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ABSTRACT

Model-based reinforcement learning approaches have the promise of being sam-
ple efficient. Much of the progress in learning dynamics models in RL has been
made by learning models via supervised learning. There is enough evidence that
humans build a model of the environment, not only by observing the environ-
ment but also by interacting with the environment. Interaction with the environ-
ment allows humans to carry out experiments: taking actions that help uncover
true causal relationships which can be used for building better dynamics models.
Analogously, we would expect such interaction to be helpful for a learning agent
while learning to model the environment dynamics. In this paper, we build upon
this intuition, by using an auxiliary cost function to ensure consistency between
what the agent observes (by acting in the real world) and what it imagines (by
acting in the “learned” world). Our empirical analysis shows that the proposed
approach helps to train powerful policies as well as better dynamics models.

1 INTRODUCTION

Reinforcement Learning consists of two fundamental problems: learning and planning. Learn-
ing comprises of improving the agent’s current policy by interacting with the environment while
planning involves improving the policy without interacting with the environment. These problems
evolve into the dichotomy of model-free methods (which primarily rely on learning) and model-
based methods (which primarily rely on planning). Recently, model-free methods have shown many
successes, such as learning to play Atari games with pixel observations (Mnih et al., 2015b; Mnih
et al., 2016) and learning complex motion skills from high dimensional inputs (Schulman et al.,
2015a;b). But their high sample complexity is a still a major criticism of the model-free approaches.

In contrast, model-based reinforcement learning methods have been introduced in the literature
where the goal is to improve the sample efficiency by learning a dynamics model of the environ-
ment. But model-based RL has several caveats. If the policy takes the learner to an unexplored state
in the environment, the learner’s model could make errors in estimating the environment dynamics,
leading to sub-optimal behaviour. This problem is referred to as the model-bias problem (Deisenroth
& Rasmussen, 2011).

In order to make prediction about the future, dynamics models are unrolled step by step which
leads to the issue of “compounding errors” (Talvitie, 2014; Bengio et al., 2015; Lamb et al., 2016):
an error in modeling the environment at time t affects the predicted observations at all subsequent
time-steps. This problem is much more challenging for the environments where the agent observes
high-dimensional image inputs and not compact state representations. On the other hand, model-
free algorithms are not limited by the accuracy of the model, and therefore can achieve better final
performance by trial and error, though at the expense of much higher sample complexity. In the
model-based approaches, the dynamics model is usually trained with supervised learning techniques
mostly just by observing the data. On the other hand, there’s enough evidence that humans learn
the environment dynamics not just by observing the environment but also by interacting with the
environment (Cook et al., 2011; Daniels & Nemenman, 2015).

This leads to an interesting possibility. The agent could consider two possible pathways: (i) Taking
actions in the real world to generate new observations and (ii) Imagining to take actions and predict-
ing the new observations. Consider the humanoid robot from the MuJoCo environment (Mordatch
et al., 2015). In the first case, the humanoid agent takes an action in the real environment, observes
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the change in its position (and location), takes another step and so on. In the second case, the agent
imagines taking a step, predicts what the observation would look like, imagines taking another step
and so on. The first case is a close-loop setup, where the humanoid observes the state of the world,
takes an action, gets the true observation from the environment, which is used to choose the next
action, and so on. The second case is a open-loop setup, where the agent predicts subsequent states
for multiple time steps into the future without interacting with the environment. The two cases have
been summarized in figure 1.

As such, the two pathways may not to be “consistent” given the challenges in learning a multi-step
dynamics model. By “consistent”, we mean the behaviour of state transitions along the two paths
should be indistinguishable. Had they been consistent, the learner’s model would be grounded in
reality ie the predictions from the open loop would be similar to the predictions from the closed
loop over a long time horizon. In this work, we propose to ensure consistency by using an auxiliary
loss which explicitly seeks to match the generative behaviour (from open loop) and the observed
behaviour (from closed loop) as closely as possible. More generally, we show that the proposed
approach helps to simultaneously train more powerful policies as well as better dynamics models,
by using a training objective that is not solely focused on predicting the next observation. Our
evaluation protocol consists of learning both observation-space models and state-space models. We
consider various continuous control tasks from the OpenAI Gym suite (Brockman et al., 2016), and
RLLab (Duan et al., 2016) and show that using the proposed auxiliary loss consistently helps in
achieving better performance across tasks. We evaluate the proposed approach on the pixel-based
cheetah domain from the OpenAI Gym suite (Brockman et al., 2016). This domain is bit difficult for
the “baseline” state space models as one can only infer positions and not velocities from the images
and hence this makes the task partially observable. We compare the proposed model to the state of
the art state space models (Buesing et al., 2018), and show that the proposed method consistently
achieves better results.

