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ABSTRACT

We study model recovery for data classification, where the training labels are
generated from a one-hidden-layer fully-connected neural network with sigmoid
activations, and the goal is to recover the weight vectors of the neural network. We
prove that under Gaussian inputs, the empirical risk function using cross entropy
exhibits strong convexity and smoothness uniformly in a local neighborhood of the
ground truth, as soon as the sample complexity is sufficiently large. This implies
that if initialized in this neighborhood, which can be achieved via the tensor method,
gradient descent converges linearly to a critical point that is provably close to the
ground truth without requiring a fresh set of samples at each iteration. To the best
of our knowledge, this is the first global convergence guarantee established for the
empirical risk minimization using cross entropy via gradient descent for learning
one-hidden-layer neural networks, at the near-optimal sample and computational
complexity with respect to the network input dimension.

1 INTRODUCTION

Neural networks have attracted a significant amount of research interest in recent years due to the
success of deep neural networks (LeCun et al., 2015) in practical domains such as computer vision
and artificial intelligence (Russakovsky et al., 2015; He et al., 2016; Silver et al., 2016). However,
the theoretical underpinnings behind such success remains mysterious to a large extent. Efforts have
been taken to understand which classes of functions can be represented by deep neural networks
(Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Telgarsky, 2016), when (stochastic) gradient
descent is effective for optimizing a non-convex loss function (Dauphin et al., 2014), and why these
networks generalize well (Zhang et al., 2016; Bartlett et al., 2017; Brutzkus et al., 2017).

One important line of research that has attracted extensive attention is a model-recovery setup, i.e.,
given that the training samples (xi, yi) ∼ (x, y) are generated i.i.d. from a distribution D based on a
neural network model with the ground truth parameterW ?, the goal is to recover the underlying model
parameterW ?, which is important for the network to generalize well (Mondelli & Montanari, 2018).
Previous studies along this topic can be mainly divided into two types of data generations. First, a
regression problem, for example, assumes that each sample y is generated as y = 1

K

∑K
k=1 φ(w?>

k x),
wherewk ∈ Rd is the weight vector of the kth neuron, 1 ≤ k ≤ K, and the input x ∈ Rd is Gaussian.
This type of regression problem has been studied in various settings. In particular, (Soltanolkotabi,
2017) studied the single-neuron model under ReLU activation, (Zhong et al., 2017b) studied the one-
hidden-layer multi-neuron network model, and (Li & Yuan, 2017) studied a two-layer feedforward
networks with ReLU activations and identity mapping. Second, for a classification problem, suppose
each label y ∈ {0, 1} is drawn under the conditional distribution P(y = 1|x) = 1

K

∑K
k=1 φ(w?>

k x),
wherew?

k ∈ Rd is the weight vector of the kth neuron, 1 ≤ k ≤ K, and the input x ∈ Rd is Gaussian.
Such a problem has been studied in (Mei et al., 2016) in the case with a single neuron.

For both the regression and the classification settings, in order to recover the neural network pa-
rameters, all previous studies considered (stochastic) gradient descent over the squared loss, i.e.,

`qu (W ;x, y) =
1

2

(
y − 1

K

K∑
i=1

φ
(
w>i x

))2

, (1)
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which yields gradient and Hessian in relatively simple forms to assist the landscape characterization
of the function as well as model recovery analysis.

However, for the classification problem, the cross entropy objective used in practice takes the
following form

` (W ;x, y) = −y · log

(
1

K

K∑
i=1

φ
(
w>i x

))
− (1− y) · log

(
1− 1

K

K∑
i=1

φ
(
w>i x

))
. (2)

The geometry as well as the model recovery problem based on the entropy loss function have not
yet been understood. It is expected that such a loss function is very challenging to analyze, not just
because it is nonconvex with multiple neurons, but also because the gradient and Hessian take much
more complicated forms compared with the squared loss. The main focus of this paper is to develop
technical analysis for guaranteed model recovery under the challenging cross entropy loss function in
eq. (2) for the classification problem in the multi-neuron case.

Furthermore, previous studies provided two types of statistical guarantees for such model recovery
problems using the squared loss. More specifically, (Zhong et al., 2017b) showed that in the local
neighborhood of the ground truth, the Hessian of the empirical loss function is positive definite
for each given point under independent high probability event. Hence, their guarantee for gradient
descent to converge to the ground truth requires a fresh set of samples at every iteration, thus the
total sample complexity will depend on the number of iterations. On the other hand, studies such as
(Mei et al., 2016; Soltanolkotabi, 2017) establish certain types of uniform geometry such as strong
convexity so that resampling per iteration is not needed for gradient descent to have guaranteed linear
convergence as long as it enters such a local neighborhood. However, such a stronger statistical
guarantee without per-iteration resampling have only been shown for the squared loss function. In this
paper, we aim at developing such a strong statistical guarantee for the loss function in eq. (2), which
is much more challenging but more practical than the squared loss for the classification problem.

1.1 OUR CONTRIBUTIONS

This study provides the first performance guarantee for the recovery of one-hidden-layer neural
networks using the cross entropy loss function, to the best of our knowledge. More specifically, our
contributions are summarized as follows.

• For multi-neuron classification problem with sigmoid activations, we show that, if the input is
Gaussian, the empirical risk function fn(W ) = 1

n

∑n
i=1 ` (W ;xi) based on the cross entropy

loss in eq. (2) is uniformly strongly convex in a local neighborhood of the ground truthW ? of size
O(1/K3/2) as soon as the sample size is O(dK5 log2 d), where d is the input dimension and K is
the number of neurons.

• We further show that, if initialized in this neighborhood, gradient descent converges linearly to a
critical point Ŵn (which we show to exist), with a sample complexity of O(dK5 log2 d), which is
near-optimal up to a polynomial factor in K and log d. Due to the nature of quantized labels here,
the recover of W ? is only up to certain statistical accuracy, and Ŵn converges to W ? at a rate
of O(

√
dK9/2 log n/n) in the Frobenius norm. Furthermore, such a convergence guarantee does

not require a fresh set of samples at each iteration due to the uniform strong convexity in the local
neighborhood. To obtain ε-accuracy, it requires a computational complexity of O(ndK2 log(1/ε)).

• We adopt the tensor method proposed in (Zhong et al., 2017b), and show it provably provides
an initialization in the neighborhood of the ground truth. In particular, our proof replaces the
homogeneous assumption on activation functions in (Zhong et al., 2017b) by a mild condition
on the curvature of activation functions aroundW ?, which holds for a larger class of activation
functions including sigmoid and tanh.

In order to analyze the challenging cross-entropy loss function, our proof develops various new
machineries in order to exploit the statistical information of the geometric curvatures, including the
gradient and Hessian of the empirical risk, and to develop covering arguments to guarantee uniform
concentrations. Our technique also yields similar performance guarantees for the classification
problem using the squared loss in eq. (1), which we omit due to space limitations, as it is easier to
analyze than cross entropy.
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1.2 RELATED WORK

Due to page limitations we focus on the most relevant literature on theoretical and algorithmic aspects
of learning shallow neural networks via nonconvex optimization.

The parameter recovery viewpoint is relevant to the success of non-convex learning in signal process-
ing problems such as matrix completion, phase retrieval, blind deconvolution, dictionary learning
and tensor decomposition (Sun & Luo, 2016; Candès et al., 2015; Ge & Ma, 2017; Ge et al., 2016;
Sun et al., 2015; Bhojanapalli et al., 2016; Ma et al., 2017), to name a few. The statistical model
for data generation effectively removes worst-case instances and allows us to focus on average-case
performance, which often possess much benign geometric properties that enable global convergence
of simple local search algorithms.

The studies of one-hidden-layer network model can be further categorized into two classes, landscape
analysis and model recovery. In the landscape analysis, it is known that if the network size is large
enough compared to the data input, then there are no spurious local minima in the optimization
landscape, and all local minima are global (Soltanolkotabi et al., 2017; Boob & Lan, 2017; Safran
& Shamir, 2016; Nguyen & Hein, 2017). For the case with multiple neurons (2 ≤ K ≤ d) in the
under-parameterized setting, the work of Tian (Tian, 2017) studied the landscape of the population
squared loss surface with ReLU activations. In particular, there exist spurious bad local minima in the
optimization landscape (Ge et al., 2017; Safran & Shamir, 2017) even at the population level. Zhong
et. al. (Zhong et al., 2017b) provided several important characterizations for the local Hessian for the
regression problem for a variety of activation functions for the squared loss.

In the model recovery problem, the number of neurons is smaller than the dimension of inputs. In the
case with a single neuron (K = 1), under Gaussian input, (Soltanolkotabi, 2017) showed that gradient
descent converges linearly when the activation function is ReLU, i.e. φ(z) = max{z, 0}, with a zero
initialization, as long as the sample complexity is O(d) for the regression problem. On the other end,
(Mei et al., 2016) showed that when φ(·) has bounded first, second and third derivatives, there is no
other critical points than the unique global minimum (within a constrained region of interest), and
(projected) gradient descent converges linearly with an arbitrary initialization, as long as the sample
complexity is O(d log2 d) with sub-Gaussian inputs for the classification problem using the squared
loss. Moreover, (Zhong et al., 2017b) shows that the ground truth From a technical perspective, our
study differs from all the aforementioned work in that the cross entropy loss function we analyze has
a very different form. Furthermore, we study the model recovery classification problem under the
multi-neuron case, which has not been studied before.

