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Abstract

Neural architecture search methods are able to find high performance deep learning
architectures with minimal effort from an expert [1]. However, current systems
focus on specific use-cases (e.g. convolutional image classifiers and recurrent
language models), making them unsuitable for general use-cases that an expert
might wish to write. Hyperparameter optimization systems [2, 3, 4] are general-
purpose but lack the constructs needed for easy application to architecture search.
In this work, we propose a formal language for encoding search spaces over
general computational graphs. The language constructs allow us to write modular,
composable, and reusable search space encodings and to reason about search space
design. We use our language to encode search spaces from the architecture search
literature. The language allows us to decouple the implementations of the search
space and the search algorithm, allowing us to expose search spaces to search
algorithms through a consistent interface. Our experiments show the ease with
which we can experiment with different combinations of search spaces and search
algorithms without having to implement each combination from scratch. We release
an implementation of our language with this paper2.

1 Introduction

Architecture search has the potential to transform machine learning workflows. High performance
deep learning architectures are often manually designed through a trial-and-error process that amounts
to trying slight variations of known high performance architectures. Recently, architecture search
techniques have shown tremendous potential by improving on handcrafted architectures, both by
improving state-of-the-art performance and by finding better tradeoffs between computation and
performance. Unfortunately, current systems fall short of providing strong support for general
architecture search use-cases.

Hyperparameter optimization systems [2, 3, 4, 5] are not designed specifically for architecture
search use-cases and therefore do not introduce constructs that allow experts to implement these
use-cases efficiently, e.g., easily writing new search spaces over architectures. Using hyperparameter
optimization systems for an architecture search use-case requires the expert to write the encoding for
the search space over architectures as a conditional hyperparameter space and to write the mapping
from hyperparameter values to the architecture to be evaluated. Hyperparameter optimization systems
are completely agnostic that their hyperparameter spaces encode search spaces over architectures.

By contrast, architecture search systems [1] are in their infancy, being tied to specific use-cases
(e.g., either reproducing results reported in a paper or concrete systems, e.g., for searching over
Scikit-Learn pipelines [6]) and therefore lack support for general architecture search workflows. For
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example, current implementations of architecture search methods rely on ad-hoc encodings for search
spaces, providing limited extensibility and programmability for new work to build on. For example,
implementations of the search space and search algorithm are often intertwined, requiring substantial
coding effort to try new search spaces or search algorithms.

Contributions We describe a modular language for encoding search spaces over general computa-
tional graphs. We aim to improve the programmability, modularity, and reusability of architecture
search systems. We are able to use the language constructs to encode search spaces in the literature.
Furthermore, these constructs allow the expert to create new search spaces and modify existing ones
in structured ways. Search spaces expressed in the language are exposed to search algorithms under a
consistent interface, decoupling the implementations of search spaces and search algorithms. We
showcase these functionalities by easily comparing search spaces and search algorithms from the
architecture search literature. These properties will enable better architecture search research by
making it easier to benchmark and reuse search algorithms and search spaces.

2 Related work

Hyperparameter optimization Algorithms for hyperparameter optimization often focus on small
or simple hyperparameter spaces (e.g., closed subsets of Euclidean space in low dimensions). Hy-
perparameters might be categorical (e.g., choice of regularizer) or continuous (e.g., learning rate
and regularization constant). Gaussian process Bayesian optimization [7] and sequential model
based optimization [8] are two popular approaches. Random search has been found to be com-
petitive for hyperparameter optimization [9, 10]. Conditional hyperparameter spaces (i.e., where
some hyperparameters may be available only for specific values of other hyperparameters) have also
been considered [11, 12]. Hyperparameter optimization systems (e.g. Hyperopt [2], Spearmint [3],
SMAC [5, 8] and BOHB [4]) are general-purpose and domain-independent. Yet, they rely on the
expert to distill the problem into an hyperparameter space and write the mapping from hyperparameter
values to implementations.