2 PRELIMARIES

A finite time Markov decision processM is generally defined by the tuple (S,A, f, R, γ). Here, A
the action space, S is the set of states, f(st+1|st, at) the transition distribution, r : S × A → R is
the reward function and γ the discount factor. We define the return as the discounted sum of rewards
r(st, at) along a trajectory τ := (s0, a0, ..., sT−1, aT−1, sT ), here T refers to the effective horizon
of the process. The goal of reinforcement learning is to find a policy πφ that maximizes the expected
return. Here φ denotes the parameters of the policy π.

Model-based RL methods learn the dynamics model from the observed transitions. This is usually
done with a function approximator usually parameterized as a neural network f̂θ(st+1|st, at). In
such case, the parameters θ of the dynamics model are optimized to maximize the log-likelihood of
the state transition distribution.

3 ENVIRONMENT MODEL

Consider a learning agent which is training to optimize a reward signal r in a given environment. At
a given timestep t, the agent is in some state st ∈ S. It takes an action at ∈ A according to its policy
at ∼ πt(at|st), receives a reward rt (from the environment) and transitions to a new state st+1. The
agent is trying to maximize its expected reward and has two pathways for improving its behaviour:

1. Close-loop path: Here, the learner interacts with the environment at every step. The agent
starts in state s0 and is in state st at time t. It chooses an action at to perform (using
its policy πt), performs the chosen action, and receives a reward rt. It then observes the
environment to obtain the new state st+1, uses this state to decide which action at+2 to
perform next and so on.

2. Open-loop path: Here, the learner predicts the future observations (or future belief state
in case of state space models). The agent starts in state s0 and in state st at time t. Note
that the agent ”imagines” itself to be in state sIt and can not access the true state of the
environment. It chooses an action at to perform (using its policy πt), performs the action
in the “learners” world and imagines to transition to the new state sIt+1. Thus the current
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“imagined” state is used to predict the next “imagined” state. During these “imagined”
roll-outs, the agent does not interact with the environment but interacts with its “imagined”
version of the environment which we call its dynamics model or the learner’s “world”.

As an alternative, the agent could use both the pathways simultaneously. The agent could, in parallel,
(i) Build a model of the environment and (ii) Engage in interaction with the environment as shown
in Figure 1. We propose to make the two pathways consistent with each other so as to ensure
that the predictions from the learner’s dynamics model are grounded in the observations from the
environment. We show that such a “consistency constraint” helps the agent to learn a powerful
policy and a better dynamics model of the environment.

Figure 1: The agent, in parallel, (i) Builds a model of the world and (ii) Engages in an interaction
with the world. The agent can now learn the model dynamics while interacting with the environment.
We show that making these two pathways consistent helps in simultaneously learning a better policy
and a more powerful generative model.

3.1 CONSISTENCY CONSTRAINT

We want the “imagined” behaviour (from the open loop) to be consistent with the observed be-
haviour (from the close loop). Thus making sure that the predictions from the learner’s dynamics
model (or the “world”) are similar to the actual observations from the environment. The learner’s
dynamics model could either be in observation space (pixel space) or it could be in state space. State
space models are generally more efficient as they model dynamics at some higher level of abstrac-
tion. In the case of state space models, the learner predicts transitions in the state space by first
encoding the actual observation from the environment into the state space of the learner and then
imposing the consistency constraint in the (learned) state space.

In order to apply the consistency constraint in the open loop setup, we need to obtain the correspond-
ing state transitions in the environment. At a given timestep t, the learner is in some environment
state st while it imagines to be in state sIt . It takes an action at according to its policy at ∼ πt(at|st).
Now the learner can make transition in two ways. It could execute the action in the environment and
transition to state st+1 (as governed by the dynamics of the environment). Alternatively, it could
execute the action in the “learned” dynamics environment f̂θ and imagine to transition to the state
sIt+1 = f̂θ(s

I
t , at). Note that the state st is not used by the learner’s dynamics model when making

state transitions during the open-loop setup.