Finally, we note that several papers study one-hidden-layer or two-layer neural networks with different
structures under Gaussian input. For example, (Brutzkus & Globerson, 2017; Du et al., 2017a;b;
Zhong et al., 2017a) studied the non-overlapping convolutional neural network, (Li & Yuan, 2017)
studied a two-layer feedforward networks with ReLU activations and identity mapping, and (Feizi
et al., 2017) introduced the Porcupine Neural Network. These results are not directly comparable to
ours since both the networks and the loss functions are different.

1.3 PAPER ORGANIZATION AND NOTATIONS

The rest of the paper is organized as follows. Section 2 describes the problem formulation. Section 3
presents the main results on local geometry and local linear convergence of gradient descent. Section 4
discusses the initialization method. Numerical examples are demonstrated in Section 5, and finally,
conclusions are drawn in Section 6.

Throughout this paper, we use boldface letters to denote vectors and matrices, e.g. w andW . The
transpose ofW is denoted byW>, and ‖W ‖, ‖W ‖F denote the spectral norm and the Frobenius
norm. For a positive semidefinite (PSD) matrixA, we writeA � 0. The identity matrix is denoted
by I . The gradient and the Hessian of a function f(W ) is denoted by ∇f(W ) and ∇2f(W ),
respectively. Let σi (W ) denote the i-th singular value ofW . Denote ‖ · ‖ψ1

as the sub-exponential
norm of a random variable. We use c, C,C1, . . . to denote constants whose values may vary from
line to line. For nonnegative functions f(x) and g(x), f(x) = O (g(x)) means there exist positive
constants c and a such that f(x) ≤ cg(x) for all x ≥ a; f(x) = Ω (g(x)) means there exist positive
constants c and a such that f(x) ≥ cg(x) for all x ≥ a.
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2 PROBLEM FORMULATION

We first describe the generative model for training data, and then describe the gradient descent
algorithm for learning the network weights.

2.1 MODEL

Suppose we are given n training samples {(xi, yi)}ni=1 ∼ (x, y) that are drawn i.i.d., where x ∼
N (0, I). Assume the activation function is sigmoid, i.e. φ (z) = 1/(1 + e−z) for all z. Conditioned
on x ∈ Rd, we consider the classification setting, where y is mapped to a discrete label using the
one-hidden layer neural network model as follows:

P(y = 1|x) =
1

K

K∑
k=1

φ(w?>
k x). (3)

and P(y = 0|x) = 1− P(y = 1|x), where K is the number of neurons.

Our goal is to estimateW ? = [w?
1 , · · · ,w?

K ], via minimizing the following empirical risk function:

fn(W ) =
1

n

n∑
i=1

` (W ;xi) , (4)

where ` (W ;x) := ` (W ;x, y) is the cross entropy loss, i.e., the negative log-likelihood function,
i.e.,

` (W ;x) = −

[
y · log

(
1

K

K∑
i=1

φ
(
w>i x

))
+ (1− y) · log

(
1− 1

K

K∑
i=1

φ
(
w>i x

))]
.

Let w = vec(W ) =
[
w>1 , · · · ,w>K

]> ∈ RdK be the vectorized form of W . With slight abuse of
notation, we denote the gradient and Hessian of `(W ;x) with respect to the vector w.

2.2 GRADIENT DESCENT

To estimateW ?, since (4) is a highly nonconvex function, vanilla gradient descent with an arbitrary
initialization may get stuck at local minima. Therefore, we implement the gradient descent algorithm
with a well-designed initialization scheme that is described in detail in Section 4. The update rule is
given as

Wt+1 = Wt − η∇fn (Wt) ,

where η is the step size. The algorithm is summarized in Algorithm 1.

Algorithm 1 Gradient Descent
Input: Training data {(xi, yi)}ni=1, step size η, iteration T
Initialization: W0 ← INITIALIZATION ({(xi, yi)}ni=1)
Gradient Descent: for t = 0, 1, · · · , T

Wt+1 = Wt − η∇fn (Wt) .

Output: WT

We note that throughout the execution of the algorithm, the same set of training samples is used
which is the standard implementation of gradient descent. This is in sharp contrast to existing work
such as Zhong et al. (2017b) that employs the impractical scheme of resampling, where a fresh set of
training samples is used at every iteration of gradient descent.

3 MAIN RESULTS

Before stating our main results, we first introduce an important quantity regarding φ(z) that captures
the geometric properties of the loss function, distilled in (Zhong et al., 2017b).
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Figure 1: ρ (σ) for sigmoid activation.

Definition 1. Let αq(σ) = Ez∼N (0,1)[φ
′(σ · z)zq],∀q ∈ {0, 1, 2}, and βq(σ) = Ez∼N (0,1)[φ

′2(σ ·
z)zq],∀q ∈ {0, 2}. Define ρ(σ) as

ρ(σ) = min{β0(σ)− α2
0(σ)− α2

1(σ),

β2(σ)− α2
1(σ)− α2

2(σ)}.

Note that the definition here is different from that in (Zhong et al., 2017b, Property 3.2) but consistent
with (Zhong et al., 2017b, Lemma D.4) which removes the third term in (Zhong et al., 2017b, Property
3.2). For the activation function considered in this paper, the first two terms suffice. We depict ρ(σ)
as a function of σ in a certain range for the sigmoid activation in Fig. 1. It is easy to observe that
ρ(σ) > 0 for all σ > 0.

3.1 LOCAL STRONG CONVEXITY

We first characterize the local strong convexity of fn(W ) in a neighborhood of the ground truthW ?.
Let B (W ?, r) denote a Euclidean ball centered atW ? ∈ Rd×K with a radius r, i.e.

B (W ?, r) =
{
W ∈ Rd×K : ‖W −W ?‖F ≤ r

}
.

Let σi := σi (W ?) denote the i-th singular value ofW ?. Let the condition number be κ = σ1/σK ,
and λ =

∏K
i=1 (σi/σK). The following theorem guarantees the Hessian of the empirical risk function

fn(W ) in the local neighborhood ofW ? is positive definite with high probability.

Theorem 1. For the classification model (3) with sigmoid activation function, assume ‖W ?‖F ≤ 1,
then there exists some constant C, such that if

n ≥ C · dK5 log2 d ·
(

κ2λ

ρ (σK)

)2

,

then with probability at least 1− d−10, for allW ∈ B(W ?, r),

Ω

(
1

K2
· ρ (σK)

κ2λ

)
· I � ∇2fn (W ) � C · I

hold, where r := min
{

C

K
3
2
· ρ(σK)
κ2λ , 0.7

}
.

We note that all column permutations ofW ? are equivalent global minima of the loss function, and
Theorem 1 applies to all such permutation matrices ofW ?. The proof of Theorem 1 is outlined in
Appendix A. Theorem 1 guarantees that the Hessian of the empirical cross-entropy loss function
fn(W ) is positive definite (PD) in a neighborhood of the ground truthW ?, as long as ρ(σK) > 0
(i.e. W ? is full-column rank), when the sample size n is sufficiently large for the sigmoid activation.
The bounds in Theorem 1 depend on the dimension parameters of the network (n and K), as well
as the activation function and the ground truth (ρ(σK), λ). As a special case, suppose W ? is
composed of orthonormal columns with ρ(σK) = O(1), κ = 1, λ = 1. Then, Theorem 1 guarantees
Ω(1/K2)I � ∇2fn (W ) � C within the neighborhood B(W ?,Ω(1/K

√
K)), as soon as the

sample complexity n = Ω(dK5 log2 d). The sample complexity is order-wise near-optimal in d up
to polynomial factors of K and log d, since the number of unknown parameters is dK.
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3.2 PERFORMANCE GUARANTEES OF GRADIENT DESCENT

For the classification problem, due to the nature of quantized labels, W ? is no longer a critical point
of fn(W ). By the strong convexity of the empirical risk function fn(W ) in the local neighborhood
ofW ?, there can exist at most one critical point in B(W ?, r), which is the unique local minimizer in
B (W ?, r) if it exists. The following theorem shows that there indeed exists such a critical point Ŵn,
which is provably close to the ground truthW ?, and gradient descent converges linearly to Ŵn.
Theorem 2. For the classification model (3) with sigmoid activation function, and assume ‖W ?‖F ≤
1, there exist some constants C,C1 > 0 such that if the sample size n ≥ C · dK5 log2 d ·

(
κ2λ
ρ(σK)

)2

,

then with probability at least 1 − d−10, there exists a unique critical point Ŵn in B(W ?, r) with

r := min
{

c
K3/2 · ρ(σK)

κ2λ , 0.7
}

, which satisfies∥∥∥Ŵn −W ?
∥∥∥

F
≤ C1

K9/4κ2λ

ρ (σK)

√
d log n

n
. (5)

Moreover, if the initial pointW0 ∈ B (W ?, r), then gradient descent converges linearly to Ŵn, i.e.∥∥∥Wt − Ŵn

∥∥∥
F
≤ (1−Hminη)

t
∥∥∥W0 − Ŵn

∥∥∥
F

(6)

where Hmin = Ω
(

1
K2 · ρ(σK)

κ2λ

)
, as long as the step size η = Ω

(
1
K2 · ρ(σK)

κ2λ

)
.

