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ABSTRACT

Program verification offers a framework for ensuring program correctness and
therefore systematically eliminating different classes of bugs. Inferring loop in-
variants is one of the main challenges behind automated verification of real-world
programs, which often contain many loops. In this paper, we present the Continu-
ous Logic Network (CLN), a novel neural architecture for automatically learning
loop invariants directly from program execution traces. Unlike existing neural net-
works, CLNs can learn precise and explicit representations of formulas in Satisfia-
bility Modulo Theories (SMT) for loop invariants from program execution traces.
We develop a new sound and complete semantic mapping for assigning SMT for-
mulas to continuous truth values that allows CLNs to be trained efficiently. We use
CLNs to implement a new inference system for loop invariants, CLN2INV, that
significantly outperforms existing approaches on the popular Code2Inv dataset.
CLN2INV is the first tool to solve all 124 theoretically solvable problems in the
Code2Inv dataset. Moreover, CLN2INV takes only 1.1 second on average for each
problem, which is 40× faster than existing approaches. We further demonstrate
that CLN2INV can even learn 12 significantly more complex loop invariants than
the ones required for the Code2Inv dataset.

1 INTRODUCTION

Program verification offers a principled approach for systematically eliminating different classes
of bugs and proving the correctness of programs. However, as programs have become increas-
ingly complex, real-world program verification often requires prohibitively expensive manual ef-
fort (Wilcox et al., 2015; Gu et al., 2016; Chajed et al., 2019). Recent efforts have focused on
automating the program verification process, but automated verification of general programs with
unbounded loops remains an open problem (Nelson et al., 2017; 2019).

Verifying programs with loops requires determining loop invariants, which captures the effect of
the loop on the program state irrespective of the actual number of loop iterations. Automatically
inferring correct loop invariants is a challenging problem that is undecidable in general and difficult
to solve in practice (Blass & Gurevich, 2001; Furia et al., 2014). Existing approaches use stochastic
search (Sharma & Aiken, 2016), heurstics-based search (Galeotti et al., 2015), PAC learning based
on counterexamples (Padhi & Millstein, 2017), or reinforcement learning (Si et al., 2018). However,
these approaches often struggle to learn complex, real-world loop invariants.

In this paper, we introduce a novel approach to learning loop invariants by modeling the loop be-
havior from program execution traces with a new type of neural architecture. We note that inferring
loop invariants can be posed as learning formulas in Satisfiability Modulo Theories (SMT) (Biere
et al., 2009) over program variables collected from program execution traces (Nguyen et al., 2017).
In principle, neural networks are well suited to this task because they can act as universal function
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approximators and have been successfully applied in various domains that require modeling of ar-
bitrary functions (Hornik et al., 1989; Goodfellow et al., 2016). However, loop invariants must be
represented as explicit SMT formulas to be usable for program verification. Unfortunately, existing
methods for extracting logical rules from general neural architectures lack sufficient precision (Au-
gasta & Kathirvalavakumar, 2012), while inductive logic learning lacks sufficient expressiveness for
use in verification (Evans & Grefenstette, 2018).

We address this issue by developing a novel neural architecture, Continuous Logic Network (CLN),
which is able to efficiently learn explicit and precise representations of SMT formulas by using
continuous truth values. Unlike existing neural architectures, CLNs can represent a learned SMT
formula explicitly in its structure and thus allow us to precisely extract the exact formula from a
trained model.

In order to train CLNs, we introduce a new semantic mapping for SMT formulas to continuous truth
values. Our semantic mapping builds on BL, or basic fuzzy logic (Hájek, 2013), to support general
SMT formulas in a continuous logic setting. We further prove that our semantic model is sound (i.e.,
truth assignments for the formulas are consistent with their discrete counterparts) and complete (i.e.,
all formulas can be represented) with regard to the discrete SMT formula space. These properties
allow CLNs to represent any quantifier-free SMT formula operating on mixed integer-real arithmetic
as an end-to-end differentiable series of operations.

We use CLNs to implement a new inference system for loop invariants, CLN2INV, that significantly
outperforms state-of-the-art tools on the Code2Inv dataset by solving all 124 theoretically solvable
problems in the dataset. This is 20 problems more than LoopInvGen, the winner of the SyGus 2018
competition loop invariant track (Padhi & Millstein, 2017). Moreover, CLN2INV finds invariants
for each program in 1.1 second on average, more than 40 times faster than LoopInvGen. We also
demonstrate that CLN2INV is able to learn complex, real-world loop invariants with combinations
of conjunctions and disjunctions of multivariable constraints. Our source code and benchmarks are
publicly available on Github1.

Our main contributions are:

• We introduce a new semantic mapping for assigning continuous truth values to SMT formu-
las that is theoretically grounded and enables learning formulas through backpropagation.
We further prove that our semantic model is sound and complete.

• We develop a novel neural architecture, Continuous Logic Networks (CLNs), that to the
best of our knowledge is the first to efficiently learn precise and explicit SMT formulas by
construction.

• We use CLNs to implement a new loop invariant inference system, CLN2INV, that is the
first to solve all 124 theoretically solvable problems in the Code2Inv dataset, 20 more than
the existing methods. CLN2INV is able to find invariants for each problem in 1.1 second
on average, 40× faster than existing systems.

• We further show that CLN2INV is able to learn 12 more complex loop invariants than the
ones present in the Code2Inv dataset with combinations of multivariable constraints.

Related Work. Traditionally, loop invariant learning relies on stochastic or heuristics-guided search
(Sharma & Aiken, 2016; Galeotti et al., 2015). Other approaches like NumInv analyze traces and
discover conjunctions of equalities by solving a system of linear equations (Sharma et al., 2013;
Nguyen et al., 2017). LoopInvGen uses PAC learning of CNF using counterexamples (Padhi et al.,
2016; Padhi & Millstein, 2017). By contrast, Code2Inv learns to guess loop invariants using re-
inforcement learning with recurrent and graph neural networks (Si et al., 2018). However, these
approaches struggle to learn complex invariants. Unlike these works, CLN2INV efficiently learns
complex invariants directly from execution traces.