Many possibilities exist for imposing the “consistency constraint”. In a simple setup, we could
enforce the per step output from the open and the closed loops to be similar. The downside of this
approach is that it encourages the dynamics model to mimic each and every detail of the environment
irrespective of its utility in predicting the state transitions (Lamb et al., 2016). Hence, we encode the
state transitions (during both open-loop and closed-loop) into fixed-size real vectors using recurrent
networks and enforce the output of the recurrent networks to be similar in the two cases. Encoding
the sequence can be seen as abstracting out the per-step state transitions into how the dynamics of the
environment evolve over time. This way, we do not focus on mimicking each state but the high level
dynamics of the state transitions. This consistency loss encourages the dynamics model to only focus
on information that makes the multi-step predictions (from the open-loop) indistinguishable from
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the actual future observations from the environment. This is shown in figure 1. Once we have the
predicted state transitions and the real state transitions, we could impose the “consistency constraint”
in several ways. In order to keep our setup simple, we minimize the prediction error (L2 error)
between the encoding of predicted future observations as coming from the learner’s dynamics model
(during open-loop) and the encoding of the future observations as coming from the environment
(during closed loop).

Let us assume that the agent started in state s0 and that a0:T−1 denote the sequence of actions that
the agent takes in the environment from time t = 0 to T −1. Similarly, s1:T denotes the sequence of
states that the agent transitions through. Alternatively, the agent could have “imagined” a trajectory
of state transitions by performing the actions a0:T−1 in the learner’s dynamics model. This would
result in the sequence of states sI1:T . The consistency loss is computed as follows:

enc(s1:T )) = RNN([s1, s2, ..., sT ])

enc(sI1:T )) = RNN([sI1, s
I
2, ..., s

I
T ])

lcc(θ, φ) = ‖enc(s1:T ))− enc(sI1:T ))‖ (1)

where ‖‖ denotes the L2 norm and RNN denotes the GRU model used to encode the sequence of
state transitions into a fixed length vector.

The agent which is trained with the consistency constraint is referred to as the consistent dynamics
agent. The overall loss for such a learning agent can be written as follows:

ltotal(θ, φ) = lrl(θ, φ) + αlcc(θ, φ) (2)

where θ refers to the parameters of the agent’s transition model f̂ and φ refers to the parameters
of the agent’s policy π. The first component of the loss function, lrl(θ, φ), corresponds to the RL
objective i.e maximizing expected return and is referred to as the RL loss. The second component of
the loss, lcc(θ, φ), corresponds to the loss associated with the consistency constraint and is referred
to as consistency loss. α is a hyper-parameter to scale the consistency loss component with respect
to the RL loss.

3.2 OBSERVATION SPACE MODEL

For the observation space models, we represent the environment as a Markov Decision ProcessM
with an unknown state transition function f : S × A → S . Given a starting state st ∈ S , the agent
learns a policy function πt to choose an action at ∈ A and a dynamics model f̂ to predict the next
state st+1 given a state-action pair (st, at). We use the hybrid model-based and model-free (Mb-Mf)
algorithm (Nagabandi et al., 2017) as the baseline to design and learn the transition function and
the policy. They propose to use a trained, deep neural network based dynamics model to initialize
a model free learning agent to combine the sample efficiency of model-based approaches with the
high task-specific performance of model-free methods. Both the transition function and the policy
are parameterized using neural networks (Gaussian Policies) as f̂θ(st, at) and πφ(st) where θ and φ
denote the parameters of the dynamics model and the policy respectively. The details about model
and policy implementation are provided in the appendix 7.1.1.