Architecture search Contributions to architecture search often come in the form of search algo-
rithms, evaluation strategies, and search spaces. Researchers have considered a variety of search
algorithms, including reinforcement learning [13], evolutionary algorithms [14, 15], MCTS [16],
SMBO [16, 17], and Bayesian optimization [18]. Most search spaces have been proposed for
recurrent or convolutional architectures [13, 14, 15] focusing on image classification (CIFAR-10)
and language modeling (PTB). Architecture search encodes much of the architecture design in the
search space (e.g., the connectivity structure of the computational graph, how many operations to
use, their type, and values for specifying each operation chosen). However, the literature has yet
to provide a consistent method for designing and encoding such search spaces. Systems such as
Auto-Sklearn [19], TPOT [20], and Auto-Keras [21] have been developed for specific use-cases (e.g.,
Auto-Sklearn and TPOT focus on classification and regression of featurized vector data, Auto-Keras
focus on image classification) and therefore support relatively rigid workflows. The lack of focus
on extensibility and programmability makes these systems unsuitable as frameworks for general
architecture search research.

3 Proposed approach: modular and programmable search spaces

To maximize the impact of architecture search research, it is fundamental to improve the programma-
bility of architecture search tools3. We move towards this goal by designing a language to write
search spaces over computational graphs. We identify the following advantages for our language
and search spaces encoded in it:

• Similarity to computational graphs: Writing a search space in our language is similar to
writing a fixed computational graph in an existing deep learning framework. The main difference
is that nodes in the graph may be search spaces rather than fixed operations (e.g., see Figure 5).
A search space maps to a single computational graph once all its hyperparameters have been
assigned values (e.g., in frame d in Figure 5).

3cf. the effect of highly programmable deep learning frameworks on deep learning research and practice.
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• Modularity and reusability: The building blocks of our search spaces are modules and hyper-
parameters. Search spaces are created through the composition of modules and their interactions.
Implementing a new module only requires dealing with aspects local to the module. Modules
and hyperparameters can be reused across search spaces, and new search spaces can be written
by combining existing search spaces. Furthermore, our language supports search spaces in
general domains (e.g., deep learning architectures or Scikit-Learn [22] pipelines).

• Laziness: A substitution module delays the creation of a subsearch space until all hyperpa-
rameters of the substitution module are assigned values. Experts can use substitution modules
to encode natural and complex conditional constructions by concerning themselves only with
the conditional branch that is chosen. This is simpler than the support for conditional hyper-
parameter spaces provided by hyperparameter optimization tools, e.g., in Hyperopt [2], where
all conditional branches need to be written down explicitly. Our language allows conditional
constructs to be expressed implicitly through composition of language constructs (e.g., nesting
substitution modules). Laziness also allows us to encode search spaces that can expand infinitely,
which is not possible with current hyperparameter optimization tools (see Appendix D.1).

• Automatic compilation to runnable computational graphs: Once all choices in the search
space are made, the single architecture corresponding to the terminal search space can be mapped
to a runnable computational graph (see Algorithm 4). By contrast, for general hyperparameter
optimization tools this mapping has to be written manually by the expert.

4 Components of the search space specification language

A search space is a graph (see Figure 5) consisting of hyperparameters (either of type independent or
dependent) and modules (either of type basic or substitution). This section describes our language
components and show encodings of simple search spaces in our Python implementation. Figure 5
and the corresponding search space encoding in Figure 4 are used as running examples. Appendix A
and Appendix B provide additional details and examples, e.g. the recurrent cell search space of [23].

Independent hyperparameters The value of an independent hyperparameter is chosen from its
set of possible values. An independent hyperparameter is created with a set of possible values, but
without a value assigned to it. Exposing search spaces to search algorithms relies mainly on iteration
over and value assignment to independent hyperparameters. An independent hyperparameter in our
implementation is instantiated as, for example, D([1, 2, 4, 8]). In Figure 5, IH-1 has set of
possible values {64, 128} and is eventually assigned value 64 (shown in frame d).