Similarly to Theorem 1, Theorem 2 also holds for all column permutations ofW ?. The proof can
be found in Appendix B. Theorem 2 guarantees that there exists a critical point Ŵn in B(W ?, r)

which converges to W ? at the rate of O(K9/4
√
d log n/n), and therefore W ? can be recovered

consistently as n goes to infinity. Moreover, gradient descent converges linearly to Ŵn at a linear rate,
as long as it is initialized in the basin of attraction. To achieve ε-accuracy, i.e.

∥∥∥Wt − Ŵn

∥∥∥
F
≤ ε, it

requires a computational complexity of O
(
ndK2 log (1/ε)

)
, which is linear in n, d and log(1/ε).

4 INITIALIZATION

Our initialization adopts the tensor method proposed in (Zhong et al., 2017b). In this section, we first
briefly describe this method, and then present the performance guarantee of the initialization with
remarks on the differences from that in (Zhong et al., 2017b).

4.1 PRELIMINARY AND ALGORITHM

This subsection briefly introduces the tensor method proposed in (Zhong et al., 2017b), to which a
reader can refer for more details. We first define a product ⊗̃ as follows. If v ∈ Rd is a vector and I
is the identity matrix, then v⊗̃I =

∑d
j=1[v ⊗ ej ⊗ ej + ej ⊗ v ⊗ ej + ej ⊗ ej ⊗ v]. If M is a

symmetric rank-r matrix factorized asM =
∑r
i=1 siviv

>
i and I is the identity matrix, then

M⊗̃I =

r∑
i=1

si

d∑
j=1

6∑
l=1

Al,i,j ,

where A1,i,j = vi ⊗ vi ⊗ ej ⊗ ej , A2,i,j = vi ⊗ ej ⊗ vi ⊗ ej , A3,i,j = ej ⊗ vi ⊗ vi ⊗ ej ,
A4,i,j = vi ⊗ ej ⊗ ej ⊗ vi,A5,i,j = ej ⊗ vi ⊗ ej ⊗ vi andA6,i,j = ej ⊗ ej ⊗ vi ⊗ vi.
Definition 2. DefineM1,M2,M3,M4 and m1,i, m2,i, m3,i, m4,i as follows:
M1 = E[y · x],
M2 = E[y · (x⊗ x− I)],
M3 = E[y · (x⊗3 − x⊗̃I)],
M4 = E[y · (x⊗4 − (x⊗ x)⊗̃I + I⊗̃I)],
m1,i = γ1(‖w?

i ‖),
m2,i = γ2(‖w?

i ‖)− γ0(‖w?
i ‖),

m3,i = γ3(‖w?
i ‖)− 3γ1(‖w?

i ‖),
m4,i = γ4(‖w?

i ‖) + 3γ0(‖w?
i ‖)− 6γ2(‖w?

i ‖),
where γj(σ) = Ez∼N (0,1)[φ(σ · z)zj ], ∀j = 0, 1, 2, 3, 4.

6
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Definition 3. Let α ∈ Rd denote a randomly picked vector. We define P2 and P3 as follows: P2 =
Mj2(I, I,α, · · · ,α),1 where j2 = min{j ≥ 2|Mj 6= 0}, and P3 = Mj3(I, I, I,α, · · · ,α),
where j3 = min{j ≥ 3|Mj 6= 0}.

We further denote w = w/‖w‖. The initialization algorithm based on the tensor method is
summarized in Algorithm 2, which includes two major steps. Step 1 first estimates the di-
rection of each column of W ? by decomposing P2 to approximate the subspace spanned by
{w?

1,w
?
2, · · · ,w?

K} (denoted by V ), then reduces the third-order tensor P3 to a lower-dimension
tensorR3 = P3 (V ,V ,V ) ∈ RK×K×K , and applys non-orthogonal tensor decomposition onR3

to output the estimate siV >w?
i , where si ∈ {1,−1} is a random sign. Step 2 approximates the

magnitude of w?
i and the sign si by solving a linear system of equations.

Algorithm 2 Initialization via Tensor Method
Input: Partition n pairs of data {(xi, yi)}ni=1 into three parts D1,D2,D3.
Output:
1: Estimate P̂2 of P2 from data set D1.
2: V ← POWERMETHOD(P̂2,K).
3: Estimate R̂3 of P3(V ,V ,V ) from data set D2.
4: {ûi}i∈[K] ← KCL(R̂3).
5: {w(0)

i }i∈[K] ← RECMAG(V , {ûi}i∈[K],D3).

4.2 PERFORMANCE GUARANTEE OF INITIALIZATION

For the classification problem, we make the following technical assumptions, similarly in (Zhong
et al., 2017b, Assumption 5.3) for the regression problem.
Assumption 1. The activation function φ(z) satisfies the following conditions:1. If Mj 6= 0, then

K∑
i=1

mj,i

(
w?
i
>α
)j−2

wi
?wi

?> 6= 0 ∀j,

K∑
i=1

mj,i

(
w?>
i α

)j−3
(V >w?

i )vec((V >w?
i )(V

>w?
i )
>)> 6= 0 for j ≥ 3

2. At least one of M3 and M4 is non-zero.

Furthermore, we do not require the homogeneous assumption ((i.e., φ(az) = apz for an integer
p)) required in (Zhong et al., 2017b), which can be restrictive. Instead, we assume the following
condition on the curvature of the activation function around the ground truth, which holds for a larger
class of activation functions such as sigmoid and tanh.
Assumption 2. Let l1 be the index of the first nonzero Mi where i = 1, . . . , 4. For the activation
function φ (·), there exists a positive constant δ such that ml1,i(·) is strictly monotone over the
interval (‖w?

i ‖ − δ, ‖w?
i ‖+ δ), and the derivative of ml1,i(·) is lower bounded by some constant

for all i.

We next present the performance guarantee for the initialization algorithm in the following theorem.
Theorem 3. For the classification model (3), under Assumptions 1 and 2, if the sample size n ≥
dpoly (K,κ, t, log d, 1/ε), then the outputW0 ∈ Rd×K of Algorithm 2 satisfies

‖W0 −W ?‖F ≤ εpoly (K,κ) ‖W ?‖F, (7)
with probability at least 1− d−Ω(t).

The proof of Theorem 3 consists of (a) showing the estimation of the direction ofW ? is sufficiently
accurate and (b) showing the approximation of the norm of W ? is accurate enough. Our proof of
part (a) is the same as that in (Zhong et al., 2017b), but our argument in part (b) is different, where
we relax the homogeneous assumption on activation functions. More details can be found in the
supplementary materials in Appendix C.

1See (15) in the supplemental materials for definition.
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Figure 2: Fix K = 3. (a) Success rate of converging to the same local minima with respect to
the sample complexity for various d; (b) Average estimation error of gradient descent in a local
neighborhood of the ground truth with respect to the sample complexity for various d; (c) Average
estimation error of gradient descent using different objective functions in a local neighborhood of the
ground truth with respect to the sample complexity when d = 20.

5 NUMERICAL EXPERIMENTS

In this section, we first implement gradient descent to verify that the empirical risk function is strongly
convex in the local region around W ?. If we initialize multiple times in such a local region, it is
expected that gradient descent converges to the same critical point Ŵn, with the same set of training
samples. Given a set of training samples, we randomly initialize multiple times, and then calculate
the variance of the output of gradient descent. Denote the output of the `th run as ŵ(`)

n = vec(Ŵ
(`)
n )

and the mean of the runs as w̄. The error is calculated as SDn =

√
1
L

∑L
`=1 ‖ŵ

(`)
n − w̄‖2, where

L = 20 is the total number of random initializations. Adopted in (Mei et al., 2016), it quantifies the
standard deviation of the estimator Ŵn under different initializations with the same set of training
samples. We say an experiment is successful, if SDn ≤ 10−2.

Figure 2 (a) shows the successful rate of gradient descent by averaging over 50 sets of training samples
for each pair of n and d, where K = 3 and d = 15, 20, 25 respectively. The maximum iterations for
gradient descent is set as itermax = 3500. It can be seen that as long as the sample complexity is
large enough, gradient descent converges to the same local minima with high probability.