In the close loop setup, the agent starts in a state s0. At any time t, it is in state st, it chooses
an action at ∼ πt(at|st), receives a reward rt and observes the next state st+1 which it uses to
choose the next action at+1. In the open loop setup, the agent starts in a state s0. At any time t,
it is in state st, while it imagines to be in state sIt . It chooses an at ∼ πt(st), imagines the next
state sIt+1 = f̂(sIt , at). Simultaneously, the action at is simulated in the environment to obtain the
next environment state st+1. These environment states are needed to ensure consistency between
the learner’s imagination and actual state transitions. As described in equation 1, we encode the two
state transition sequences into fixed length vectors using recurrent models and then minimize the L2
norm between them.
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3.3 STATE SPACE MODEL

In case the observation space is high dimensional, as in case of pixel-wise observations(from high
dimensional image data), state space models may be used to model the dynamics of the environment.
These models can be computationally more efficient than the observation space models (as in pixel
space) as they make predictions at a higher level of abstraction and learn a compact representation
of the observation. Further, it may be easier to model the environment dynamics in the latent space
as compared to the high dimensional pixel space.

We use the state-of-the-art Learning to Query model (Buesing et al., 2018) as our state space model.
Consider a learning agent operating in an environment that produces an observation ot at every
time-step t. These observations can be high-dimensional and highly redundant (for modelling the
dynamics of the environment). The agent learns to encode these observations (ot) into compact
state-space representations (st) using an encoder e. The agent learns a policy function π to choose
actions at ∼ π(at|st).

The environment dynamics is given by an unknown observation transition function f : O×A → O
and the agent aims to learn the model dynamics in state-space representation using a state transition
function f̂ . Both the policy and state transition functions are parameterized using neural networks as
πφ and f̂θ where φ and θ represents the parameters of the policy and the transition function respec-
tively. A latent variable zt is introduced per timestep to introduce stochasticity in state transition
function. The observation space decoding ot+1 can be obtained from the pixel space encoding as
ot+1 ∼ p(ot+1|st, zt). We now describe the steps in the closed loop and open loop setup.

Close Loop: The agent starts in some state s0 and receives an observation o1 from the environ-
ment.

1. At time t, the agent is in a state st−1 and receives an observation ot from the environment.

2. zt ∼ q(zt|e(ot), st−1, at−1)

3. Transition to a new state, st = f̂θ(zt, st−1, at−1)

4. Choose an action at = π(at|st)
5. Decode the state st into observation ot+1 ∼ p(ot+1|st, zt)

Open Loop: The agent starts in some state s0.

1. At time t, the agent is in a state st−1.

2. zt ∼ p(zt|st−1, at−1)

3. Transition to a new state, st = f̂θ(zt, st−1, at−1)

4. Choose an action at = π(at|st)

The open loop setup for the state space models is quite similar to the case of observation space
models. At time t, the agent is in state st, chooses an at = π(at|st), transitions to the next state sIt+1
(using the learner’s dynamics function). Simultaneously, the action at is simulated in the external
environment to obtain the next environment observation ot+1. These environment observations
are then encoded into the latent state and are needed to ensure consistency between the learner’s
imagined state transition and the actual state transitions in the real environment. sI1:T denotes the
sequence of states that the agent imagines and o1:T denotes the sequence of observations that the
agent obtains from the environment. These observations are encoded into the state space to yield a
sequence of encoded environment observations s1:T . We want to make the behaviour of sequence
s1:T indistinguishable from sI1:T . We follow the same approach as observation space models where
we encode the two state transition sequences into fixed length vectors using recurrent models and
then minimize the L2 norm between them (as described in equation 1). The agent is trained by
imitation learning using trajectories sampled using an expert policy. The details about the model
and policy implementation are provided in the appendix 7.1.2.

Since most of the latent models with stochastic dynamics are trained with one step ahead predictions,
they tend to suffer from inconsistent predictions when predicting multiple time steps into the future.
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On the other hand, stochasticity is also important to capture long term dependencies. By using
the proposed consistency loss in the latent space, we can enforce that the multi-step predictions be
grounded in the observations from the actual environment. Hence, using the proposed consistency
loss to improve the long term predictions (as shown empirically) can also be seen as a regularizer.