Dependent hyperparameters The value of a dependent hyperparameter is computed as a func-
tion of the values of the hyperparameters it depends on (see line 7 of Algorithm 1). Depen-
dent hyperparameters are useful to encode relations between hyperparameters, e.g., in a convo-
lutional network search space, we may want the number of filters to increase after each spatial
reduction. In our implementation, a dependent hyperparameter is instantiated as, for example, h
= DependentHyperparameter(lambda dh: 2*dh["units"], {"units": h_units}). In
Figure 5, in the transition from frame a to frame b, IH-3 is assigned value 1, triggering the value
assignment of DH-1 according to its function fn:2*x.

1def one_layer_net ():
2a_in , a_out = dropout(D([0.25 , 0.5]))
3b_in , b_out = dense(D([100, 200, 300]))
4c_in , c_out = relu()
5a_out["out"]. connect(b_in["in"])
6b_out["out"]. connect(c_in["in"])
7return a_in , c_out

Figure 1: Search space over feedforward networks
with dropout rate of 0.25 or 0.5, ReLU activations,
and one hidden layer with 100, 200, or 300 units.

Basic modules A basic module implements
computation that depends on the values of its
properties. Search spaces involving only basic
modules and hyperparameters do not create new
modules or hyperparameters, and therefore are
fixed computational graphs (e.g., see frames c
and d in Figure 5). Upon compilation, a basic
module consumes the values of its inputs, per-
forms computation, and publishes the results to
its outputs (see Algorithm 4). Deep learning
layers can be wrapped as basic modules, e.g., a
fully connected layer can be wrapped as a single-input single-output basic module with one hyper-
parameter for the number of units. In the search space in Figure 1, dropout, dense, and relu are
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basic modules. In Figure 5, both frames c and d are search spaces with only basic modules and
hyperparameters. In the search space of frame d, all hyperparameters have been assigned values, and
therefore the single architecture can be mapped to its implementation (e.g., in Tensorflow).

1def multi_layer_net ():
2h_or = D([0, 1])
3h_repeat = D([1, 2, 4])
4return siso_repeat(
5lambda: siso_sequential ([
6dense(D([300])) ,
7siso_or ([relu , tanh], h_or)
8]), h_repeat)

Figure 2: Search space over feedforward networks
with 1, 2, or 4 hidden layers and ReLU or tanh
activations.

Substitution modules Substitution modules
encode structural transformations of the com-
putational graph that are delayed4 until their
hyperparameters are assigned values. Similarly
to a basic module, a substitution module has
hyperparameters, inputs, and outputs. Contrary
to a basic module, a substitution module does
not implement computation—it is substituted
by a subsearch space (which depends on the val-
ues of its hyperparameters and may contain new
substitution modules). Substitution is triggered
once all its hyperparameters have been assigned
values. Upon substitution, the module is removed from the search space and its connections are
rerouted to the corresponding inputs and outputs of the generated subsearch space (see Algorithm 1
for how substitutions are resolved). For example, in the transition from frame b to frame c of
Figure 5, IH-2 was assigned the value 1 and Dropout-1 and IH-7 were created by the substitution
of Optional-1. The connections of Optional-1 were rerouted to Dropout-1. If IH-2 had been
assigned the value 0, Optional-1 would have been substituted by an identity basic module and no
new hyperparameters would have been created. Figure 2 shows a search space using two substitution
modules: siso_or chooses between relu and tanh; siso_repeat chooses how many layers to
include. siso_sequential is used to avoid multiple calls to connect as in Figure 1.

1def rnn_cell(hidden_fn , output_fn ):
2h_inputs , h_outputs = hidden_fn ()
3y_inputs , y_outputs = output_fn ()
4h_outputs["out"]. connect(y_inputs["in"])
5return h_inputs , y_outputs

Figure 3: Auxiliary function to create the search
space for the recurrent cell given functions that
create the subsearch spaces.