There is extensive work on PAC learning of boolean formulas, but learning precise formulas requires
a prohibitively large number of samples (Kearns et al., 1994). Several recent works use differentiable
logic to learn boolean logic formulas from noisy data (Kimmig et al., 2012; Evans & Grefenstette,
2018; Payani & Fekri, 2019) or improving adversarial robustness by applying logical rules to training

1https://github.com/gryan11/cln2inv
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(Fischer et al., 2019). By contrast, our work learns precise SMT formulas directly by construction,
allowing us to learn richer predicates with compact representation in a noiseless setting.

A variety of numerical relaxations have been applied to SAT and SMT solving. Application-specific
approximations using methods such as interval overapproximation and slack variables have been
developed for different classes of SMT (Eggers et al., 2008; Nuzzo et al., 2010). More recent work
has applied recurrent and graph neural networks to Circuit SAT problems and unsat core detection
(Amizadeh et al., 2019; Selsam et al., 2019; Selsam & Bjørner, 2019). FastSMT uses embeddings
from natural language processing like skip-gram and bag-of-words to represent formulas for search
strategy optimization (Balunovic et al., 2018). Unlike these approaches, we relax the SMT semantics
directly to generate a differentiable representation of SMT.

2 BACKGROUND

In this section, we introduce the problem of inferring loop invariants and provide a brief overview
of Satisfiability Modulo Theories (SMT), which are used to represent loop invariants. We provide
background into fuzzy logic, which we extend with our new continuous semantic mapping for SMT.

2.1 LOOP INVARIANTS

Loop invariants capture loop behavior irrespective of number of iterations, which is crucial for
verifying programs with loops. Given a loop, while(LC){C}, a precondition P , and a post-
condition Q, the verification task involves finding a loop invariant I that can be concluded from the
precondition and implies the post-condition (Hoare, 1969). Formally, it must satisfy the following
three conditions, in which the second is a Hoare triple describing the loop:

P =⇒ I {I ∧ LC} C {I} ¬LC ∧ I =⇒ Q

Example of Loop Invariant. Consider the example loop in Fig.1. For a loop invariant to be usable,
it must be valid for the precondition (t = 10 ∧ u = 0), the inductive step when t 6= 0, and the
post-condition (u = 20) when the loop condition is no longer satisfied, i.e., t = 0. The correct and
precise invariant I for the program is (2t+ u = 20).

//pre: t=10 /\ u=0
while (t != 0){
t = t - 1;
u = u + 2;

}
//post: u=20

(a) Example loop

The desired loop invariant I for the left program is a boolean
function over program variables t, u such that:

∀t u,

{
t = 10 ∧ u = 0 =⇒ I(t, u) (pre)
I(t, u) ∧ (t 6= 0) =⇒ I(t− 1, u+ 2) (inv)
I(t, u) ∧ (t = 0) =⇒ u = 20 (post)

(b) The desired and precise loop invariant I is (2t+ u = 20).

Figure 1: Example Loop Invariant inference problem.

2.2 SATISFIABILITY MODULO THEORIES

Satisfiability Modulo Theories (SMT) are an extension of Boolean Satisfiability that allow solvers
to reason about complex problems efficiently. Loop invariants and other formulas in program veri-
fication are usually encoded with quantifier-free SMT. A formula F in quantifier-free SMT can be
inductively defined as below:

F := E1 ./ E2 | ¬F | F1 ∧ F2 | F1 ∨ F2 ./∈ {=, 6=, <,>,≤,≥}

where E1 and E2 are expressions of terms. The loop invariant (2t + u = 20) in Fig. 1 is an SMT
formula. Nonlinear arithmetic theories admit higher-order terms such as t2 and t ∗ u, allowing them
to express more complex constraints. For example, (¬(2 ≥ t2)) is an SMT formula that is true when
the value of the high-order term t2 is larger than 2.
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2.3 BASIC FUZZY LOGIC (BL)

Basic fuzzy logic (BL) is a class of logic that uses continuous truth values in the range [0, 1] and
is differentiable almost everywhere2 (Hájek, 2013). BL defines logical conjunction with functions
called t-norms, which must satisfy specific conditions to ensure that the behavior of the logic is
consistent with boolean First Order Logic. Formally, a t-norm (denoted⊗) in BL is a binary operator
over truth values in the interval [0, 1] satisfying the following conditions:

1. associativity and commutativity: the order in which a set of t-norms on continuous truth
values are evaluated should not change the result: x⊗(y⊗z) = (x⊗y)⊗z and x⊗y = y⊗x.

2. monotonicity: increasing any input value to a t-norm operation should not cause the result
to decrease: x1 ≤ x2 =⇒ x1 ⊗ y ≤ x2 ⊗ y

3. consistency: the result of any t-norm applied to a truth value and 1 should be 1, and the
result of any truth value and 0 should be 0: 1⊗ x = x and 0⊗ x = 0

Besides these conditions, BL also requires that t-norms be continuous. Given a t-norm ⊗, its asso-
ciated t-conorm (denoted ⊕) is defined with DeMorgan’s law: t ⊕ u , ¬(¬t ⊗ ¬u), which can be
considered as logical disjunction. A common t-norm is the product t-norm x ⊗ y = x · y with its
associated t-conorm x⊕ y = x+ y − x · y.

3 CONTINUOUS SATISFIABILITY MODULO THEORIES

We introduce a continuous semantic mapping, S, for SMT on BL that is end-to-end differentiable.
The mapping S associates SMT formulas with continuous truth values while preserving each for-
mula’s semantics. In this paper, we only consider quantifier-free formulas. This process is analogous
to constructing t-norms for BL, where a t-norm operates on continuous logical inputs.