4 RELATED WORK

Model based RL A large majority of the literature in policy search relies on model-free methods,
where no prior knowledge of the environment is required to find an optimal policy, through either
policy improvement (value-based methods, Rummery & Niranjan (1994); Mnih et al. (2015a)), or
direct policy optimization (policy gradient methods, Mnih et al. (2016); Schulman et al. (2015a)).
Although this is conceptually simple, these algorithms have a high sample complexity. To improve
their sample-efficiency, one can learn a model of the environment alongside the policy, to sample
experience from. PILCO (Deisenroth & Rasmussen, 2011) is a model-based method that learns a
probabilistic model of the dynamics of the environment, and incorporates the uncertainty provided
by the model for planning on long-term horizons.

This model of the dynamics induces a bias on the policy search though. Previous work has tried
to address the model-bias issue of model-based methods, by having a way to characterize the un-
certainty of the models, and by learning a more robust policy (Deisenroth & Rasmussen, 2011;
Rajeswaran et al., 2016; Lim et al., 2013). Model Predictive Control (MPC, Lenz et al., 2015) has
also been proposed in the literature to account for imperfect models by re-planning at each step, but
it suffers from a high computational cost.

There is no sharp separation between model-free and model-based reinforcement learning, and often
model-based methods are used in conjunction with model-free algorithms. One of the earliest ex-
ample of this interaction is the classic Dyna algorithm (Sutton, 1991), which takes advantage of the
model of the environment to generate simulated experiences, which get included in the training data
of a model-free algorithm (like Q-learning, with Dyna-Q). Extensions of Dyna have been proposed
(Silver et al., 2008; Sutton et al., 2012), including deep neural-networks as function approximations.
Recently, the Model-assisted Bootstrapped DDPG (MA-DDPG, Kalweit & Boedecker, 2017) was
proposed to incorporate model-based rollouts into a Deep Deterministic Policy Gradient method.
Recently, (Weber et al., 2017) used a predictive model in Imagination-Augmented Agents to pro-
vide additional context to a policy network.

Off-policy learning: There are different approaches which combine on-policy learning algorithms
with off-policy samples. Recent examples of this approach include the interpolated policy gradient
(Gu et al.), PGQ (O’Donoghue et al., 2016) and ACER (Wang et al., 2016), which combine policy
gradient learning with ideas from off-policy learning, and a methodology inspired by Q-learning.
While we can incorporate experience from a behaviour policy to learn both the model of the envi-
ronment as well as the policy (see Section 5.2.2), our method remains orthogonal to these works.
We propose to ensure consistency between the open-loop and the closed-loop pathways as a means
to learn a stronger policy, and better dynamics model. As such, our approach can be applied to a
wide range of existing RL setups. Several works have incorporated auxiliary loses which results in
representations which can generalize. Jaderberg et al. (2016) considered pseudo reward functions
which helps to generalize effectively across different Atari games. In this work, we propose to use
the consistency loss for improving the dynamics model in the context of reinforcement learning.

5 EXPERIMENTAL RESULTS

We designed our experiments to answer the following questions:

• How does the proposed Consistent Dynamics model compares against the state-of-the-art
approaches for both observation space models and state space models in terms of sample
complexity and asymptotic performance?

• Does adding the consistency constraint actually results in better dynamics model?

All the experiments are performed using 3 random seeds. We consider different baselines for the the
observation space model and the latent space models and describe them in the subsequent sections.
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5.1 OBSERVATION SPACE MODELS

We use the hybrid model-based and model-free (Mb-Mf ) algorithm (Nagabandi et al., 2017) as the
baseline model for the observation space models. In this setup, the policy and the dynamics model
are learnt jointly. The implementation details for these models have been described in the appendix
7.1.1. We quantify the advantage of using consistency constraint by considering 4 classical Mujoco
environments from RLLab (Duan et al., 2016): Ant (S ∈ R41, A ∈ R8), Humanoid (S ∈ R142,
A ∈ R21), Half-Cheetah (S ∈ R23, A ∈ R6) and Swimmer (S ∈ R17, A ∈ R3). For computing
the consistency loss, the learner’s dynamics model is unrolled for k = 20 steps. The imagined state
transitions and the actual state transitions are encoded into fixed length real vectors using GRU Cho
et al. (2014). We consider the effect of changing the unrolling length k as part of ablation studies.