Auxiliary functions Auxiliary functions,
while not components per se, help create com-
plex search spaces. Auxiliary functions might
take functions that create search spaces and put
them together into a larger search space. For
example, the search space in Figure 3 defines an
auxiliary RNN cell that captures the high-level
functional dependency: ht = qh(xt, ht−1)
and yt = qy(ht). We can instantiate a
specific search space as rnn_cell(lambda:
siso_sequential([concat(2), one_layer_net()]), multi_layer_net).

5 Example search space

1def search_space ():
2h_n = D([1, 2, 4])
3h_ndep = DependentHyperparameter(
4lambda dh: 2 * dh["x"], {"x": h_n})
5
6c_inputs , c_outputs = conv2d(D([64, 128]))
7o_inputs , o_outputs = siso_optional(
8lambda: dropout(D([0.25 , 0.5])) , D([0, 1]))
9fn = lambda: conv2d(D([64, 128]))
10r1_inputs , r1_outputs = siso_repeat(fn , h_n)
11r2_inputs , r2_outputs = siso_repeat(fn , h_ndep)
12cc_inputs , cc_outputs = concat (2)
13
14o_inputs["in"]. connect(c_outputs["out"])
15r1_inputs["in"]. connect(o_outputs["out"])
16r2_inputs["in"]. connect(o_outputs["out"])
17cc_inputs["in0"]. connect(r1_outputs["out"])
18cc_inputs["in1"]. connect(r2_outputs["out"])
19return c_inputs , cc_outputs

Figure 4: Simple search space showcasing all lan-
guage components. See also Figure 5.

We ground discussion textually, through code
examples (Figure 4), and visually (Figure 5)
through an example search space. There is
a convolutional layer followed, optionally, by
dropout with rate 0.25 or 0.5. After the optional
dropout layer, there are two parallel chains of
convolutional layers. The first chain has length
1, 2, or 4, and the second chain has double the
length of the first. Finally, the outputs of both
chains are concatenated. Each convolutional
layer has 64 or 128 filters (chosen separately).
This search space has 25008 distinct models.

Figure 5 shows a sequence of graph transitions
for this search space. IH and DH denote type
identifiers for independent and dependent hyper-
parameters, respectively. Modules and hyperpa-

4Substitution modules are inspired by delayed evaluation in programming languages.
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Figure 5: Search space transitions for the search space in Figure 4 (frame a) leading to a single
architecture (frame d). Modules and hyperparameters created since the previous frame are highlighted
in green. Hyperparameters assigned values since the previous frame are highlighted in red.

rameters types are suffixed with a number to generate unique identifiers. Modules are represented by
rectangles that contain inputs, outputs, and properties. Hyperparameters are represented by ellipses
(outside of modules) and are associated to module properties (e.g., in frame a, IH-1 is associated to
filters of Conv2D-1). To the right of an independent hyperparameter we show, before assignment,
its set of possible values and, after assignment, its value (e.g., IH-1 in frame a and in frame d,
respectively). Similarly, for a dependent hyperparameter we show, before assignment, the function
that computes its value and, after assignment, its value (e.g., DH-1 in frame a and in frame b, respec-
tively). Frame a shows the initial search space encoded in Figure 4. From frame a to frame b, IH-3
is assigned a value, triggering the value assignment for DH-1 and the substitutions for Repeat-1
and Repeat-2. From frame b to frame c, IH-2 is assigned value 1, creating Dropout-1 and IH-7
(its dropout rate hyperparameter). Finally, from frame c to frame d, the five remaining independent
hyperparameters are assigned values. The search space in frame d has a single architecture that can
be mapped to an implementation in a deep learning framework.

6 Semantics and mechanics of the search space specification language

In this section, we formally describe the semantics and mechanics of our language and show how
they can be used to implement search algorithms for arbitrary search spaces.

6.1 Semantics

Search space components A search space G has hyperparameters H(G) and modules M(G).
We distinguish between independent and dependent hyperparameters as Hi(G) and Hd(G), where
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H(G) = Hi(G) ∪Hd(G) and Hd(G) ∩Hi(G) = ∅, and basic modules and substitution modules as
Mb(G) and Ms(G), where M(G) = Mb(G) ∪Ms(G) and Mb(G) ∩Ms(G) = ∅.

