
On the reproducibility of gradient-based
Meta-Reinforcement Learning baselines

Tristan Deleu, Simon Guiroy, Seyedarian Hosseini
MILA – Université de Montréal

Montreal, QC, Canada
tristan.deleu@gmail.com

Abstract

Meta-learning provides an appealing solution to the data-efficiency issue inherent in
both deep supervised learning and (model-free) deep reinforcement learning. The
diversity of tasks available in supervised meta-learning and meta-reinforcement
learning enabled the fast progress we are recently observing in this field, since
one can easily compare a new meta-learning method to existing algorithms. In
this paper, we revisit one of these baselines on two basic meta-reinforcement
learning problems: the multi-armed bandits and tabular MDPs. We provide updated
results for MAML applied to these two problems, and show that MAML compares
favorably to more recent meta-learning approaches, contrary to what was previously
reported. Along with this baseline, we also include some new results on the same
tasks for Reptile, a first-order meta-learning approach.

1 Introduction

Just like in any other subfield of machine learning, having access to standard benchmarks is crucial
to fairly compare the performance of different meta-learning algorithms. Supervised meta-learning
benefits from well-established benchmarks in the few-shot learning literature, such as classification
problems on Omniglot [7] or mini-Imagenet [17, 12]. Likewise, some challenging tasks like continu-
ous control problems [3, 16] and navigation from visual inputs [2, 9] have also been proposed in the
meta-reinforcement learning (meta-RL) literature. On the other end of the spectrum, the authors of
[2] also introduced some basic meta-RL tasks, based on classical RL problems such as multi-armed
bandits and tabular MDPs.

The authors of [9] used this same suite of classical RL problems to assess the performance of their
meta-learning algorithm (SNAIL), and also reported some (partial) baseline results based on another
meta-learning algorithm called MAML [3]. In this paper, we provide updated results for the MAML
baseline on the full suite of classical RL problems, and we show that MAML compares favorably
to SNAIL, contrary to what was reported in [9]. In addition to reproducing this baseline, we also
include new results on the same suite for a recently proposed first-order meta-learning algorithm,
called Reptile [11].

2 Background

Reinforcement Learning In supervised meta-learning, a task T could be, for example, a classifi-
cation problem. In the context of meta-RL, a task T = 〈S,A, p(s′ | s,a), r(s,a, s′)〉 is typically a
Markov Decision Process (MDP), where S is the set of states, and A the set of actions. p(s′ | s,a) is
the probability of transition from a state s ∈ S to a state s′ after taking action a ∈ A. Following this
transition, the agent receives a reward r(s,a, s′). For some discount factor γ ∈ [0, 1], the return Gt

Preprint. Work in progress.

at time t is a random variable corresponding to the discounted sum of rewards observed after t

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
k=0

γkRt+k+1 (1)

where Rt+1 is the (random) reward received after taking action At in state St. A policy π is a
mapping from the states to the probabilities of each actions in A, ie. π(a | s) is the probability of
selecting the action a while being in state s. This policy πθ might be parametrized by some θ, and
the goal of policy-gradient methods is to find a set of parameters θ that maximize the expected return,
or state-value function vπθ (s)

vπθ (s) = Eπθ [Gt | St = s] (2)

While the framework of meta-RL allows for different tasks to have different sets of states and actions,
we will restrict ourselves to fixed sets of states S and actions A across tasks in this paper. Only the
transition probabilities p(s′ | s,a) and rewards r(s,a, s′) may vary from one task to another.

Meta-Learning Following the coarse categorization proposed in [4], one way to approach meta-
learning is through parameters adaptation. Given a model f(x; θ) parametrized by a vector θ, we
want to find some parameter θ′T adapted to the task T , so that the learner f generalizes well on task T .
That is, given some data DT from task T 1, the adapted parameter θ′T is returned by the meta-learner
g(DT ;φ), which might have some parameters φ. Note that in meta-RL, the learner f corresponds to
a (parametrized) policy. Then for some new test input x?, the prediction ŷ? is defined as

ŷ? = f(x?; θ′T) = f(x?; g(DT ;φ)) (3)

This formulation embraces a wide variety of meta-learning algorithms (see [8] for an overview of
some of these methods), where the meta-learner g could be, for example, a neural network itself
[1, 12]. In particular, this also includes gradient-based methods, where the meta-learner g is a fixed
gradient descent learning rule. In this paper, we focus on two of these gradient-based algorithms,
MAML [3] and Reptile [11], which we briefly recall in the following section.