5.1.1 AVERAGE EPISODIC RETURN

The average episodic return (and the average discounted episodic return) is a good estimate of the
effectiveness of the jointly trained dynamics model and policy. To show that consistency constraint
helps in learning a more powerful policy and a better dynamics model, we compare the average
episodic rewards for the baseline Mb-Mf model (which does not use consistency loss) and the pro-
posed consistent dynamics model (which does use the consistency loss). We expect that using con-
sistency would either lead to higher rewards or would enable the agent to achieve the same level of
rewards (as no-consistency case) but in fewer updates.

Figure 2 compares the average episodic returns for the agents trained with and without consistency.
We observe that using consistency helps to learn a better policy in fewer updates for all the four
environments. A similar trend is obtained for the average discounted returns (as shown in figure 8
in appendix 7.2.2). Since we are learning both the policy and the model of the environment at the
same time, these results indicate that using the consistency constraint helps to jointly learn a more
powerful policy and a better dynamics model.
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Figure 2: Comparison of the average episodic returns, for Mb-Mf agent and consistent dynamics
agent on the Ant, Humanoid, Half-Cheetah and Swimmer environments (respectively). Note that
the results are averaged over 100 batches for Ant, Humanoid and Half-Cheetah and 10 batches for
Swimmer.

5.1.2 EFFECT OF CHANGING k

During the open-loop setup, the dynamics model is unrolled for k timesteps. The choice of k could
be a critical hyper-parameter for controlling the effect of consistency constraint.

We study the effect of changing k (during training) on the average episodic return for the Ant and
Humanoid tasks, by training the agents with k ∈ {5, 20}. As an ablation, we also include the case
of training the policy without using a model, in a fully model-free fashion. We would expect that a
smaller value of k would push the average episodic return of the consistent dynamics model closer
to the Mb-Mf case. Figure 3 (Left) shows that a higher value of k (k = 20) leads to better returns
for both tasks.

5.2 STATE SPACE MODELS

State space models are useful in scenarios where the observation space is high-dimensional and
possibly redundant (eg. pixels-space observations). In such cases, the state space models may be
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Figure 3: Average episodic return on Ant and Humanoid environments, for the agent without a
model of the environment (model-free), the Mb-Mf agent without any consistency constraint, and
the consistent dynamics that are trained with a consistency constraint over time horizons of length
5 and 20. Note that the results are averaged over 100 batches for Ant, Humanoid and Half-Cheetah
and 10 batches for Swimmer.

used to learn the model dynamics in a condensed latent space. These setups are more challenging
than the observation space setup as here the agent also needs to learn an encoder and a decoder.

We use the state-of-the-art Learning to Query model (Buesing et al., 2018) as the baseline state
space model. We train an expert policy for sampling high-reward trajectories from the environment.
The details about the training setup are described in Appendix 7.1.2. In the Learning to Query
agent, the trajectories are used to train the policy πφ using imitation learning and the dynamics
model by maximum likelihood. We consider 3 continuous control tasks from the OpenAI Gym suite
(Brockman et al., 2016): Half-Cheetah, Fetch-Push (Plappert et al., 2018) and Reacher. During open
loop, the dynamics model is unrolled for k = 10 steps for Half-Cheetah and k = 5 for Fetch-Push
and Reacher.

5.2.1 EVALUATING DYNAMICS MODELS
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Figure 4: Comparison of the imagination log likelihood for the open loop setup for Consistent
Dynamics agent and Learning to Query agent. The plots correspond to Half-Cheetah, Reacher and
Fetch-Push environments (respectively). The bars represents the values corresponding to the trained
agent, averaged over the last 50 batches of training. Using consistency constraint leads to a better
dynamics model for all the 3 environments.

We want to show that the consistency constraint helps to learn a better dynamics model of the
environment. Since we learn a dynamics model over the states, we also need to jointly learn an
observation model (decoder, see appendix 7.1.2) conditioned on the states. We can then compute
the log-likelihood of trajectories in the real environment (sampled with the expert policy) under
this observation model. We compare the log-likelihoods corresponding to these observations for
the Learning to Query agent (trained without the consistency loss) and Consistent Dynamics agent
(trained with the consistency loss). We expect that the Consistent Dynamics agent would achieve a
higher log likelihood.

Figure 4 shows that in terms of imagination log likelihood, the Consistent Dynamics agent out-
performs the Learning to Query baseline agent for all the 3 environments indicating that the agent
learns a more powerful dynamics model of the environment. Note that in case of Fetch-Push and
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Reacher, we see improvements in the log-likelihood, even though the dynamics model is unrolled
for just 5 steps.