Hyperparameters We distinguish between hyperparameters that have been assigned a value and
those that have not asHa(G) andHu(G). We haveH(G) = Hu(G)∪Ha(G) andHu(G)∩Ha(G) =
∅. We denote the value assigned to an hyperparameter h ∈ Ha(G) as v(G),(h) ∈ X(h), where h ∈
Ha(G) and X(h) is the set of possible values for h. Independent and dependent hyperparameters are
assigned values differently. For h ∈ Hi(G), its value is assigned directly from X(h). For h ∈ Hd(G),
its value is computed by evaluating a function f(h) for the values of H(h), where H(h) is the set of
hyperparameters that h depends on. For example, in frame a of Figure 5, for h = DH-1, H(h) =
{IH-3}. In frame b, Ha(G) = {IH-3, DH-1} and Hu(G) = {IH-1, IH-4, IH-5, IH-6, IH-2}.

Modules A module m ∈ M(G) has inputs I(m), outputs O(m), and hyperparameters H(m) ⊆
H(G) along with mappings assigning names local to the module to inputs, outputs, and hyperparam-
eters, respectively, σ(m),i : S(m),i → I(m), σ(m),o : S(m),o → O(m), σ(m),h : S(m),h → H(m),
where S(m),i ⊂ Σ∗, S(m),o ⊂ Σ∗, and S(m),h ⊂ Σ∗, where Σ∗ is the set of all strings of alphabet Σ.
S(m),i, S(m),o, and S(m),h are, respectively, the local names for the inputs, outputs, and hyperparam-
eters of m. Both σ(m),i and σ(m),o are bijective, and therefore, the inverses σ−1(m),i : I(m)→ Sm,i

and σ−1(m),o : O(m) → S(m),o exist and assign an input and output to its local name. Each input
and output belongs to a single module. σ(m),h might not be injective, i.e., |S(m),h| ≥ |H(m)|. A
name s ∈ S(m),h captures the local semantics of σ(m),h(s) in m ∈M(G) (e.g., for a convolutional
basic module, the number of filters or the kernel size). Given an input i ∈ I(M(G)), m(i) recovers
the module that i belongs to (analogously for outputs). For m 6= m′, we have I(m) ∩ I(m′) = ∅
and O(m) ∩ O(m′) = ∅, but there might exist m,m′ ∈ M(G) for which H(m) ∩ H(m′) 6= ∅,
i.e., two different modules might share hyperparameters but inputs and outputs belong to a single
module. We use shorthands I(G) for I(M(G)) and O(G) for O(M(G)). For example, in frame a of
Figure 5, for m = Conv2D-1 we have: I(m) = {Conv2D-1.in}, O(m) = {Conv2D-1.out}, and
H(m) = {IH-1}; S(m),i = {in} and σ(m),i(in) = Conv2D-1.in (σ(m),o and σ(m),h are similar);
m(Conv2D-1.in) = Conv2D-1. Output and inputs are identified by the global name of their module
and their local name within their module joined by a dot, e.g.. Conv2D-1.in

Connections between modules Connections between modules inG are represented through the set
of directed edgesE(G) ⊆ O(G)×I(G) between outputs and inputs of modules inM(G). We denote
the subset of edges involving inputs of a module m ∈ M(G) as Ei(m), i.e., Ei(m) = {(o, i) ∈
E(G) | i ∈ I(m)}. Similarly, for outputs, Eo(m) = {(o, i) ∈ E(G) | o ∈ O(m)}. We denote the
set of edges involving inputs or outputs of m as E(m) = Ei(m) ∪ Eo(m). In frame a of Figure 5,
For example, in frame a of Figure 5, Ei(Optional-1) = {(Conv2D-1.out, Optional-1.in)} and
Eo(Optional-1) = {(Optional-1.out, Repeat-1.in), (Optional-1.out, Repeat-2.in)}.