Finally, the objective we want to optimize is the expected loss of this adapted parameter θ′T over a
distribution of tasks p(T)

min
φ

ET ∼p(T)[LT (θ′T ; f)] = min
φ

ET ∼p(T)[LT (g(DT ;φ); f)] (4)

where the loss LT could be, for example, derived from the state-value function in Equation (2).

3 Gradient-based meta-learning

3.1 Model-Agnostic Meta-Learning

Taking inspiration from fine-tuning, Model-Agnostic Meta-Learning (MAML, [3]) is a meta-learning
algorithm that learns an initial set of parameters θ of the policy π, so that only a few gradient steps,
starting from θ, are required to adapt the parameters θ′T to a new task T . In practice, we can limit
ourselves to a single gradient step with step size α.

g(DT ; θ) = θ − α∇θL(θ;DT) (5)

This method is model-agnostic, meaning that the policy π can be parametrized by any neural network.
In the context of reinforcement learning, the gradient update can be computed using vanilla policy-
gradient (REINFORCE, [18]). If N trajectories DT = {(s(i)0 ,a

(i)
0 , s

(i)
1 ,a

(i)
1 , . . .)}Ni=1 have been

sampled through interactions with the task T , then the inner-loss L can be defined as

L(θ;DT) = −
1

N

N∑
i=1

∞∑
t=0

γtG
(i)
t log π(a

(i)
t | s

(i)
t ; θ) (6)

The pseudo-code for MAML is given in Algorithm 1 (adapted from Algorithm 3 in [3]). We use
Trust Region Policy Optimization (TRPO, [13]) as the meta-optimizer for Equation (4) (line 10 in
Algorithm 1).

1Meta-learning typically operates in the low-data regime, and DT = {(xi,yi)}ni=1 could be a (small)
training set for task T in the case of few-shot supervised learning. Similarly in meta-RL, DT is usually a small
set of trajectories obtained through interactions with the task (ie. MDP) T .

2

Algorithm 1 MAML for Reinforcement Learning
Require: p(T) distribution over tasks T .
Require: α, β step size hyperparameters.
1: Randomly initialize θ
2: while not done do
3: Sample batch of n tasks Ti ∼ p(T)
4: for all Ti do
5: Sample Di = {(s1,a1, . . . , sH)} N trajec-

tories from task Ti, following policy πθ
6: Evaluate LTi(πθ) with Di, Equation (6)
7: Compute the adapted parameters with 1 step

of gradient descent: θ′i = θ − α∇θLTi(πθ)
8: Sample D′

i = {(s1,a1, . . . , sH)} trajecto-
ries from task Ti, following policy πθ′i

9: end for
10: Update θ ← θ − β

n
∇θ

∑n
i=1 LTi(πθ′i) using

each LTi evaluated on D′
i

11: end while

Algorithm 2 Reptile for Reinforcement Learning
Require: p(T) distribution over tasks T .
Require: α, β step size hyperparameters.
1: Randomly initialize θ
2: while not done do
3: Sample batch of n tasks Ti ∼ p(T)
4: for all Ti do
5: Sample Di = {(s1,a1, . . . , sH)} N trajec-

tories from task Ti, following policy πθ
6: Evaluate LTi(πθ) with Di, Equation (6)
7: Compute the adapted parameters θ′i with k

steps of gradient descent on LTi with step α
8:

9: end for
10: Update θ ← θ − β

n

∑n
i=1(θ − θ

′
i)

11: end while

3.2 Reptile: First-order meta-learning

One of the main drawbacks of MAML is that it requires the computation of second-order derivatives of
the inner-loss function L during the meta-optimization. In order to avoid this expensive computation,
a first-order alternative to MAML has been proposed, called Reptile [11]. Similar to MAML, the
adaptation of the parameters to a new task T is performed through k gradient steps, with step size α
(where typically k > 1 here, contrary to MAML). The meta-learner g is therefore defined as

g(DT ; θ) = θ
(k)
T where

θ
(0)
T = θ

θ
(t+1)
T = θ

(t)
T − α∇θ(t)T

L(θ(t)T ;DT)

The key difference between Reptile and MAML is in the way the parameters θ get updated for the
meta-optimization in Equation (4). The meta-update is given by

θ ← θ − β

n

n∑
i=1

(θ − g(DT ; θ)) (7)

where β is another step size hyperparameter for the meta-optimizer. In practice, we can use more
advanced first-order optimizers such as Adam [6] instead of a standard gradient descent update. The
pseudo-code for Reptile is given in Algorithm 2 (side-by-side with Algorithm 1 to emphasize the
similarities between these two meta-learning algorithms).