We next show that the statistical accuracy of the local minimizer for gradient descent if it is ini-
tialized close enough to the ground truth. Suppose we initialize around the ground truth such
that ‖W0 −W?‖F ≤ 0.1 · ‖W?‖F. We calculate the average estimation error as

∑L
`=1 ‖Ŵ

(`)
n −

W ?‖2F/(L‖W ?‖2F) over L = 100 Monte Carlo simulations with random initializations. Fig. 2 (b)
shows the average estimation error with respect to the sample complexity when K = 3 and
d = 20, 35, 50 respectively. It can be seen that the estimation error decreases gracefully as we
increase the sample size and matches with the theoretical prediction of error rates reasonably well.

We further compare the performance of gradient descent algorithm applied to both the cross entropy
loss and the squared loss, respectively. As shown in Fig 2 (c), when K = 3, d = 20, cross entropy
loss with gradient descent achieves a much lower error than the squared loss. Clearly, the cross
entropy loss is favored in the classification problem over the squared loss.

6 CONCLUSIONS

In this paper, we have studied the model recovery of a one-hidden-layer neural network using the
cross entropy loss in a multi-neuron classification problem. In particular, we have characterized
the sample complexity to guarantee local strong convexity in a neighborhood (whose size we have
characterized as well) of the ground truth when the training data are generated from a classification
model. This guarantees that with high probability, gradient descent converges linearly to the ground
truth if initialized properly. In the future, it will be interesting to extend the analysis in this paper
to more general class of activation functions, particularly ReLU-like activations; and more general
network structures, such as convolutional neural networks (Du et al., 2017b; Zhong et al., 2017a).
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A PROOF OF THEOREM 1

To begin, denote the population loss function as

f(W ) = E [fn(W )] = E [` (W ;x)] , (8)

where the expectation is taken with respect to the distribution of the training sample (x; y).

The proof of Theorem 1 follows the following steps:

1. We first show that the Hessian∇2f(W ) of the population loss function is smooth with respect to
∇2f(W ?) (Lemma 1);

2. We then show that∇2f(W ) satisfies local strong convexity and smoothness in a neighborhood of
W ?, B(W ?, r) with appropriately chosen radius by leveraging similar properties of ∇2f(W ?)
(Lemma 2);

3. Next, we show that the Hessian of the empirical loss function ∇2fn(W ) is close to its popular
counterpart∇2f(W ) uniformly in B(W ?, r) with high probability (Lemma 3).

4. Finally, putting all the arguments together, we establish∇2fn(W ) satisfies local strong convexity
and smoothness in B(W ?, r).

We will first show that the Hessian of the population risk is smooth enough around W ? in the
following lemma.
Lemma 1. For sigmoid activations, assume ‖W ?‖F ≤ 1, we have

‖∇2f (W )−∇2f (W ?) ‖ ≤ C

K
1
2

· ‖W −W ?‖F, (9)

holds for some large enough constant C, when ‖W −W ?‖F ≤ 0.7.

The proof is given in Appendix D.2. Lemma 1 together with the fact that ∇2f(W ?) be lower and
upper bounded, will allow us to bound∇2f(W ) in a neighborhood around ground truth, given below.
Lemma 2 (Local Strong Convexity and Smoothness of Population Loss). For sigmoid activations,
there exists some constant C, such that

4

K2
· ρ (σK)

κ2λ
· I � ∇2f (W ) � C · I,

holds for allW ∈ B(W ?, r) with r := min
{

C

K
3
2
· ρ(σK)
κ2λ , 0.7

}
.

The proof is given in Appendix D.3. The next step is to show the Hessian of the empirical loss
function is close to the Hessian of the population loss function in a uniform sense, which can be
summarized as following.
Lemma 3. For sigmoid activations, there exists constant C such that as long as n ≥ C · dK log dK,
with probability at least 1− d−10, the following holds

sup
W∈B(W ?,r)

‖∇2fn (W )−∇2f (W ?) ‖ ≤ C

√
dK logn

n
,

where r := min
{

C

K
3
2
· ρ(σK)
κ2λ , 0.7

}
.

The proof can be found in Appendix D.4.

The final step is to combine Lemma 3 and Lemma 1 to obtain Theorem 1 as follows,

Proof of Theorem 1. By Lemma 3 and Lemma 2, we have with probability at least 1− d−10,

∇2fn(W ) � ∇2f (W )−
∥∥∇2fn (W )−∇2f(W )

∥∥ · I
� Ω

(
1

K2
· ρ (σK)

κ2λ

)
· I − Ω

(
C ·
√
dK log n

n

)
· I.

11
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As long as the sample size n is set such that

C ·
√
dK log n

n
≤ 1

K2
· ρ (σK)

κ2λ
,

i.e. n ≥ C · dK5 log2 d ·
(

κ2λ
ρ(σK)

)2

, we have

∇2fn(W ) � Ω

(
1

K2
· ρ (σK)

κ2λ

)
· I.

holds for allW ∈ B (W ?, r). Similarly, we have

∇2fn(W ) � C · I

holds for allW ∈ B (W ?, r).

B PROOF OF THEOREM 2

We have established that fn (W ) is strongly convex in B(W ?, r) in Theorem 1, thus there exists at
most one critical point in B(W ?, r). The proof of Theorem 2 follows the steps below:

1. We first show that the gradient∇fn (W ) concentrates around ∇f (W ) in B(W ?, r) (Lemma 4),
and then invoke (Mei et al., 2016, Theorem 2) to guarantee there indeed exists a critical point Ŵn

in B(W ?, r);

2. We next show Ŵn is close toW ? and gradient descent converges linearly to Ŵn with a properly
chosen step size.

The following lemma establishes that∇fn (W ) uniformly concentrates around∇f (W ).

Lemma 4. For sigmoid activation function, assume ‖W ?‖F ≤ 1, there exists constant C such that
as long as n ≥ CdK log(dK), with probability at least 1− d−10, the following holds

sup
W∈B(W ?,r)

‖∇fn (W )−∇f(W )‖ ≤ C

√
d
√
K log n

n
,

where r := min
{

C

K
3
2
· ρ(σK)
κ2λ , 0.7

}
.

Notice that for the population risk function, f(W ),W ? is the unique critical point in B(W ?, r) due
to local strong convexity. With Lemma 3 and Lemma 4, we can invoke (Mei et al., 2016, Theorem 2),
which guarantees the following.

Corollary 1. There exists one and only one critical point Ŵn ∈ B (W ∗, r) that satisfies

∇fn
(
Ŵn

)
= 0.

We first show that Ŵn is close toW ?. By the intermediate value theorem, ∃W ′ ∈ B (W ?, r) such
that

fn

(
Ŵn

)
= fn (W ?) +

〈
∇fn (W ?) , vec

(
Ŵn −W ?

)〉
+

1

2
vec
(
Ŵn −W ?

)>
∇2fn (W ′) vec

(
Ŵn −W ?

)
≤ fn (W ?) , (10)

where the last inequality follows from the optimality of Ŵn. By Theorem 1, we have

1

2
vec
(
Ŵn −W ?

)>
∇2fn (W ′) vec

(
Ŵn −W ?

)
≥ Ω

(
1

K2
· ρ (σK)

κ2λ

)∥∥∥Ŵn −W ?
∥∥∥2

F
.

(11)

12
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On the other hand, by the Cauchy-Schwarz inequality, we have∣∣∣〈∇fn (W ?) , vec
(
Ŵn −W ?

)〉∣∣∣ ≤ ‖∇fn (W ?) ‖2‖Ŵn −W ?‖F

≤ Ω

(√
dK1/2 log n

n

)
‖Ŵn −W ?‖F, (12)

where the last line follows from Lemma 4. Plugging (11) and (12) into (10), we have

‖Ŵn −W ?‖F ≤ Ω

(
K

9
4κ2λ

ρ (σK)

√
d log n

n

)
. (13)

Now we have established there indeed exists a critical point in B(W ?, r). We can establish local linear
convergence of gradient descent as below. LetWt be the estimate at the t-th iteration. According to
the update rule, we have∥∥∥Wt+1 − Ŵn

∥∥∥2

F
=
∥∥∥Wt − η∇fn (Wt)− Ŵn

∥∥∥2

F

= ‖Wt − Ŵn‖2F + η2‖∇fn (Wt) ‖2F − 2η
〈
∇fn (Wt) , vec

(
Wt − Ŵn

)〉
.

(14)

Moreover, by the fundamental theorem of calculus (Lang, 1993),∇fn (Wt) can be written as

∇fn (Wt) = ∇fn (Wt)−∇fn
(
Ŵn

)
=

(∫ 1

0

∇2fn

(
Ŵn + γ

(
Wt − Ŵn

))
dγ

)
vec
(
Wt − Ŵn

)
,

whereW (γ) = Ŵn + γ
(
Wt − Ŵn

)
for γ ∈ [0, 1]. By Theorem 1, we have

Hmin · I � ∇2fn (W (γ)) � Hmax · I,

where Hmin = Ω
(

1
K2 · ρ(σK)

κ2λ

)
and Hmax = C. Therefore, we have

‖∇fn (Wt) ‖2F ≤ H2
max

∥∥∥Wt − Ŵn

∥∥∥2

F
.