Search spaces We denote the set of all possible search spaces as G. For a search space G ∈
G, we define R(G) = {G′ ∈ G | G1, . . . , Gm ∈ Gm, Gk+1 = Transition(Gk, h, v), h ∈
Hi(Gk) ∩ Hu(Gk), v ∈ X(h),∀k ∈ [m], G1 = G,Gm = G′}, i.e., the set of reachable search
spaces through a sequence of value assignments to independent hyperparameters (see Algorithm 1
for the description of Transition). We denote the set of terminal search spaces as T ⊂ G, i.e.
T = {G ∈ G | Hi(G)∩Hu(G) = ∅}. We denote the set of terminal search spaces that are reachable
from G ∈ G as T (G) = R(G) ∩ T . In Figure 5, if we let G and G′ be the search spaces in frame a
and d, respectively, we have G′ ∈ T (G).

6.2 Mechanics

Search space transitions A search space G ∈ G encodes a set of architectures (i.e., those in
T (G)). Different architectures are obtained through different sequences of value assignments
leading to search spaces in T (G). Graph transitions result from value assignments to independent
hyperparameters. Algorithm 1 shows how the search space G′ = Transition(G, h, v) is computed,
where h ∈ Hi(G) ∩ Hu(G) and v ∈ X(h). Each transition leads to progressively smaller search
spaces (i.e., for all G ∈ G, G′ = Transition(G, h, v) for h ∈ Hi(G) ∩ Hu(G) and v ∈ X(h),
then R(G′) ⊆ R(G)). A search space G′ ∈ T (G) is reached once there are no independent
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Algorithm 1: Transition
Input: G, h ∈ Hi(G) ∩Hu(G), v ∈ X(h)

1 v(G),(h) ← v
2 do
3 H̃d(G) = {h ∈ Hd(G) ∩Hu(G) | Hu(h) = ∅}
4 for h ∈ H̃d(G) do
5 n← |S(h)|
6 Let S(h) = {s1, . . . , sn} with s1 < . . . < sn
7 v(G),(h) ← f(h)(vG,σ(h)(s1)

, . . . , vG,σ(h)(sn))

8 M̃s(G) = {m ∈Ms(G) | Hu(m) = ∅}
9 for m ∈ M̃s(G) do

10 n← |S(m),h|
11 Let S(m),h = {s1, . . . , sn} with s1 < . . . < sn
12 (Gm, σi, σo) = f(m)(vG,σ(m),h(s1), . . . , vG,σ(m),h(sn))

13 Ei = {(o, i′) | (o, i) ∈ Ei(m), i′ = σi(σ
−1
(m),i(i))}

14 Eo = {(o′, i) | (o, i) ∈ Eo(m), o′ = σo(σ
−1
(m),o(o))}

15 E(G)← (E(G) \ E(m)) ∪ (Ei ∪ Eo)
16 M(G)← (M(G) \ {m}) ∪M(Gm)
17 H(G)← H(G) ∪H(Gm)

18 while H̃d(G) 6= ∅ or M̃s(G) 6= ∅;
19 return G

Algorithm 2: OrderedHyperps
Input: G, σo : So → Ou(G)

1 Mq ← OrderedModules(G, σo)
2 Hq ← [ ]
3 for m ∈Mq do
4 n = |S(m),h|
5 Let S(m),h = {s1, . . . , sn}

with s1 < . . . < sn.
6 for j ∈ [n] do
7 h← σ(m),h(sj)
8 if h /∈ Hq then
9 Hq ← Hq + [h]

10 for h ∈ Hq do
11 if h ∈ Hd(G) then
12 n← |S(h)|
13 Let S(h) = {s1, . . . , sn}

with s1 < . . . < sn
14 for j ∈ [n] do
15 h′ ← σ(h)(sj)
16 if h′ /∈ Hq then
17 Hq ← Hq + [h′]