4 Experiments

4.1 Multi-armed bandits

In our K-armed bandits experiments (adapted from [2]), each of the K arms gives a reward sampled
from a Bernoulli distribution with parameter p ∈ [0, 1]. The goal here is to train an agent that is able
to adapt to a new task, given N realizations of this task (ie. N rewards in {0, 1}).
In addition to the meta-learning results, we also include the Gittins index, as reported in [2]. The
Gittins index is the Bayes optimal solution in the discounted, infinite horizon setting [5]. Note that
since this index is only optimal as N → ∞, a meta-RL agent could choose to exploit sooner, and
outperform it for smaller values of N . We report the mean total rewards obtained on both MAML
and Reptile for different settings of K (number of arms) and N (number of observations) in Table 1,
along with their 95% confidence intervals.

The first observation we can make from Table 1 is that we obtained significantly higher returns in
our reproduction of the MAML baseline than the ones reported in [9] (when available). They found
that training MAML was too expensive for N = 500, 1000. In order to scale to larger problems

3

Setup Gittins As reported in [9] Ours
N K (optimal asN →∞) Random MAML SNAIL MAML Reptile
10 5 6.6 5.0 6.5± 0.1 6.6± 0.1 7.0± 0.1 7.2± 0.2
10 10 6.6 5.0 6.6± 0.1 6.7± 0.1 6.8± 0.1 7.1± 0.3
10 50 6.5 5.1 6.6± 0.1 6.7± 0.1 6.7± 0.3 6.6± 0.3
100 5 78.5 49.9 67.1± 1.1 79.1± 1.0 80.3± 0.4 81.6± 1.9
100 10 82.8 49.9 70.1± 0.6 83.5± 0.8 85.2± 0.5 84.8± 0.6
100 50 85.2 49.8 70.3± 0.4 85.1± 0.6 83.5± 0.8 82.9± 1.2
500 5 405.8 249.8 – 408.1± 4.9 416.8± 0.6 412.0± 7.3
500 10 437.8 249.0 – 432.4± 3.5 448.0± 1.0 444.5± 7.4
500 50 463.7 249.6 – 442.6± 2.5 446.8± 2.2 454.0± 6.1
1000 50 944.1 499.8 – 889.8± 5.6 909.2± 7.2 920.8± 7.2

Table 1: Average cumulative reward for multi-armed bandit tasks. The evaluation is detailed in
Appendix B. Along with our results, we also include the ones reported in [2, 9].

with N ≥ 500, we decoupled the number of parallel workers that interact with task T from the
number of trajectories sampled N . This means that a single worker could sample (serially) multiple
trajectories from task T . Moreover, these results on MAML appear to be surprisingly better than
SNAIL introduced in [9], even though the policy we used in MAML has a lower capacity than SNAIL
(see Appendix A for details). We also often get close to the Gittins index, even for larger values of N .
In our experiments, Reptile seems to overall perform as well as MAML on multi-armed bandits.

4.2 Tabular MDPs

In our Tabular MDPs experiments (adapted from [2]), each task corresponds to a specific transition
matrix and reward function. All the MDPs in our experiments have |S| = 10 states, |A| = 5 actions,
and their reward functions are Gaussian distributed with unit variance. The rows of the transition
matrix are sampled according to a flat Dirichlet(1) distribution. The mean values of the reward
function for task T are sampled from a Gaussian distribution N (1, 1). The goal is to train an agent
that is able to adapt to a new task, given N trajectories of length H = 10. We report the mean
cumulative rewards obtained on both MAML and Reptile for different settings of N (number of
episodes) in Table 2, along with their 95% confidence intervals.