We define three desirable properties for continuous semantic mapping S that will preserve formula
semantics while facilitating parameter training with gradient descent:

1. S(F ) should be consistent with BL. For any two formulas F and F ′, where F (x) is sat-
isfied and F ′(x) is unsatisfied with an assignment x of formula terms, we should have
S(F ′)(x) < S(F )(x). This will ensure the semantics of SMT formulas are preserved.

2. S(F ) should be differentiable almost everywhere. This will facilitate training with gradient
descent through backpropogation.

3. S(F ) should be increasing everywhere as the terms in the formula approach constraint
satisfaction, and decreasing everywhere as the terms in the formula approach constraint
violation. This ensures there is always a nonzero gradient for training.

Continuous semantic mapping. We first define the mapping for “>” (greater-than) and “≥”
(greater-than-or-equal-to) as well as adopting definitions for “¬”, “∧”, and “∨” from BL. All other
operators can be derived from these. For example, “≤” (less-than-or-equal-to) is derived using “≥”
and “¬”, while “=” (equality) is then defined as the conjunction of formulas using “≤” and “≥.”
Given constants B > 0 and ε > 0, we first define the the mapping S on “>” and “≥” using shifted
and scaled sigmoid functions:

S(t > u) ,
1

1 + e−B(t−u−ε) S(t ≥ u) , 1

1 + e−B(t−u+ε)

We illustrate these functions in Figure 2. The validity of our semantic mapping lie in the following
facts, which can be proven with basic algebra.

lim
ε→0+

B·ε→+∞

1

1 + e−B(t−u−ε) =

{
1 t > u
0 t ≤ u lim

ε→0+

B·ε→+∞

1

1 + e−B(t−u+ε) =

{
1 t ≥ u
0 t < u

2Almost everywhere indicates the function is differentiable everywhere except for a set of measure 0. For
example, a Rectified Linear Unit is differentiable almost everywhere except at zero.
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(a) Plot of S(x ≥ 0), S(x > 0) with sigmoid
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(b) Plot of S(x = 0) with product t-norm

Figure 2: Illustration of the mapping S on >,≥,= when B = 20 and ε = 0.2

When ε goes to zero andB∗ε goes to infinity, our continuous mapping of “>” and “≥” will preserve
their original semantics. Under these conditions, our mapping satisfies all three desirable properties.
In practice, for small ε and large B, the properties are also satisfied if |t− u| > ε.

Next we define the mapping S for boolean operators “∧”, “∨” and “¬” using BL. Given a specific
t-norm ⊗ and its corresponding t-conorm ⊕, it is straightforward to define mappings of “∧”, “∨”
and “¬”:

S(F1 ∧ F2) , S(F1)⊗ S(F2) S(F1 ∨ F2) , S(F1)⊕ S(F2) S(¬F ) , 1− S(F )

Based on the above definitions, the mapping for other operators can be derived as follows:

S(t < u) = S(¬(t ≥ u)) = 1

1 + eB(t−u+ε) S(t ≤ u) = S(¬(t > u)) =
1

1 + eB(t−u−ε)

S(t = u) = S((t ≥ u) ∧ (t ≤ u)) = 1

1 + e−B(t−u+ε) ⊗
1

1 + eB(t−u−ε)

Figure 2The mapping S on “=” is valid since the following limit holds (see Appendix A for the
proof).

lim
ε→0+

B·ε→+∞

S(t = u) = lim
ε→0+

B·ε→+∞

1

1 + e−B(t−u+ε) ⊗
1

1 + eB(t−u−ε) =

{
1 t = u
0 t 6= u

The mapping for other operators shares similar behavior in the limit, and also fulfill our desired
properties under the same conditions.

Using our semantic mapping S, most of the standard operations of integer and real arithmetic,
including addition, subtraction, multiplication, division, and exponentiation, can be used normally
and mapped to continuous truth values while keeping the entire formula differentiable. Moreover,
any expression in SMT that has an integer or real-valued result can be mapped to continuous logical
values via these formulas, although end-to-end differentiability may not be maintained in cases
where specific operations are nondifferentiable.

4 CONTINUOUS LOGIC NETWORKS

In this section, we describe the construction of Continuous Logic Networks (CLNs) based on our
continuous semantic mapping for SMT on BL.

CLN Construction. CLNs use our semantic mapping to provide a general neural architecture for
learning SMT formulas. In a CLN, the learnable coefficients and smoothing parameters correspond
to the learnable parameters in a standard feedforward network, and the continuous predicates, t-
norms, and t-conorms operate as activation functions like ReLUs in a standard network. In this
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paper, we focus on shallow networks to address the loop invariant inference problem, but we envision
deeper general purpose CLNs that can learn arbitrary SMT formulas. When constructing a CLN,
we work from an SMT Formula Template, in which every value is marked as either an input term, a
constant, or a learnable parameter. Given an SMT Formula Template, we dynamically construct a
CLN as a computational graph. Figure 3 shows a simple formula template and the constructed CLN.
We denote the CLN model constructed from the formula template S(F ) as MF .

CLN Training. Once the CLN has been constructed based on a formula template, it is trained
with the following optimization. Given a CLN model M constructed from an SMT template with
learnable parameters W, and a set X of valid assignments for the terms in the SMT template, the
expected value of the CLN is maximized by minimizing a loss function L that penalizes model
outputs that are less than one. A minimum scaling factor β is selected, and a hinge loss is applied to
the scaling factors (B) to force the differentiable predicates to approach sharp cutoffs. The offset ε
is also regularized to ensure precision. The overall optimization is formulated as:

max
{W,B,ε}

E[M(X;W, B, ε)] = min
{W,B,ε}

∑
x∈X

L(M(x;W, B, ε)) + λ
∑
B∈B

Lhinge(β,B) + γ||ε||2

where λ and γ are hyperparameters respectively governing the weight assigned to the scaling factor
and offset regularization. Lhinge(β,B) is defined as max(0, β − B), and L is any loss function
strictly decreasing in domain [0, 1].