Hence,

‖Wt+1 − Ŵn‖2F ≤
(
1− 2ηHmin + η2H2

max

)
‖Wt − Ŵn‖2F

≤
(

1− 1

2
ηHmin

)2

‖Wt − Ŵn‖2F

as long as we set η < Hmin

H2
max

:= Ω
(

1
K2 · ρ(σK)

κ2λ

)
. In summary, gradient descent converges linearly to

the local minimizer Ŵn.

C PROOF OF THEOREM 3

The proof contains two parts. Part (a) proves that the estimation of the direction ofW ? is sufficiently
accurate, which follows the arguments similar to those in (Zhong et al., 2017b) and is only briefly
summarized below. Part (b) is different, where we do not require the homogeneous condition for the
activation function, and instead, our proof is based on a mild condition in Assumption 2. We detail
our proof in part (b).

We first define a tensor operation as follows. For a tensor T ∈ Rn1×n2×n3 and three matrices
A ∈ Rn1×d1 ,B ∈ Rn2×d2 ,C ∈ Rn3×d3 , the (i, j, k)-th entry of the tensor T (A,B,C) is given
by

n1∑
i′

n2∑
j′

n3∑
k′

Ti′,j′,k′Ai′,iBj′,jCk′,k. (15)
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(a) In order to estimate the direction of each wi for i = 1, . . . ,K, (Zhong et al., 2017b) shows that
for the regression problem, if the sample size n ≥ dpoly (K,κ, t, log d), then

‖wi? − siV ûi‖ ≤ εpoly (K, κ) (16)
holds with high probability. Such a result also holds for the classification problem with only slight
difference in the proof as we describe as follows. The main idea of the proof is to bound the estimation
error of P2 andR3 via Bernstein inequality. For the regression problem, Bernstein inequality was
applied to terms associated with each neuron individually, and the bounds were then put together via
triangle inequality in (Zhong et al., 2017b), whereas for the classification problem here, we apply
Bernstein inequality to terms associated with all neurons all together. Another difference is that the
label yi of the classification model is bounded by nature, whereas the output yi in the regression
model needs to be upper bounded via homogeneously bounded conditions of the activation function.
A reader can refer to (Zhong et al., 2017b) for the details of the proof for this part.

(b) In order to estimate ‖wi‖ for i = 1, . . . ,K, we provide a different proof from (Zhong et al.,
2017b), which does not require the homogeneous condition on the activation function, but assumes a
more relaxed condition in Assumption 2.

We define a quantity Q1 as follows:
Q1 = Ml1(I,α, · · · ,α︸ ︷︷ ︸

(l1−1)

), (17)

where l1 is the first non-zero index such that Ml1 6= 0. For example, if l1 = 3, then Q1 takes the
following form

Q1 = M3 (I,α,α) =
1

K

K∑
i=1

m3,i(‖w?
i ‖)
(
α>w?

i

)2
w?
i , (18)

where w = w/‖w‖ and by definition
m3,i(‖w?

i ‖) = E
[
φ (‖w?

i ‖ · z) z3
]
− 3E [φ (‖w?

i ‖ · z) z] . (19)

Clearly, Q1 has information of ‖w?
i ‖, which can be estimated by solving the following optimization

problem:

β? = argminβ∈RK

∥∥∥∥∥ 1

K

K∑
i=1

βisiwi
? −Q1

∥∥∥∥∥ , (20)

where each entry of the solution takes the form

β?i = s3
im3,i(‖w?

i ‖)
(
αT siwi

?
)2
. (21)

In the initialization, we substitute Q̂1 (estimated from training data) for Q1, V ûi (estimated in part
(a)) for siwi? into (20), and obtain an estimate β̂ of β?. We then substitute β̂ for β? and V ûi for
siwi

? into (21) to obtain an estimate âi of ‖w?
i ‖ via the following equation

β̂i = s3
im3,i(âi)

(
αTV ûi

)2
. (22)

Furthermore, since ml1,i(x) has fixed sign for x > 0 and for l1 ≥ 1, si can be estimated correctly
from the sign of β̂i for i = 1, . . . ,K.

For notational simplicity, let β?1,i :=
β?i

s3i (α
T siwi?)2

and β̂1,i := β̂i
s3i (α

TV ûi)
2 , and then (21) and (22)

become
β̂1,i = m3,i(âi), β?1,i = m3,i(‖w?

i ‖). (23)

By Assumption 2 and (21), there exists a constant δ′ > 0 such that the inverse function g(·) ofm3,1(·)
has upper-bounded derivative in the interval (β?1,i − δ′, β?1,i + δ′), i.e., |g′(x)| < Γ for a constant Γ.
By employing the result in (Zhong et al., 2017b), if the sample size n ≥ dpoly (K,κ, t, log d), then
Q̂1 and Q1, V ûi and siwi? can be arbitrarily close so that |β?1,i − β̂1,i| < min{δ′, r√

KΓ
}.

Thus, by (23) and mean value theorem, we obtain

|âi − ‖w?
i ‖| = |g′(ξ)||β?1,i − β̂1,i| (24)

where ξ is between β?1,i and β̂1,i, and hence |g′(ξ)| < Γ. Therefore, |âi − ‖w?
i ‖| ≤ r√

K
, which is

the desired result.
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D PROOF OF TECHNICAL LEMMAS

D.1 PRELIMINARIES

We introduce some useful definitions and results that will be used in the proofs. The first one is the
definition of norms of random variable, i.e.

Definition 4 (Sub-gaussian and Sub-exponential norm). The sub-gaussian norm of a random variable
X , denotes as ‖X‖ψ2

, is defined as

‖X‖ψ2
= sup

p≥1
p−

1
2 (E [|X|p])

1
p , (25)

and the sub-exponential norm of X , denoted as ‖X‖ψ1
, is defined as

‖X‖ψ1 = sup
p≥1

p−1 (E [|X|p])
1
p . (26)

The definition is summarized from (Vershynin, 2012, Def 5.7,Def 5.13), and if ‖X‖ψ2
is upper

bounded, then X is a sub-gaussian random variable and it satisfies

P (|X| > t) ≤ exp
(
1− ct2/‖X‖2ψ2

)
for all t ≥ 0. (27)

Next we provide the calculations of the gradient and Hessian of E [` (W ;x)]. Let’s denote p (W ) =
1
K

∑K
i=1 φ

(
w>i x

)
, and then

E
[
∂` (W ;x)

∂wj

]
= E

− 1

K

 1
K

∑K
i=1 φ

(
w?>
i x

)
− 1

K

∑K
i=1 φ

(
w>i x

)(
1
K

∑K
i=1 φ

(
w>i x

))(
1− 1

K

∑K
i=1 φ

(
w>i x

)) · φ′ (w>j x)
x

 ,
= E

[
− 1

K
φ′
(
w>j x

)
· p (W ?)− p (W )

p (W ) (1− p (W ))
· x
]

(28)

E
[
∇2` (W ;x)

∂wj∂wl

]
= E

[
ξj,l (W )

(p (W ) (1− p (W )))
2 · xx

>

]
(29)

where if j 6= l,

ξj,l (W ) =
1

K2
φ′
(
w>j x

)
φ′
(
w>l x

)
·
(
p (W )

2
+ p (W ?)− 2p (W ?) p (W )

)
,

and if j = l,

ξj,j (W ) =
1

K2
φ′
(
w>j x

)2 · (p (W )
2

+ p (W ?)− 2p (W ?) p (W )
)

− 1

K
φ′′
(
w>j x

)
(p (W ?)− p (W )) (p (W ) (1− p (W ))) .

D.2 PROOF OF LEMMA 1

Proof. Let ∆ = ∇2f(W )−∇2f(W ?). For each (j, l) ∈ [K]× [K], let ∆j,l ∈ Rd×d denote the
(j, l)-th block of ∆. Let a = [a>1 , · · · ,a>K ]> ∈ RdK . Since by definition,

‖∇2f(W )−∇2f(W ?)‖ = max
‖a‖=1

a>(∇2f(W )−∇2f(W ?))a

= max
‖a‖=1

K∑
j=1

K∑
l=1

a>j ∆j,lal. (30)
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Next we will evaluate ∆j,l. From (29) we can write the hessian block more concisely as

∂2f (W )

∂wj∂wl
= E

[
gj,l (W ) · xx>

]
, (31)

where gj,l (W ) =
ξj,l(W )

(p(W )(1−p(W )))2
∈ R, and then by the mean value theorem, we can write gj,l (W )

as

gj,l (W ) = gj,l (W
?) +

K∑
k=1

〈
∂gj,l

(
W̃
)

∂w̃k
,wk −w?

k

〉
(32)

where W̃ = η ·W + (1− η)W ? for some η ∈ (0, 1). Thus we can calculate ∆j,l as

∆j,l =
∂2f (W )

∂wj∂wl
− ∂2f (W ?)