Setup As reported in [9] Ours
N Random MAML SNAIL MAML Reptile
10 0.482 0.563 0.766± 0.001 0.745± 0.027 0.706± 0.012
25 0.482 0.591 0.862± 0.001 0.859± 0.012 0.813± 0.009
50 0.481 – 0.908± 0.003 0.912± 0.020 0.844± 0.090
75 0.482 – 0.930± 0.002 0.936± 0.024 0.850± 0.078
100 0.481 – 0.941± 0.003 0.944± 0.019 0.826± 0.102

Table 2: Average cumulative reward for the tabular MDP tasks, normalized by the average reward
achieved by value iteration. The evaluation is detailed in Appendix B. Along with our results, we
also include the ones reported in [9].

Similar to the multi-armed bandits experiments, we found that our reproduction of the MAML
baseline produces significantly better results compared to the ones reported in [9]. We were also able
to scale our experiments to larger values of N . Our results on MAML also match the performance
of SNAIL on tabular MDPs, like it did on multi-armed bandits. However this time, Reptile does
not perform as well as MAML. We conjecture that this gap in performance might be explained by
a high variance during meta-training, which translates in bigger confidence intervals in evaluation,
especially for larger values of N .

References
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David

Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. CoRR, abs/1606.04474, 2016.

4

[2] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:
Fast Reinforcement Learning via Slow Reinforcement Learning. CoRR, abs/1611.02779, 2016.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. CoRR, abs/1703.03400, 2017.

[4] Chelsea Finn and Sergey Levine. Meta-Learning and Universality: Deep Representations and
Gradient Descent can Approximate any Learning Algorithm. CoRR, abs/1710.11622, 2017.

[5] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society. Series B (Methodological), pages 148–177, 1979.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for Stochastic Optimization. CoRR,
abs/1412.6980, 2014.

[7] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[8] Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Learning
Unsupervised Learning Rules. CoRR, abs/1804.00222, 2018.

[9] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. Meta-Learning with Temporal
Convolutions. CoRR, abs/1707.03141, 2017.

[10] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. CoRR, abs/1602.01783, 2016.

[11] A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algorithms. ArXiv
e-prints.

[12] Sachin Ravi and Hugo Larochelle. Optimization as a Model for Few-Shot Learning. 2016.

[13] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. CoRR, abs/1502.05477, 2015.

[14] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel.
High-Dimensional Continuous Control Using Generalized Advantage Estimation. CoRR,
abs/1506.02438, 2015.

[15] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
2018.

[16] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012.

[17] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching Networks for
One Shot Learning. ArXiv e-prints, June 2016.

[18] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Machine Learning, pages 229–256, 1992.

5

A Experimental settings

In all our experiments, the learner (policy) π is a 2-layer MLP, each layer having 32 hidden units
and followed by a ReLU activation function. While the original paper [3] suggests that they use
REINFORCE to compute the inner-loss L (Equation (6)), in practice the inner-loss used in the source
code released alongside the paper is the Advantage Actor-Critic [10, 15]. We also evaluated the
inner-loss using A2C, with a linear critic similar to the one used in [2], and we used Generalized
Advantage Estimation (GAE, [14]) to estimate the advantage. We used a step size α = 0.5 for
MAML and α = 0.1 for Reptile in both experiments.

We used Trust Region Policy Optimization (TRPO, [13]) as the meta-optimizer (outer-loss) for
MAML, on mini-batches of n = 20 tasks. We used Adam [6] with learning rate β = 10−4 as the
meta-optimizer for Reptile, again on mini-batches of n = 20 tasks. The number of gradient updates
for the parameters adaptation in Reptile is k = 3. In all our experiments, the discount factor γ = 0.95.

B Evaluation

In order to evaluate our models, we need to have access to a set of meta-test tasks that the agent never
interacted with during meta-training. In both experiments, we sampled tasks during meta-training
from an infinite pool of tasks, since the distribution over tasks p(T) is equivalent to continuous distri-
butions (Uniform([0, 1]K) for multi-armed bandits, Dirichlet(1) ⊗N (1K , IK) for tabular MDPs).
Therefore, we similarly sampled n′ new tasks from this this same pool of tasks, since we are
guaranteed to sample different meta-test tasks almost surely.

In all our experiments, we evaluated our methods on n′ = 200 meta-test tasks and 5 different
meta-learning agents (ie. 5 different random seeds).

6

	Introduction
	Background
	Gradient-based meta-learning
	Model-Agnostic Meta-Learning
	Reptile: First-order meta-learning

	Experiments
	Multi-armed bandits
	Tabular MDPs

	Experimental settings
	Evaluation