Given a CLN that has been trained to a loss approaching 0 on a given set of valid assignments, we
show that the resulting continuous SMT formula learned by the CLN is consistent with an equivalent
discrete SMT formula. In particular, we prove that such a formula is sound, (i.e., a CLN will learn a
correct SMT formula with respect to the training data), and that our continuous mapping is complete,
(i.e., CLNs can represent any SMT formula that can be represented in discrete logic), where these
properties are defined for CLNs as follows:

Soundness. Given the SMT formula F , the CLN model MF constructed from S(F ) always
preserves the truth value of F . It indicates that given a valid assignment to the terms x in F ,
F (x) = True ⇐⇒ MF (x) = 1 and F (x) = False ⇐⇒ MF (x) = 0.

Completeness. For any SMT formula F , a CLN model M can be constructed representing that
formula. In other words, CLNs can express all SMT formulas on integers and reals.

We further prove that CLNs are guaranteed to converge to a globally optimal solution for formulas,
which can be expressed as the conjunction of linear equalities. We provide formal definitions and
proofs for soundness and completeness in Appendix B and optimality in Appendix C.

5 LOOP INVARIANT LEARNING

We use CLNs to implement a new inference system for loop invariants, CLN2INV, which learns
invariants directly from execution traces. CLN2INV follows the same overall process as other loop
invariant inference systems such as LoopInvGen and Code2Inv – it iterates through likely candidate
invariants and checks its validity with an SMT solver. The key difference between our method and
other systems is that it learns a loop invariant formula directly from trace data. Figure 3 provides an
overview of the architecture.

Preprocessing. We first perform static analysis and instrument the program to prepare for train-
ing data generation. In addition to collecting the given precondition and post-condition, the static
analysis extracts all constants in the program, along with the loop termination condition. We then
instrument the program to record all program variables before each loop execution and after the loop
termination. We also restrict the loop to terminate after a set number of iterations to prevent loops
running indefinitely (for experiments in this paper, we set the max loop iterations to 50). We also
strengthen the precondition to ensure loop execution (see Appendix D).

Training Data Generation. We generate training data by running the program repeatedly on a set
of randomly initialized inputs that satisfy the preconditions. Unconstrained variables are initialized
from a uniform distribution centered on 0 with width r, where r is a hyperparameter of the sampling
process. Variables with either upper or lower bound precondition constraints are initialized from
a uniform distribution adjacent to their constraints with width r, while variables with both upper
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Figure 3: System architecture and CLN construction from SMT templates.

and lower bounds in the precondition are sampled uniformly within their bounds. For all of our
experiments in this paper, we set r to 10. When the number of uninitialized variables is small (i.e.,
less than 3), we perform this sampling exhaustively. An example of training data generation is
provided in Appendix E.

Template Generation. We generate templates in three stages with increasing expressiveness:

1. We first generate templates directly from the pre-condition and post-condition.

2. We next extract the individual clauses from the pre- and post-condition as well as the loop
condition, and generate templates from conjunctions and disjunctions of each possible pair
of clauses.

3. We finally generate more generic templates of increasing complexity with a combination of
one or more equality constraints on all variables combined with conjunctions of inequality
constraints, which are based on the loop condition and individual variables.

We describe the template generation in detail in Appendix E. To detect when higher order terms may
be present in the invariant, we perform a log-log linear regression on each variable relative to the
loop iteration, similarly to Sharma et al. (2013). If the loop contains one or more variables that grow
superlinearly relative to the loop iteration, we add higher order polynomial terms to the equality
constraints in the template, up to the highest degree detected among the loop variables.

CLN Construction and Training. Once a template formula has been generated, a CLN is con-
structed from the template using the formulation in §4. As an optimization, we represent equality
constraints as Gaussian-like functions that retain a global maximum when the constraint is satisfied
as discussed in Appendix F. We then train the model using the collected execution traces.

Invariant Checking. Invariant checking is performed using SMT solvers such as Z3 (De Moura &
Bjørner, 2008). After the CLN for a formula template has been trained, the SMT formula for the
loop invariant is recovered by normalizing the learned parameters. The invariant is checked against
the pre, post, and inductive conditions as described in §2.1. If the correct invariant is not found, we
return to the template generation phase to continue the search with a more expressive template.

6 EXPERIMENTS

We compare the performance of CLN2INV with two existing methods and demonstrate the efficacy
of the method on several more difficult problems. Finally, we conduct two ablation studies to justify
our design choices.

Test Environment. All experiments are performed on an Ubuntu 18.04 server with an Intel Xeon
E5-2623 v4 2.60GHz CPU, 256Gb of memory, and an Nvidia GTX 1080Ti GPU.

System Configuration. We implement CLNs in PyTorch and use the Adam optimizer for training
with learning rate 0.01 (Paszke et al., 2017; Kingma & Ba, 2014). Because the performance of CLN
is dependent on weight initialization, the CLN training randomly restart if the model does not reach
termination within 2, 000 epochs. Learnable parameters are initialized from a uniform distribution
in the range [-1, 1], which we found works well in practice.
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Test Dataset. We use the same benchmark used in the evaluation of Code2Inv. We have removed
nine invalid programs from Code2Inv’s benchmark and test on the remaining 124. The removed pro-
grams are invalid because there are inputs which satisfy the precondition but result in a violation of
the post-condition. See Appendix G for details on the removed problems. The benchmark consists
of loops expressed as C code and corresponding SMT files. Each loop can have nested if-then-else
blocks (without nested loops). Programs in the benchmark may also have uninterpreted functions
with boolean return values (emulating external function calls) in branches or loop termination con-
ditions.