∂w?
j∂w

?
l

= E
[
gj,l (W ) · xx>

]
− E

[
gj,l (W

?) · xx>
]

= E

 K∑
k=1

〈
∂gj,l

(
W̃
)

∂w̃k
,wk −w?

k

〉 · xx>
 , (33)

and plug it back to (30) we can obtain

‖∇2f(W )−∇2f(W ?)‖

= max
‖a‖=1

K∑
j=1

K∑
l=1

a>j ∆j,lal

= max
‖a‖=1

K∑
j=1

K∑
l=1

E

 K∑
k=1

〈
∂gj,l

(
W̃
)

∂w̃k
,wk −w?

k

〉 · (a>j x) (a>l x)


= max
‖a‖=1

K∑
j=1

K∑
l=1

E

[(
K∑
k=1

Tj,l,k 〈x,wk −w?
k〉

)
·
(
a>j x

) (
a>l x

)]

≤ max
‖a‖=1

K∑
j=1

K∑
l=1

√√√√E

[
K∑
k=1

T 2
j,l,k

]
·

√√√√E

[
K∑
k=1

(〈x,wk −w?
k〉)

2 (
a>j x

)2 (
a>l x

)2]

≤ max
‖a‖=1

K∑
j=1

K∑
l=1

√√√√ K∑
k=1

E
[
T 2
j,l,k

]
·

√√√√ K∑
k=1

‖wk −w?
k‖22 · ‖aj‖22 · ‖al‖22, (34)

for the third equality we have used the fact that
∂gj,l(W̃ )
∂w̃k

can be written as Tj,l,k ·x, where Tj,l,k ∈ R,

since the variable of gj,l
(
W̃
)

is in the form ofw>i x. and for the last two inequalities, we have used

Cauchy-Schwarz inequality. Our next goal is to upper bound E
[
T 2
j,l,k

]
. Further since

∂gj,l (W )

∂wk
=

1

K2
·
∂
φ′(w>j x)φ′(w>l x)·(p(W )2+p(W ?)−2p(W ?)p(W ))

(p(W )(1−p(W )))2

∂wk
,

which aligns with x and the scalar coefficient is upper bounded by 1
K2 · C

(p(W̃ )(1−p(W̃ )))
3 , since

φ (·), φ′ (·), φ′′ (·) are all upper bounded, thus we leave only the denominator. And then

E
[
T 2
j,l,k

]
≤ C

K4
· E

 1(
p
(
W̃
)(

1− p
(
W̃
)))6

 ≤ C

K4
· e‖W̃ ‖

2
F , (35)

holds for some constant C, where the second inequality follows from Lemma 5.
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Lemma 5. Let x ∼ N (0, I), t = max {‖w1‖2, · · · ‖wK‖2} and z ∈ Z such that z ≥ 1 , for the
sigmoid activation function φ (x) = 1

1+e−x , the following

E

 1

1
K

∑K
i=1 φ

(
w>i x

) (
1− 1

K

∑K
i=1 φ

(
w>i x

))
z ≤ C · et2 , (36)

holds for a large enough constant C which depends on the constant z.

Plugging (35) into (34), we can obtain

‖∇2f(W )−∇2f(W ?)‖ ≤ C

K
3
2

e‖W̃ ‖
2
F · ‖W −W ?‖F · max

‖a‖=1

K∑
j=1

K∑
l=1

‖aj‖2‖al‖2

≤ C

K
1
2

e‖W̃ ‖
2
F · ‖W −W ?‖F, (37)

Further since e‖W̃ ‖
2
F ≤ C · (1 + ‖W −W ?‖F) when ‖W −W ?‖F ≤ 0.7, where we have used

the assumption that ‖W ?‖F ≤ 1 thus we can conclude that if ‖W −W ?‖F ≤ 0.7, then

‖∇2f(W )−∇2f(W ?)‖ ≤ C

K
1
2

‖W −W ?‖F (38)

holds for some constant C.

D.3 PROOF OF LEMMA 2

Proof. We will first present upper and lower bounds of the Hessian of the population risk at ground
truth, i.e. ∇2f(W ?), and then apply Lemma 1 to obtain a uniform bound in the neighborhood of
W ?. As a reminder,

∂2f (W ?)

∂w2
j

= E

 1

K2
·

 φ′
(
w?>
j x

)2(
1
K

∑K
i=1 φ

(
w?>
i x

))(
1− 1

K

∑K
i=1 φ

(
w?>
i x

))
xx>

 (39)

∂2f (W ?)

∂wj∂wl
= E

 1

K2
·

 φ′
(
w?>
j x

)
φ′
(
w?>
l x

)(
1
K

∑K
i=1 φ

(
w?>
i x

))(
1− 1

K

∑K
i=1 φ

(
w?>
i x

))
xx>

 , (40)

and let a = [a>1 , · · · ,a>K ]> ∈ RdK , we can write

∇2f (W ?) �
(

min
‖a‖2=1

a>∇2f (W ?)a

)
· I

= min
‖a‖2=1

1

K2
E


(∑K

i=1 φ
′ (w?>

i x
) (
a>i x

))2

(
1
K

∑K
i=1 φ

(
w?>
i x

))(
1− 1

K

∑K
i=1 φ

(
w?>
i x

))


� min
‖a‖2=1

4

K2
E

( K∑
i=1

φ′
(
w?>
i x

) (
a>i x

))2


� 4

K2
· ρ (σK)

κ2λ
· I, (41)

the second inequality holds due to the fact that
(

1
K

∑K
i=1 φ

(
w?>
i x

))(
1− 1

K

∑K
i=1 φ

(
w?>
i x

))
≤

1
4 , and the last inequality follows from (Zhong et al., 2017b, Lemmas D.4 and D.6).
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Further more, we can uppder bound∇2f (W ?) as

∇2f (W ?)

�
(

max
‖a‖2=1

a>∇2f (W ?)a

)
· I

= max
‖a‖2=1

1

K2
E


(∑K

i=1 φ
′ (w?>

i x
) (
a>i x

))2

1
K2

∑K
i=1

∑K
j=1 φ

(
w?>
i x

) (
1− φ

(
w?>
j x

))
 · I

� max
‖a‖2=1

1

K2
E


(∑K

i=1 φ
′ (w?>

i x
)2) · (∑K

i=1

(
a>i x

)2)
1
K2

∑K
i=1

∑K
j=1 φ

(
w?>
i x

) (
1− φ

(
w?>
j x

))
 · I by Cauchy-Schwarz inequality

� max
‖a‖2=1

1

K2
E

 C
4

(∑K
i=1 φ

′ (w?>
i x

))
·
(∑K

i=1

(
a>i x

)2)
1
K2

∑K
i=1 φ

(
w?>
i x

) (
1− φ

(
w?>
i x

))
 · I

� max
‖a‖2=1

1

K2
E

[
CK2

4

K∑
i=1

(
a>i x

)2] · I
= C · I, (42)

where for the third and fourth inequality we have used the fact that φ
(
w?>
i x

) (
1− φ

(
w?>
i x

))
≤ 1

4
and

K∑
i=1

K∑
j=1

φ
(
w?>
i x

) (
1− φ

(
w?>
j x

))
≥

K∑
i=1

φ
(
w?>
i x

) (
1− φ

(
w?>
i x

))
=

K∑
i=1

φ′
(
w?>
i x

)
.

Thus together with the lower bound (41) we can conclude that

4

K2
· ρ (σK)

κ2λ
· I � ∇2f (W ?) � C · I, (43)

From Lemma 1, we have

‖∇2f(W )−∇2f(W ?)‖ . C

K
1
2

‖W −W ?‖F , (44)

therefore, when ‖W ? −W ‖F ≤ 0.7 and

C

K
1
2

· ‖W −W ?‖F ≤
4

K2
· ρ (σK)

κ2λ
,

i.e., when ‖W −W ?‖F ≤ min
{

C

K
3
2
· ρ(σK)
κ2λ , 0.7

}
for some constant C, we have

σmin

(
∇2f (W )

)
≥ σmin

(
∇2f (W ?)

