network of CIFAR-100 is close
to 1% which is significantly poorer than that of CIFAR-10 or FashionMNIST (i.e., 16% − 19%).
We believe the main reason is that the clean accuracy of the vanilla network of CIFAR-100 is sig-
nificantly lower than that of CIFAR-10 or FashionMNIST, i.e., 63%, 88% and 93.5%, respectively.
From this result, we also believe that the resistance of a network or classifier against adversarial
machine learning strongly depends on the clean accuracy of the network itself; the lower the clean
accuracy, the lower the attacker’s success rate as well (remember that the attacker’s success rate is
only measured over images that are accurately predicted by the network).

From the view of the designer, she/he should pay attention to the highest threat or the most powerful
attack, in this case untargeted mixed black box attacks. In other words, we should use δu as a true
measurement to evaluate the resistance of a given defense. Equipped with this argument, we can now
see that BUZz has very good resistance against adversarial examples at the cost of clean accuracy.
As we argued in Table 5, current-state-of-the-art defenses generally have very large δu which is due
to poor resistance against adversarial examples – this is because their clean accuracy is nearly equal
to that of the vanilla network (the defenses do not want to give up some of the clean accuracy). A
good lesson we can learn from Table 3 is that we have to sacrifice something (here, clean accuracy)
to gain security. If the defense does not have ‘buffer zones’, then the adversary always wins the
game in that it is possible to produce with significant probability adversarial examples with small
noise to bypass the defense. Including ‘buffer zones’ means the designer has to give up some clean
accuracy.
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For Fashion MNIST, we may want to use 8-network BUZz because it has the best trade-off between
defense rate (one minus the attacker’s succes rate) and the defense accuracy (the clean accuracy of
the defense). Similarly, for CIFAR-10 and CIFAR-100, we suggest 4-network BUZz and 2-network
BUZz, respectively.

Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.9356 0.8537 0.8204 0.7779

FGSM Targeted 0.834 0.94 0.964 0.974

IFGSM Targeted 0.843 0.993 0.998 1

FGSM Untargeted 0.183 0.738 0.848 0.92

IFGSM Untargeted 0.356 0.897 0.931 0.98
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Figure 7: Pure Black-box Attack on FashionMNIST, single run.

Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.8835 0.7599 0.6832 0.6091

FGSM Targeted 0.863 0.969 0.986 0.993

IFGSM Targeted 0.812 0.991 0.999 1

FGSM Untargeted 0.421 0.872 0.948 0.98

IFGSM Untargeted 0.379 0.907 0.974 0.992
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Figure 8: Pure Black-box Attack on CIFAR-10, single run.
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Vanilla 2-Networks 4-Networks 8-Networks

Clean Accuracy 0.6316 0.4613 0.3768 0.3066

FGSM Targeted 0.991 0.998 0.999 1

IFGSM Targeted 0.986 0.998 1 1

FGSM Untargeted 0.469 0.926 0.978 0.991

IFGSM Untargeted 0.586 0.915 0.98 0.999
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Figure 9: Pure Black-box Attack on CIFAR-100, single run.
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