6.1 COMPARISON TO EXISTING SOLVERS
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Figure 4: Performance evaluation.

Performance Comparison. We compare CLN2INV to two state-of-the-art methods: Code2Inv
(based on neural code representation and reinforcement learning) and LoopInvGen (PAC learning
over synthesized CNF formulas) (Si et al., 2018; Padhi & Millstein, 2017). We limit each method to
one hour per problem in the same format as the SyGuS Competition (Alur et al., 2019). CLN2INV is
able to solve all 124 problems in the benchmark. LoopInvGen solves 104 problems while Code2inv
solves 90.3

Figure 4a shows the measured runtime on each evaluated system. CLN2INV solves problems in
1.1 second on average, which is over 40× faster than LoopInvGen, the second fastest system in the
evaluation. It spends the most time on solver calls (0.6s avg.) and CLN training (0.5s avg.), with
negligible time spent on preprocessing, data generation, and template generation on each problem (
less than 20ms ea.)4.

In Table 1 we provide a more detailed analysis of how much time is spent on each stage of the
invariant inference pipeline in CLN2INV. Measurements are averaged over 5 runs. The system
spends most time on solver calls (0.6s avg.) and CLN training (0.5s on avg.) with negligible time
spent on preprocessing, sampling, and template generation. For most problems in the Code2Inv
benchmark, CLN2INV completes CLN training quickly (less than 0.2s) and spends most of its time
performing solver checks, but it requires more epochs to train on some complex problems with many
variables.

Table 1: Time spent on each stage of CLN2INV Pipeline.

Preprocessing Sampling Template Gen. CLN Training Checking
Avg. Time 5ms 2ms 4ms 0.5s 0.6s
Max Time 18ms 12ms 8ms 7.2s 5.3s

In general, CLN2INV has similar performance to LoopInvGen on simple problems but is able to
scale efficiently to complex problems. Figure 4b shows the number of Z3 calls made by each method.

3The Code2Inv authors originally reported solving 92 problems using the same one hour timeout. We
believe that the difference may be caused by changes in the testing environment or randomized model initial-
ization.

4At most 6171 data points are generated for a given program in the benchmark, and 1041 data points per
program on average, using the sampling strategy in §5.
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Table 2: Results and summary statistics for performance evaluation.

Method Number Solved Avg Time (s) Avg Z3 Calls Time/Z3 Call (s)
Code2Inv 90 266.71 16.62 50.89
LoopInvGen 104 45.11 3,605.43 0.08
CLN2INV 124 1.07 31.77 0.17

For almost all problems, CLN2INV requires fewer Z3 calls than the other systems, although for
some difficult problems it uses more Z3 calls than Code2Inv.

Table 2 summarizes results of the performance evaluation. Code2Inv require much more time on
average per problem, but minimizes the number of calls made to an SMT solver. In contrast, Loop-
InvGen is efficient at generating a large volume of guessed candidate invariants, but is much less ac-
curate for each individual invariant. CLN2INV can be seen as balance between the two approaches:
it searches over candidate invariants more quickly than Code2Inv, but generates more accurate in-
variants than LoopInvGen, resulting in lower overall runtime.

6.2 MORE DIFFICULT LOOP INVARIANTS

We consider two classes of more difficult loop invariant inference problems that are not present in
the Code2Inv dataset. The first require conjunctions and disjunctions of multivariable constraints,
and the second require polynomials with many higher order terms. Both of these classes of problems
are significantly more challenging because they are more complex and cause the space of possible
invariants to grow much more quickly.

To evaluate on problems that require invariants with conjunctions and disjunctions of multivariable
constraints, we construct 12 additional problems. We specifically design these problems to contain
loops with invariants that cannot be easily inferred with pre- and post-condition based heuristics. In
this section Figure 5, we show one of these problems. By plotting the trace as shown in Figure 5b,
it is easy to see that the points lie on one of the two lines expressible as linear equality constraints.
The correct loop invariant for the program is ((t+ u = 0) ∨ (t− u = 0)) ∧ (u ≤ 0).

//pre: t=-20/\u=-20
while (u != 0) {
u++;
if (t > 0)

t = -t + 1;
else

t = -t - 1;
}
//post: t=0

(a) Pseudocode for Problem 1

20 15 10 5 0
Value of u

20

0

20

Va
lu

e 
of

 t

(b) Plotted trace of program

Figure 5: Finding the loop invariant for Problem 1, which involves a disjunction of equalities

Another problem with multivariable conjunction is shown in Figure 6. In this program, we use
unknown to denote an external function call that returns either true or false. As we cannot assume
much about the function, we model the function call as sampling from a Bernoulli distribution with
success probability 0.5. Although the branching behavior is may not be deterministic, we know
(t + u = 0) ∧ (v + w = 0) ∧ (u + w ≥ 0) is a correct invariant, as it holds regardless of which
branch is taken. Our CLN2INV can learn this invariant within 20 seconds, while both Code2inv and
LoopInvGen time out after one hour without finding a solution.

To evaluate on problems with higher order polynomial invariants, we test CLN2INV on the power
summation problems in the form u =

∑k
t=0 t

d for a given degree d, which have been used in
evaluation for polyonomial loop invariant inference (Sharma et al., 2013; Nguyen et al., 2017). We
discuss these problems in more detail in Appendix H. CLN2INV can correctly learn the invariant
for 1st and 2nd order power summations, but cannot learn correct invariants for 3rd, 4th or 5th order
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//pre: t=-10 /\ u=10 /\ v=-10 /\ w=10
while (u + w > 0) {

if (unknown()) {
t++; u--;

} else {
v++; w--;

}
}
//post: t=w /\ u=v

Figure 6: Pseudocode for Problem 2, which involves a conjunction of equalities

summations, which have many more higher order terms. We do not evaluate the other methods on
these problems because they are not configured for nonlinear arithmetic by default.