)
− ‖∇2f (W )−∇2f (W ?) ‖ (45)

&
4

K2
· ρ (σK)

κ2λ
− C

K
1
2

‖W −W ?‖F &
4

K2
· ρ (σK)

κ2λ
. (46)

Moreover, within the same neighborhood, by the triangle inequality we have

‖∇2f (W ) ‖ ≤ ‖∇2f (W )−∇2f (W ?) ‖+ ‖∇2f (W ?) ‖ . C. (47)

D.4 PROOF OF LEMMA 3

Proof. We adapt the analysis in (Mei et al., 2016) to our setting. Let Nε be the ε-covering number
of the Euclidean ball B (W ?, r). It is known that logNε ≤ dK log (3r/ε) (Vershynin, 2010).
Let Wε = {W1, · · · ,WNε} be the ε-cover set with Nε elements. For any W ∈ B (W ?, r), let
j (W ) = argminj∈[Nε] ‖W −Wj(W )‖F ≤ ε for allW ∈ B (W ?, r).
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For anyW ∈ B (W ?, r), we have

∥∥∇2fn (W )−∇2f(W )
∥∥ ≤ 1

n

∥∥∥∥∥
n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

∇2`
(
Wj(W );xi

)
− E

[
∇2`

(
Wj(w);x

)]∥∥∥∥∥
+
∥∥E [∇2`

(
Wj(W );x

)]
− E

[
∇2` (W ;x)

]∥∥ .
Hence, we have

P

(
sup

W∈B(W ?,r)

∥∥∇2fn (W )−∇2f(W )
∥∥ ≥ t) ≤ P (At) + P (Bt) + P (Ct) , (48)

where the events At, Bt and Ct are defined as

At =

{
sup

W∈B(W ?,r)

1

n

∥∥∥∥∥
n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥ ≥ t

3

}
, (49)

Bt =

{
sup
W∈Wε

∥∥∥∥∥ 1

n

n∑
i=1

∇2` (W ;xi)− E
[
∇2` (W ;x)

]∥∥∥∥∥ ≥ t

3

}
, (50)

Ct =

{
sup

W∈B(W ?,r)

‖E
[
∇2`

(
Wj(W );x

)]
− E

[
∇2` (W ;x)

]
‖ ≥ t

3

}
. (51)

In the sequel, we will bound the terms P (At), P (Bt), and P (Ct), separately.

1. Upper bound P (Bt). Before continuing, let us state a simple technical lemma that is useful for
our proof, whose proof can be found in (Mei et al., 2016).

Lemma 6. LetM ∈ Rd×d be a symmetric d× d matrix and Vε be an ε-cover of unit-Euclidean-
norm ball B (0, 1), then

‖M‖ ≤ 1

1− 2ε
sup
v∈Vε
| 〈v,Mv〉 |. (52)

Let V 1
4

be a
(

1
4

)
-cover of the ball B(0, 1) = {W ∈ Rd×K : ‖W ‖F = 1}, where log |V 1

4
| ≤

dK log 12. From Lemma 6, we know that∥∥∥∥∥ 1

n

n∑
i=1

∇2` (W ;xi)− E
[
∇2` (W ;x)

]∥∥∥∥∥ ≤ 2 sup
v∈V 1

4

∣∣∣∣∣
〈
v,

(
1

n

n∑
i=1

∇2` (W ;xi)− E
[
∇2` (W ;x)

])
v

〉∣∣∣∣∣ .
(53)

Taking the union bound overWε and V 1
4

yields

P (Bt) ≤ P

 sup
W∈Wε,v∈V 1

4

∣∣∣∣∣ 1n
n∑
i=1

〈
v,
(
∇2` (W ;xi)− E

[
∇2` (W ;x)

])
v
〉∣∣∣∣∣ ≥ t

6


≤ edK(log 3r

ε +log 12) sup
W∈Wε,v∈V 1

4

P

(∣∣∣∣∣ 1n
n∑
i=1

〈
v,
(
∇2` (W ;xi)− E

[
∇2` (W ;x)

])
v
〉∣∣∣∣∣ ≥ t

6

)
.

(54)

LetGi =
〈
v,
(
∇2` (W ;xi)− E

[
∇2` (W ;x)

])
v
〉

where E[Gi] = 0. Let a =
[
a>1 , · · · ,a>K

]
∈

RdK . Then we can show that ‖Gi‖ψ1 is upper bounded, which we summariz as follows.

Lemma 7. There exists some constant C such that

‖Gi‖ψ1 ≤ C :≡ τ2.
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Applying the Bernstein inequality for sub-exponential random variables (Mei et al., 2016, Theorem
9) to (54), we have for fixedW ∈ Wε,v ∈ V 1

4
,

P

(∣∣∣∣∣ 1n
n∑
i=1

〈
v,
(
∇2` (W ;xi)− E

[
∇2` (W ;x)

])
v
〉∣∣∣∣∣ ≥ t

6

)
≤ 2 exp

(
−c · n ·min

(
t2

τ4
,
t

τ2

))
,

(55)
for some universal constant c. As a result,

P (Bt) ≤ 2 exp

(
−c · n ·min

(
t2

τ4
,
t

τ2

)
+ dK log

3r

ε
+ dK log 12

)
. (56)

Thus as long as

t > C ·max


√
τ4
(
dK log 36r

ε + log 4
δ

)
n

,
τ2
(
dK log 36r

ε + log 4
δ

)
n

 (57)

for some large enough constant C, we have P (Bt) ≤ δ
2 .

2. Upper bound P (At) and P (Ct). These two events will be bounded in a similar way. Let J?
satisfy

E

[
sup

W 6=W ′∈B(W ?,r)

‖∇2` (W ,x)−∇2` (W ′,x) ‖
‖W −W ′‖F

]
≤ J?. (58)

Let us look at the deterministic event Ct first. Since

sup
W∈B(W ?,r)

‖E
[
∇2`

(
Wj(W );x

)]
− E

[
∇2` (W ;x)

]
‖

≤ sup
W∈B(W ?,r)

‖E
[
∇2`

(
Wj(W );x

)]
− E

[
∇2` (W ;x)

]
‖

‖W −Wj(W )‖F
· sup
W∈B(W ?,r)

‖W −Wj(W )‖F

≤ J? · ε. (59)

Therefore, Ct holds as long as
t ≥ 3J? · ε. (60)

We can bound the event At as below.

P (At) = P

(
sup

W∈B(W ?,r)

1

n

∥∥∥∥∥
n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥ ≥ t

3

)

≤ 3

t
E

[
sup

W∈B(W ?,r)

∥∥∥∥∥ 1

n

n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥
]

(61)

≤ 3

t
E

[
sup

W∈B(W ?,r)

∥∥∇2` (W ;xi)−∇2`
(
Wj(W );xi

)∥∥]

≤ 3

t
E

[
sup

W∈B(W ?,r)

‖∇2` (W ;xi)−∇2`
(
Wj(W );xi

)
‖

‖W −Wj(W )‖F

]
· sup
W∈B(W ?,r)

‖W −Wj(W )‖F

≤ 3J?ε

t
(62)

where (61) follows from the Markov inequality. Thus, taking

t ≥ 6εJ?
δ

(63)

ensures that P (At) ≤ δ
2 . It now boils down to control the quantity J?, which we have the following

lemma, whose proof is in Appendix E.3.

20



Under review as a conference paper at ICLR 2019

Lemma 8. There exists some constant C such that

E

[
sup

W 6=W ′∈B(W ?,r)

‖∇2` (W ,x)−∇2` (W ′,x) ‖
‖W −W ′‖F

]
≤ C · d

√
K ≡ J?. (64)

3. Final step. Let ε = δτ2

6J?·ndK , δ = d−10 plugging into (57) we need

t > τ2 ·max

 1

ndK
,C ·

√(
dK log(36rnd11K) + log 4

δ

)
n

,

(
dK log(36rnd11K) + log 4

δ

)
n

 .

(65)
Since the middle term can be expressed as

dK log(36rnd11K) + 10 log d

n
≤ dK log n

n
+
dK log 36r

n
+

11dK log dK

n
+

10 log d

n
, (66)

when n ≥ C · dK log dK for some large enough constant C, the first term, dK log n dominants
and is on the order of dK log dK. Moreover, it decreases as n increases when n ≥ 3. Thus we can
set

t ≥ τ2

√(
dK log(36rnd11K) + log 4

δ

)
n

(67)

which holds as t ≥ C ′ · τ2
√

dK logn
n for some constant C ′.

By setting t := Cτ2
√

dK logn
n for sufficiently large C, as long as n ≥ C ′ · dK log dK,

P

(
sup

W∈B(W ?,r)

‖∇2fn (W )−∇2f(W )‖ ≥ Cτ2

√
dK log n

n

)
≤ d−10. (68)

D.5 PROOF OF LEMMA 4

Proof. We nedd the following Lemma for the proof. Lemma 9

Lemma 9. Assume x ∼ N (0, I). Let u be a fixed unit norm vector u =
[
u>1 , · · · ,u>K

]
∈ RdK

with ‖u‖2 = 1, the following
‖u>∇` (W ;x) ‖ψ2

≤
√
K,

hold.

By a similar argument (details omitted) as the proof of Lemma 3, and applies Lemma 9, we can get
the following concentration inequality:

sup
W∈B(W ?,r)

‖∇fn (W )−∇f (W ) ‖2 ≤ C ·

√
d
√
K log n

n
, (69)

holds with probability at least 1− d−10, as long as the sample size n ≥ C · dK log(dK).