18 return Hq

Figure 6: Left: Transition assigns a value to an independent hyperparameter and resolves assign-
ments to dependent hyperparameters (line 3 to 7) and substitutions (line 8 to 17) until none are left
(line 18). Right: OrderedHyperps returns H(G) sorted according to a unique order. Adds the
hyperparameters that are immediately reachable from modules (line 1 to 9), and then traverses the
dependencies of the dependent hyperparameters to find additional hyperparameters (line 10 to 17).

hyperparameters left to assign values to, i.e., Hi(G) ∩Hu(G) = ∅. For G′ ∈ T (G), Ms(G
′) = ∅,

i.e., there are only basic modules left. For search spaces G ∈ G for which Ms(G) = ∅, we
have M(G′) = M(G) (i.e., Mb(G

′) = Mb(G)) and H(G′) = H(G) for all G′ ∈ R(G), i.e.,
no new modules and hyperparameters are created as a result of graph transitions. Algorithm 1
can be implemented efficiently by checking whether assigning a value to h ∈ Hi(G) ∩ Hu(G)
triggered substitutions of neighboring modules or value assignments to neighboring hyperparameters.
For example, for the search space G of frame d of Figure 5, Ms(G) = ∅. Search spaces G,
G′, and G′′ for frames a, b, and c, respectively, are related as G′ = Transition(G, IH-3, 1)
and G′′ = Transition(G′, IH-2, 1). For the substitution resolved from frame b to frame c, for
m = Optional-1, we have σi(in) = Dropout-1.in and σo(out) = Dropout-1.out (see line
12 in Algorithm 1).

Traversals over modules and hyperparameters Search space traversal is fundamental to provide
the interface to search spaces that search algorithms rely on (e.g., see Algorithm 3) and to auto-
matically map terminal search spaces to their runnable computational graphs (see Algorithm 4 in
Appendix C). For G ∈ G, this iterator is implemented by using Algorithm 2 and keeping only the
hyperparameters in Hu(G) ∩Hi(G). The role of the search algorithm (e.g., see Algorithm 3) is to
recursively assign values to hyperparameters in Hu(G) ∩Hi(G) until a search space G′ ∈ T (G) is
reached. Uniquely ordered traversal of H(G) relies on uniquely ordered traversal of M(G). (We
defer discussion of the module traversal to Appendix C, see Algorithm 5.)

Architecture instantiation A search spaceG ∈ T can be mapped to a domain implementation (e.g.
computational graph in Tensorflow [24] or PyTorch [25]). Only fully-specified basic modules are left
in a terminal search space G (i.e., Hu(G) = ∅ and Ms(G) = ∅). The mapping from a terminal search
space to its implementation relies on graph traversal of the modules according to the topological or-
dering of their dependencies (i.e., ifm′ connects to an output ofm, thenm′ should be visited afterm).
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Algorithm 3: Random search.
Input: G, σo : So → Ou(G), k

1 rbest ← −∞
2 for j ∈ [k] do
3 G′ ← G
4 while G′ /∈ T do
5 Hq ← OrderedHyperps(G′, σo)
6 for h ∈ Hq do
7 if h ∈ Hu(G′) ∩Hi(G′) then
8 v ∼ Uniform(X(h))
9 G′ ← Transition(G′, h, v)

10 r ← Evaluate(G′)
11 if r > rbest then
12 rbest ← r
13 Gbest ← G′

14 return Gbest

Figure 7: Assigns a value uniformly at random
(line 8) for each independent hyperparameter (line
7) in the search space until a terminal search space
is reached (line 4).

Appendix C details this graph propagation pro-
cess (see Algorithm 4). For example, it is sim-
ple to see how the search space of frame d of
Figure 5 can be mapped to an implementation.

6.3 Supporting search algorithms

Search algorithms interface with search spaces
through ordered iteration over unassigned in-
dependent hyperparameters (implemented with
the help of Algorithm 2) and value assignments
to these hyperparameters (which are resolved
with Algorithm 1). Algorithms are run for a
fixed number of evaluations k ∈ N, and return
the best architecture found. The iteration func-
tionality in Algorithm 2 is independent of the
search space and therefore can be used to expose
search spaces to search algorithms. We use this
decoupling to mix and match search spaces and
search algorithms without implementing each
pair from scratch (see Section 7).