6.3 ABLATION STUDIES

Effect of CLN Training on Performance. CLN2INV relies on a combination of heuristics using
static analysis and learning formulas from execution traces to correctly infer loop invariants. In
this ablation we disable model training and limit CLN2INV to static models with no learnable pa-
rameters. Static CLN2INV solves 91 problems in the dataset. Figure 7 shows a comparison of full
CLN2INV with one limited to static models. CLN2INV’s performance with training disabled shows
that a large number of problems in the dataset are relatively simple and can be inferred from basic
heuristics. However, for more difficult problems, CLN learning is key to inferring correct invariants.

0 20 40 60 80 100 120
Number of Instances Solved

100

101

102

Ru
nt

im
e 

(s
)

Full CLN2INV
Static CLN2INV

(a) Runtime performance.
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Number of Instances Solved

101

102
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m
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r o

f Z
3 

Ca
lls

Full CLN2INV
Static CLN2INV

(b) SMT solver calls.

Figure 7: Ablation study comparing static vs trained models.

7 CONCLUSION

We develop a novel neural architecture that explicitly and precisely learns SMT formulas by con-
struction. We achieve this by introducing a new sound and complete semantic mapping for SMT
that enables learning formulas through backpropagation. We use CLNs to implement a loop invari-
ant inference system, CLN2INV, that is the first to solve all theoretically solvable problems in the
Code2Inv benchmark and takes only 1.1 second on average. We believe that the CLN architecture
will also be beneficial for other domains that require learning SMT formulas.
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A PROOF OF LIMIT OF S(t = u)

lim
ε→0+

B·ε→+∞

S(t = u) = lim
ε→0+

B·ε→+∞

1

1 + e−B(t−u+ε) ⊗
1

1 + eB(t−u−ε) =

{
1 t = u
0 t 6= u

Proof. Let f(t, u;B, ε) = 1
1+e−B(t−u+ε) and g(t, u;B, ε) = 1

1+eB(t−u−ε) . Then what we want to
prove becomes

lim
ε→0+

B·ε→+∞

(f(t, u;B, ε) ⊗ g(t, u;B, ε)) =

{
1 t = u
0 t 6= u

Because all f, g,⊗ are continuous in their domain, we have

lim
ε→0+

B·ε→+∞

(f(t, u;B, ε) ⊗ g(t, u;B, ε)) =

 lim
ε→0+

B·ε→+∞

f(t, u;B, ε)

⊗
 lim

ε→0+

B·ε→+∞

g(t, u;B, ε)


Using basic algebra, we get

lim
ε→0+

B·ε→+∞

f(t, u;B, ε) =

{
1 t ≥ u
0 t < u

lim
ε→0+

B·ε→+∞

g(t, u;B, ε) =

{
1 t ≤ u
0 t > u

Combing these results, we have lim
ε→0+

B·ε→+∞

f(t, u;B, ε)

⊗
 lim

ε→0+

B·ε→+∞

g(t, u;B, ε)

 =

{
0⊗ 1 t < u
1⊗ 1 t = u
1⊗ 0 t > u

For any t-norm, we have 0⊗ 1 = 0, 1⊗ 1 = 1, and 1⊗ 0 = 0. Put it altogether, we have

lim
ε→0+

B·ε→+∞

(f(t, u;B, ε) ⊗ g(t, u;B, ε)) =

{
1 t = u
0 t 6= u

which concludes the proof.

B SOUNDNESS AND COMPLETENESS OF CLNS

In this section we provide formal descriptions and proofs of CLN soundness and completeness when
trained to 0 loss. These properties are defined for CLNs as follows:

Soundness. Given the SMT formula F , the CLN model MF constructed from S(F ) always
preserves the truth value of F . It indicates that given a valid assignment to the terms x in F ,
F (x) = True ⇐⇒ MF (x) = 1 and F (x) = False ⇐⇒ MF (x) = 0.

Completeness. For any SMT formula F , a CLN model M can be constructed representing that
formula. In other words, CLNs can express all SMT formulas on integers and reals.

We formally state these properties in Theorem 1. Before that we need to define a property for
t-norms.

Property 1. ∀t u, (t > 0) and (u > 0) implies (t⊗ u > 0).

The product t-norm and Godel t-norm have this property, while the Lukasiewicz t-norm does not.
Theorem 1. For any quantifier-free linear SMT formula F , there exists CLN model M , such that

∀x B ε, 0 ≤M(x;B, ε) ≤ 1 (1)

∀x, F (x) = True ⇐⇒ lim
ε→0+

B·ε→∞

M(x;B, ε) = 1 (2)

∀x, F (x) = False ⇐⇒ lim
ε→0+

B·ε→∞

M(x;B, ε) = 0 (3)

as long as the t-norm used in building M satisfies Property 1.
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Proof. For convenience of the proof, we first remove all <, ≤, = and 6= in F , by transforming
t < u into ¬(t ≥ u), t ≤ u into ¬(t > u), t = u into (t ≥ u) ∧ ¬(t > u), and t 6= u into
(t > u) ∨ ¬(t ≥ u). Now the only operators that F may contain are >,≥,∧,∨,¬. We prove
Theorem 1 by induction on the constructor of formula F . In the following proof, we construct
model M given F and show that it satisfied Eq.(1)(2). We leave the proof for why M also satisfied
Eq.(3) to readers.