E PROOF OF AUXILIARY LEMMAS

E.1 PROOF OF LEMMA 5

Proof. We can rewrite the left-hand side as

E

 1

K2

K∑
i=1

K∑
j=1

φ
(
w>i x

) (
1− φ

(
w>j x

))−z , (70)
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which is upper bounded by E
[

1
K2

∑K
i=1

∑K
j=1

(
φ
(
w>i x

) (
1− φ

(
w>j x

)))−z]
, since f (x) = x−z

is convex for x > 0 and z ≥ 1. And apply Cauchy-Schwarz inequality we can have

E
[(
φ
(
w>i x

) (
1− φ

(
w>j x

)))−z] ≤√E
[
φ
(
w>i x

)−2z
]
·
√
E
[(

1− φ
(
w>j x

))−2z
]
. (71)

Further since 1
φ(x) = 1 + e−x, 1

1−φ(x) = 1 + ex and g = w>i x ∼ N
(
0, σ2

i = ‖wi‖22
)
, then we can

exactly calculate the two terms in the above equation, i.e.,

E
[
φ (g)

−2z
]

= E
[(

1 + e−g
)2z]

= E

[
2z∑
l=0

(
2z

l

)
e−lg

]
=

2z∑
l=0

(
2z

l

)
e

(
σ2i l

2

2

)
, (72)

and in the same way,

E
[
(1− φ (g))

−2z
]

= E
[
(1 + eg)

2z
]

=

2z∑
l=0

(
2z

l

)
e

(
σ2i l

2

2

)
, (73)

since g is a Gaussian random which is a symmetric random variable. Plugging this back into (71) we
can conclude that for t = max (‖w1‖2, · · · , ‖wK‖2) and p ≥ 1,

E

 1

1
K

∑K
i=1 φ

(
w>i x

) (
1− 1

K

∑K
i=1 φ

(
w>i x

))
p ≤ C · et2 , (74)

holds.

E.2 PROOF OF LEMMA 7

Proof. The sub-exponential norm of Gi can be bounded as

‖Gi‖ψ1
≤ ‖

〈
u,∇2` (W ; z)u

〉
‖ψ1

+ ‖∇2f (W ; z) ‖,

where ‖∇2f (W ; z) ‖ is upper bounded by C
K according to lemma 2, and denote the (j, l)-th block

of∇2` (W ; z) as αj,l · xx>, we can write

‖
〈
u,∇2` (W ; z)u

〉
‖ψ1
≤

K∑
l=1

K∑
j=1

‖αj,l · u>j xx>ul‖ψ1

≤
K∑
l=1

K∑
j=1

sup
t≥1

t−1
(
E
∣∣αj,l · u>j xx>ul∣∣t) 1

t

. (75)

Note that

• for j 6= l

αj,l =
1

K2

φ′
(
w>j x

)
φ′
(
w>l x

)
·
(
p (W )

2
+ y − 2y · p (W )

)
(p (W ) (1− p (W )))

2 ,

(76)

further since

p (W )
2

+ y − 2y · p (W ) ≤

{
p (W )

2
p (W ) > 1

2

(1− p (W ))
2

p (W ) ≤ 1
2

, (77)

then

|αj,l| ≤


1
K2

φ′(w>j x)φ′(w>l x)
(1−p(W ))2

p (W ) > 1
2

1
K2

φ′(w>j x)φ′(w>l x)
p(W )2

p (W ) ≤ 1
2

, (78)
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moreover,

p (W )
2

=

(
1

K

K∑
i=1

φ
(
w>i x

))2

≥ 1

K2
φ
(
w>j x

)
φ
(
w>l x

)
(1− p (W ))

2
=

(
1− 1

K

K∑
i=1

φ
(
w>i x

))2

≥ 1

K2

(
1− φ

(
w>j x

)) (
1− φ

(
w>l x

))
and recall that φ (x) (1− φ (x)) = φ′ (x), together we can obtain

|αj,l| ≤
{
φ
(
w>j x

)
φ
(
w>l x

)
≤ 1 p (W ) > 1

2(
1− φ

(
w>j x

))
·
(
1− φ

(
w>l x

))
≤ 1 p (W ) ≤ 1

2

. (79)

• for j = l:

|αj,j | ≤

∣∣∣∣∣∣ 1

K2

φ′
(
w>j x

)
φ′
(
w>l x

)
·
(
p (W )

2
+ y − 2y · p (W )

)
(p (W ) (1− p (W )))

2

∣∣∣∣∣∣
+

∣∣∣∣∣ 1

K

φ′′
(
w>j x

)
(y − p (W ))

p (W ) (1− p (W ))

∣∣∣∣∣ , (80)

the first term is upper bounded by a constant, and for the second term∣∣∣∣∣φ′′
(
w>j x

) (
1{y=1} − p (W )

)
p (W ) (1− p (W ))

∣∣∣∣∣ ≤


φ′′(w>j x)
(1−p(W )) ≤ K y = 0
φ′′(w>j x)
p(W ) ≤ K y = 1

, (81)

where we have used the fact that the second derivative is φ′′ (x) = φ (x) (1− φ (x)) (1− 2φ (x)),
the absolute value of which can be upper bounded by φ (x) or 1− φ (x). Thus we can show that

|αj,j | ≤ C. (82)

Finally, we conclude that

|αj,l| ≤ C, (83)

holds for all j, l. And

‖
〈
u,∇2` (W ; z)u

〉
‖ψ1
≤ C ·

K∑
l=1

K∑
j=1

sup
t≥1

t−1E
[
|
(
u>j xx

>ul|
)t] 1

t

(84)

≤ C ·
K∑
l=1

K∑
j=1

sup
t≥1

t−1

(√
E
[(
u>j x

)2t] ·√E
[(
u>l x

)2t]) 1
t

(85)

≤ C ·
K∑
l=1

K∑
j=1

‖uj‖2‖ul‖2 · sup
p≥1

t−1 ((2t− 1)!!)
1
t (86)

≤ C
K∑
l=1

K∑
j=1

‖uj‖2‖ul‖2 (87)

≤ C
K∑
l=1

K∑
j=1

‖uj‖22 + ‖ul‖22
2

(88)

≤ C :≡ τ2 (89)

Thus we can conclude that

‖Gi‖ψ1
≤ C :≡ τ2
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E.3 PROOF OF LEMMA 8

Proof. As noted before, we can write the (j, l)-th block of ∇2` (W ; z) as gj,l (W )xx>, where

gj,l (W ) =
ξj,l (W )

(p (W ) (1− p (W )))
2 , (90)

then we can obtain the following bound,

‖∇2` (W ; z)−∇2` (W ′; z) ‖ ≤
K∑
j=1

K∑
l=1

|gj,l (W )− gj,l (W ′) | · ‖xx>‖. (91)

Using the same method as shown in the proof of Lemma 1, we can upper bound |gj,l (W )−gj,l (W ′) |
as

|gj,l (W )− gj,l (W ′) | ≤ 1

K2

1(
p
(
W̃
)(

1− p
(
W̃
)))6 · ‖x‖2 ·

√
K · ‖W −W ′‖F (92)

where W̃ = ηW + (1− η)W ′ for η ∈ (0, 1). And thus, when ‖W −W ′‖F ≤ 0.7 we have

E

[
sup

W 6=W ′

‖∇2` (W )−∇2` (W ′) ‖
‖W −W ′‖F

]
≤ C

K
3
2

·K2 · E

 1(
p
(
W̃
)(

1− p
(
W̃
)))6 · ‖x‖2 · ‖xx

>‖


≤ C · d

√
K (93)

Thus we only need to set J? ≥ C · d
√
K for some large enough C.

E.4 PROOF OF LEMMA 9

Proof. By definition, we have

〈∇` (W ) ,u〉 =

K∑
k=1

〈
∂` (W )

∂wk
,uk

〉

=
1

K

K∑
k=1


(
y − 1

K

∑K
i=1 φ

(
w>i x

))
· φ′
(
w>k x

)
1
K

∑K
i=1 φ

(
w>i x

) (
1− 1

K

∑K
i=1 φ

(
w>i x

))
(u>k x) ,

and then we can upper bound the sub-gaussian norm as

‖ 〈∇` (W ) ,u〉 ‖ψ2
≤


1
K

∑K
k=1

∥∥∥∥ φ′(w>k x)·u>k x
(1− 1

K

∑K
i=1 φ(w>i x))

u>k x

∥∥∥∥
ψ2

≤
∑K
k=1 ‖u>k x‖ψ2 y = 0

1
K

∑K
k=1

∥∥∥∥ φ′(w>k x)·u>k x
1
K

∑K
i=1 φ(w>i x)

u>k x

∥∥∥∥
ψ2

≤
∑K
k=1 ‖u>k x‖ψ2

y = 1
.

Thus we can have

‖ 〈∇` (W ) ,u〉 ‖ψ2
≤

K∑
k=1

‖uk‖2
√
K, (94)

and conclude that the directional gradient is
√
K-sub-Gaussian.

24


	Introduction
	Our Contributions
	Related Work
	Paper Organization and Notations

	Problem Formulation
	Model
	Gradient Descent

	Main Results
	Local Strong Convexity
	Performance Guarantees of Gradient Descent

	Initialization
	Preliminary and Algorithm
	Performance Guarantee of Initialization

	Numerical Experiments
	Conclusions
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Technical Lemmas 
	Preliminaries
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Proof of Auxiliary Lemmas
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9