5.2.2 LEARNING THE POLICY BY IMITATION LEARNING
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Figure 5: Comparison of the imitation learning loss for the Consistent Dynamics agent and Learn-
ing to Query agent. The plots correspond to Half-Cheetah, Reacher and Fetch-Push environments
(respectively). The bars represents the values corresponding to the trained agent, averaged over the
last 50 batches of training. Using consistency constraint leads to a more powerful policy.

For the state-space models, we used the expert trajectories to train our policy πφ using imitation
learning. To show that the consistency constraint helps to learn a more powerful policy, we compare
the imitation learning loss for the Learning to Query agent (trained without the consistency loss)
and Consistent Dynamics agent (trained with the consistency loss) in figure 5

6 CONCLUSION

In this paper, we formulate a way to ensure consistency between the predictions of a dynamics
model and the real observations from the environment thus allowing the agent to learn powerful
policies, as well as better dynamics models. The learning agent, in parallel, (i) builds a model
of the environment and (ii) engages in an interaction with the environment. This results in two
sequences of state transitions: one in the real environment where the agent actually performs actions
and other in the agent’s dynamics model (or the “world”) where it imagines taking actions, and
hallucinates the state transitions. We apply an auxiliary loss which encourages the behaviour of
state transitions across the two sequences to be indistinguishable from each other. We evaluate our
proposed approach for both observation space models, and state space models and show that the
agent learns a more powerful policy and a better generative model. Future work would consider
how these 2 interaction pathways could lead to more targeted exploration. Furthermore, having
more flexibility over the length over which we unroll the model could allow the agent to take these
decisions over multiple timescales.
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7 APPENDIX

7.1 ENVIRONMENT MODEL

7.1.1 OBSERVATION SPACE MODEL

We use the experimental setup, environments and the hybrid model-based and model-free (Mb-Mf)
algorithm as described in (Nagabandi et al., 2017)1. We consider two training scenarios: training a
model-based learning agent with and without the consistency constraint. The consistency constraint
is applied by unrolling the model for multiple steps using the observations predicted by the learner’s
dynamics model (closed-loop setup). We train an on-policy RL algorithm for Cheetah, Humanoid,
Ant and Swimmer tasks from RLLab (Duan et al., 2016) control suite. We report both the average
discounted and average un-discounted reward obtained by the learner in the two cases: with and
without the use of consistency constraint. The model and policy architectures for the observation
space models are as follows:

1. Transition Model: The transition model f̂θ(st, at) has a Gaussian distribution with diagonal
covariance, where the mean and covariance are parametrized by MLPs (Schulman et al.,
2015a), which maps an observation vector st and an action vector at to a vector µ which
specifies a distribution over observation space. During training, the log likelihood p(s|µ)
is maximized and state-representations can be sampled from p(s|µ).

2. Policy: The learner’s policy π̂φ(st) is also a Gaussian MLP which maps an observation
vector s to a vector µpolicy which specifies a distribution over action space. Like before,
the log-likelihood p(a|µ) is maximized and actions can be sampled from p(a|µ).

Learner’s policy and the dynamics model are implemented as Gaussian policies with MLPs as func-
tion approximations, and are trained using TRPO (Schulman et al., 2015a). Following the hybrid
Mb-Mf approach(Nagabandi et al., 2017), we normalize the states and actions. The dynamics model
is trained to predict the change in state ∆st as it can be difficult to learn the state transition function
when the states st and st+1 are very similar and the action at has a small effect on the output.

Figure 6: Open-loop and closed-loop pathways in the Observation Space Models. The consistency
constraint aims to make the behaviour of the open loop predictions indistinguishable from the close
loop behaviour

1Code available here: https://github.com/nagaban2/nn dynamics
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7.1.2 STATE SPACE MODEL

We use the state-of-the-art Learning to Query model (Buesing et al., 2018) as our state space model.
The model and policy architecture for the state space models is as follows:

1. Encoder: The learner encodes the pixel-space observations (64×64×3) from the environ-
ment into state-space observations (256 dimensional vectors) with a convolutional encoder
(4 convolutional layers with 4 × 4 kernels, stride 2 and 64 channels). To model the veloc-
ity information, a stack of the latest 4 frames is used as the observation. The pixel-space
observation at time t − 1 is denoted as ot−1, and is encoded into state-space observation
st−1.