Atomic Case. When F is an atomic clause, then F will be in the form of x ∗ W + b > 0 or
x ∗W + b ≥ 0. For the first case, we construct a linear layer with weight W and bias b followed by
a sigmoid function scaled with factor B and right-shifted with distance ε. For the second case, we
construct the same linear layer followed by a sigmoid function scaled with factor B and left-shifted
with distance ε. Simply evaluating the limits for each we arrive at

∀x, F (x) = True ⇐⇒ lim
ε→0+

B·ε→∞

M(x;B, ε) = 1

And from the definition of sigmoid function we know 0 ≤M(x;B, ε) ≤ 1.

Negation Case. If F = ¬F ′, from the induction hypothesis, F ′ can be represented by models M ′
satisfying Eq.(1)(2)(3). Let p′ output node of M ′. We add a final output node p = 1 − p′. So
M(x;B, ε) = 1−M ′(x;B, ε). Using the induction hypothesis 0 ≤M ′(x;B, ε) ≤ 1, we conclude
Eq.(1) 0 ≤M(x;B, ε) ≤ 1.

Now we prove the “ =⇒ ” side of Eq.(2). If F (x) = True, then F ′(x) = False. From the
induction hypothesis, we know lim ε→0+

B·ε→∞
M ′(x;B, ε) = 0. So

lim
ε→0+

B·ε→∞

M(x;B, ε) = lim
ε→0+

B·ε→∞

1−M ′(x;B, ε) = 1− 0 = 1

Next we prove the “⇐= ” side. If lim ε→0+

B·ε→∞
M(x;B, ε) = 1, we have

lim
ε→0+

B·ε→∞

M ′(x;B, ε) = lim
ε→0+

B·ε→∞

1−M(x;B, ε) = 1− 1 = 0

From the induction hypothesis we know that F ′(x) = False. So F (x) = ¬F ′(x) = True.

Conjunction Case. If F = F1 ∧ F2, from the induction hypothesis, F1 and F2 can be represented
by models M1 and M2, such that both (F1,M1) and (F2,M2) satisfy Eq.(1)(2)(3). Let p1 and p2
be the output nodes of M1 and M2. We add a final output node p = p1 ⊗ p2. So M(x;B, ε) =
M1(x;B, ε) ⊗M2(x;B, ε). Since (⊗) is continuous and so are M1(x;B, ε) and M2(x;B, ε), we
know their composition M(x;B, ε) is also continuous. (Readers may wonder why M1(x;B, ε)
is continuous. Actually the continuity of M(x;B, ε) should be proved inductively like this proof
itself, and we omit it for brevity.) From the definition of (⊗), we have Eq.(1) 0 ≤M(x;B, ε) ≤ 1.

Now we prove the =⇒ side of Eq.(2). For any x, if F (x) = True which means both F1(x) =
True and F2(x) = True, from the induction hypothesis we know that lim ε→0+

B·ε→∞
M1(x;B, ε) = 1

and lim ε→0+

B·ε→∞
M2(x;B, ε) = 1. Then

lim
ε→0+

B·ε→∞

M(x;B, ε) = lim
ε→0+

B·ε→∞

M1(x;B, ε)⊗M2(x;B, ε) = 1⊗ 1 = 1

Then we prove the ⇐= side. From the induction hypothesis we know that M1(x;B, ε) ≤ 1 and
M2(x;B, ε) ≤ 1. From the non-decreasing property of t-norms (see §2.3), we have

M1(x;B, ε)⊗M2(x;B, ε) ≤ M1(x;B, ε)⊗ 1

Then from the consistency property and the commutative property, we have

M1(x;B, ε)⊗ 1 =M1(x;B, ε)

Put them altogether we get

M(x;B, ε) ≤ M1(x;B, ε) ≤ 1
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Because we know lim ε→0+

B·ε→∞
M(x;B, ε) = 1, according to the squeeze theorem in calculus, we get

lim
ε→0+

B·ε→∞

M1(x;B, ε) = 1

From the induction hypothesis, we know that F1(x) = True. We can prove F2(x) = True in the
same manner. Finally we have F (x) = F1(x) ∧ F2(x) = True.

Disjunction Case. For the case F = F1 ∨ F2, we construct M from M1 and M2 as we did in the
conjunctive case. This time we let the final output node be p = p1 ⊕ p2. From the continuity of (⊗)
and the definition of (⊕) (t ⊕ u = 1 − (1 − t) ⊗ (1 − u)), (⊕) is also continuous. We conclude
M(x;B, ε) is also continuous and 0 ≤M(x;B, ε) ≤ 1 by the same argument as F = F1 ∧ F2.

Now we prove the “ =⇒ ” side of Eq.(2). For any assignment x, if F (x) = True which means
F1(x) = True or F2(x) = True. Without loss of generality, we assume F1(x) = True. From the
induction hypothesis, we know lim ε→0+

B·ε→∞
M1(x;B, ε) = 1.

For any (⊕) and any 0 ≤ t, t′ ≤ 1, if t ≤ t′, then

t⊕ u = 1− (1− t)⊗ (1− u) ≤ 1− (1− t′)⊗ (1− u) = t′ ⊕ u

Using this property and the induction hypothesis M2(x;B, ε) ≥ 0, we have

M1(x;B, ε)⊕ 0 ≤ M1(x;B, ε)⊕M2(x;B, ε) =M(x;B, ε)

From the induction hypothesis we also have M1(x;B, ε) ≤ 1. Using the definition of (⊕) and the
consistency of (⊗) (0⊗x = 0), we get M1(x;B, ε)⊕ 0 =M1(x;B, ε). Put them altogether we get

M1(x;B, ε) ≤ M(x;B, ε) ≤ 1

Because we know lim ε→0+

B·ε→∞
M1(x;B, ε) = 1, according to the squeeze theorem in calculus, we

get lim ε→0+

B·ε→∞
M(x;B, ε) = 1.