7 Experiments

We showcase the modularity and programmability of our language by running experiments that rely
on decoupled of search spaces and search algorithms. The interface to search spaces provided by the
language makes it possible to reuse implementations of search spaces and search algorithms.

7.1 Search space experiments

Table 1: Test results for search space
experiments.

Search Space Test Accuracy

Genetic [26] 90.07
Flat [15] 93.58
Nasbench [27] 94.59
Nasnet [28] 93.77

We vary the search space and fix the search algorithm
and the evaluation method. We refer to the search spaces
we consider as Nasbench [27], Nasnet [28], Flat [15],
and Genetic [26]. For the search phase, we randomly
sample 128 architectures from each search space and train
them for 25 epochs with Adam with a learning rate of
0.001. The test results for the fully trained architecture
with the best validation accuracy are reported in Table 1.
These experiments provide a simple characterization of
the search spaces in terms of the number of parameters,
training times, and validation performances at 25 epochs of the architectures in each search space
(see Figure 8). Our language makes these characterizations easy due to better modularity (the
implementations of the search space and search algorithm are decoupled) and programmability (new
search spaces can be encoded and new search algorithms can be developed).

7.2 Search algorithm experiments

Table 2: Test results for search algorithm
experiments.

Search algorithm Test Accuracy

Random 91.61± 0.67
MCTS [29] 91.45± 0.11
SMBO [16] 91.93± 1.03
Evolution [14] 91.32± 0.50

We evaluate search algorithms by running them on the
same search space. We use the Genetic search space [26]
for these experiments as Figure 8 shows its architectures
train quickly and have substantially different validation
accuracies. We examined the performance of four search
algorithms: random, regularized evolution, sequential
model based optimization (SMBO), and Monte Carlo Tree
Search (MCTS). Random search uniformly samples val-
ues for independent hyperparameters (see Algorithm 3).
Regularized evolution [14] is an evolutionary algorithm
that mutates the best performing member of the population and discards the oldest. We use population
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Figure 8: Results for the architectures sampled in the search space experiments. Left: Relation
between number of parameters and validation accuracy at 25 epochs. Right: Relation between time
to complete 25 epochs of training and validation accuracy.
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Figure 9: Results for search algorithm experiments. Left: Relation between the performance of the
best architecture found and the number of architectures sampled. Right: Histogram of validation
accuracies for the architectures encountered by each search algorithm.

size 100 and sample size 25. For SMBO [16], we use a linear surrogate function to predict the valida-
tion accuracy of an architecture from its features (hashed modules sequences and hyperparameter
values). For each architecture requested from this search algorithm, with probability 0.1 a randomly
specified architecture is returned; otherwise it evaluates 512 random architectures with the surrogate
model and returns the one with the best predicted validation accuracy. MCTS [29, 16] uses the Upper
Confidence Bound for Trees (UCT) algorithm with the exploration term of 0.33. Each run of the
search algorithm samples 256 architectures that are trained for 25 epochs with Adam with a learning
rate of 0.001. We ran three trials for each search algorithm. See Figure 9 and Table 2 for the results.
By comparing Table 1 and Table 2, we see that the choice of search space had a much larger impact
on the test accuracies observed than the choice of search algorithm. See Appendix F for more details.

8 Conclusions

We design a language to encode search spaces over architectures to improve the programmability
and modularity of architecture search research and practice. Our language allows us to decouple the
implementations of search spaces and search algorithms. This decoupling enables to mix-and-match
search spaces and search algorithms without having to write each pair from scratch. We reimplement
search spaces and search algorithms from the literature and compare them under the same conditions.
We hope that decomposing architecture search experiments through the lens of our language will lead
to more reusable and comparable architecture search research.
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