2. Transition Model: The transition model is a Long Short-Term Memory model (LSTM,
Hochreiter & Schmidhuber, 1997), that predicts the transitions in the state space. For every
time-step t, latent variables zt are introduced, whose distribution is a function of previous
state-space observation st−1 and previous action at−1. ie zt ∼ p(zt|st−1, at−1). The
output of the transition model is then a deterministic function of zt, st−1, and at−1. ie
st = f(zt, st−1, at−1).

3. Stochastic Decoder: The learner can decode the state-space observations back into the
pixel-space observations by use of stochastic convolutional decoder. The decoder takes as
input the current state-space observation st and the current latent variable zt and generates
the current observation-space distribution from which the learner could sample an obser-
vation. ie ot+1 ∼ p(ot+1|st, zt). This observation model is Gaussian, with a diagonal
covariance.

In the closed-loop trajectory, when the learner cannot interact with the environment, the latent vari-
ables are sampled from the prior distribution p(zt|st−1, at−1). The latent variables are sampled
from Normal distributions with diagonal covariance matrices. Since we cannot compute the log-
likelihood L(θ) in a close form for the latent variable models, we minimize the evidence lower
bound ELBO(pposterior) ≤ L(θ). As discussed previously, the consistency constraint is applied be-
tween the open-loop and closed-loop predictions with the aim of making their behaviour as similar
as possible. Figure 7 shows a graphical representation of the open-loop and close-loop pathways in
the state-space model.

Expert policy Having access to some policy trained on a large number of experience is required
to sample high-quality trajectories with pixel-observations. To train these expert policies, we used
policy-based methods such as Proximal Policy Optimization (PPO, Schulman et al., 2017) for the
half-cheetah and reacher environments, or Deep Deterministic Policy Gradient with Hindsight Expe-
rience Replay (DDPG with HER, Andrychowicz et al., 2017) for the pushing task. The architectures
and hyper-parameters used are similar to the ones given by the Baselines library (Dhariwal et al.,
2017). Note that these expert policies were trained on the state representation of the agents (ie. the
positions and velocities of their joints), while the trajectories were generated with pixel-observations
captured from a view external to the agent.

7.2 RESULTS

7.2.1 OBSERVATION SPACE MODELS

7.2.2 STATE SPACE MODELS

7.3 ROBUSTNESS TO COMPOUNDING ERRORS

In this section, we investigate the robustness of the proposed approach in terms of compounding
errors. When we use the recurrent dynamics model for prediction, the ground-truth sequence is not
available for conditioning. This leads to problems during sampling as even small prediction errors
can compound when sampling for a large number of steps. We evaluate the proposed model for
robustness by predicting the future for much longer timesteps (50 timesteps) than it was train on (10
timesteps). More generally, in figure 9, we demonstrate that this auxiliary cost helps to learn a better
model with improved long-term dependencies by using a training objective that is not solely focused
on predicting the next observation, one step at a time.
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Figure 7: Open-loop and closed-loop pathways in the State Space Models. The consistency con-
straint aims to make the behaviour of the open loop predictions indistinguishable from the close
loop behaviour
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Figure 8: Comparison of the average episodic discounted rewards, for agents trained with and with-
out consistency for the Ant, Humanoid, Half-Cheetah and Swimmer environments (respectively).
Using consistency constraint leads to better rewards in a fewer number of updates for all the cases.
Vertical lines in the rightmost figure show the points of saturation with equal return. Note that
the results are averaged over 100 batches for Ant, Humanoid and Half-Cheetah and 10 batches for
Swimmer.
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Figure 9: Comparison of the imagination log likelihood for the Consistent Dynamics agent and
Learning to Query agent for Half-Cheetah. The agents were trained with sequence length of 10 but
during testing, the dynamics models were evaluated for length 50. The bars represents the values
corresponding to the trained agent, averaged over the last 50 batches of training. Using consistency
constraint leads to an improved dynamics model (as it achieves better log-likelihood)
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