Then we prove the “⇐= ” side. Here we need to use the existence of limit:

lim
ε→0+

B·ε→∞

M(x;B, ε)

This property can be proved by induction like this proof itself, thus omitted for brevity.

Let

c1 = lim
ε→0+

B·ε→∞

M1(x;B, ε) c2 = lim
ε→0+

B·ε→∞

M2(x;B, ε)

Then

lim
ε→0+

B·ε→∞

M(x;B, ε) = lim
ε→0+

B·ε→∞

M1(x;B, ε)⊕M2(x;B, ε) = c1 ⊕ c2 = 1− (1− c1)⊗ (1− c2)

Since we have lim ε→0+

B·ε→∞
M(x;B, ε) = 1, we get

(1− c1)⊗ (1− c2) = 0

Using Property 1 of (⊗) (defined in §4), we have c1 = 1 ∨ c2 = 1. Without loss of generality, we
assume c1 = 1. From the induction hypothesis, we know that F1(x) = True. Finally, F (x) =
F1(x) ∨ F2(x) = True.

Careful readers may have found that if we use the continuous mapping function S in §3, then we
have another perspective of the proof above, which can be viewed as two interwoven parts. The first
part is that we proved the following lemma.
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Corollary 1. For any quantifier-free linear SMT formula F ,

∀x B ε, 0 ≤ S(F ;B, ε)(x) ≤ 1

∀x, F (x) = True ⇐⇒ lim
ε→0+

B·ε→∞

S(F ;B, ε)(x) = 1

∀x, F (x) = False ⇐⇒ lim
ε→0+

B·ε→∞

S(F ;B, ε)(x) = 0

Corollary 1 indicates the soundness of S. The second part is that we construct a CLN model given
S(F ). In other words, we translate S(F ) into vertices in a computational graph composed of differ-
entiable operations on continuous truth values.

C OPTIMALITY OF CLNS

Optimality. For a subset of SMT formulas (conjunctions of multiple linear equalities), CLNs are
guaranteed to converge at the global minimum. We formally state this in Theorem 2. We first define
another property similar to strict monotonicity.

Property 2. ∀t1 t2 t3, (t1 < t2) and (t3 > 0) implies (t1 ⊗ t3 < t2 ⊗ t3).

Theorem 2. For any CLN model MF constructed from a formula, F , by the procedure shown in the
proof of Theorem 1, if F is the conjunction of multiple linear equalities then any local minimum of
MF is the global minimum, as long as the t-norm used in building MF satisfies Property 2.

Proof. Since F is the conjunction of linear equalities, it has the form

F =

n∧
i=1

(

li∑
j=1

wijtij = 0)

Here W = {wij} are the learnable weights, and {tij} are terms (variables). We omit the bias bi in
the linear equalities, as the bias can always be transformed into a weight by adding a constant of 1
as a term. For convenience, we define f(x) = S(x = 0) = 1

1+e−B(x+ε) ⊗ 1
1+eB(x−ε) .

Given an assignment x of the terms {tij}, if we construct our CLN model MF following the proce-
dure shown in the proof of Theorem 1, the output of the model will be

M(x;W, B, ε) =

n⊗
i=1

f(

li∑
j=1

wijtij)

When we train our CLN model, we have a collection of m data points {tij1}, {tij2}, ..., {tijm},
which satisfy formula F . If B and ε are fixed (unlearnable), then the loss function will be

L(W) =

m∑
k=1

L(M(x;W, B, ε)) =

m∑
k=1

L(
n⊗
i=1

f(

li∑
j=1

wijtijk)) (4)

Suppose W∗ = {w∗ij} is a local minima of L(W). We need to prove W∗ is also the global minima.
To prove this, we use the definition of a local minima. That is,

∃δ > 0, ∀W, ||W −W∗|| ≤ δ =⇒ L(W) ≥ L(W∗) (5)

For convenience, we denote uik =
∑li
j=1 wijtijk. Then we rewrite Eq.(4) as

L(W) =

m∑
k=1

L(
n⊗
i=1

f(uik))

If we can prove at W∗, ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ m, uik = 0. Then because (i) f reaches its global
maximum at 0, (ii) the t-norm (⊗) is monotonically increasing, (iii) L is monotonically decreasing,
we can conclude that W∗ is the global minima.
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Now we prove ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ m, uik = 0. Here we just show the case i = 1. The proof for
i > 1 can be directly derived using the associativity of (⊗).
Let αk =

⊗n
i=2 f(uik). Since f(x) > 0 for all x ∈ R, using Property 2 of our t-norm (⊗), we

know that αk > 0. Now the loss function becomes

L(W) =

m∑
k=1

L(f(u1k)⊗ αk)

From Eq.(5), we have

∃0 < δ′ < 1, ∀γ, |γ| ≤ δ′ =⇒
m∑
k=1

L(f(uik(1 + γ))⊗ αk) ≥
m∑
k=1

L(f(uik)⊗ αk) (6)

Because (i) f(x) is an even function decreasing on x > 0 (which can be easily proved), (ii) (⊗) is
monotonically increasing, (iii) L is monotonically decreasing, for −δ′ < γ < 0, we have

m∑
k=1

L(f(uik(1 + γ))⊗ αk) =
m∑
k=1

L(f(|uik(1 + γ)|)⊗ αk) ≤

m∑
k=1

L(f(|uik|)⊗ αk) =
m∑
k=1

L(f(uik)⊗ αk) (7)

Combing Eq.(6) and Eq.(7), we have
m∑
k=1

L(f(uik(1 + γ))⊗ αk) =
m∑
k=1

L(f(uik)⊗ αk)

Now we look back on Eq.(7). Since (i) L is strictly decreasing, (ii) the t-norm we used here has
Property 2 (see §4 for definition), (iii) αk > 0, the only case when (=) holds is that for all 1 ≤
k ≤ m, we have f(|uik(1 + γ)|) = f(|uik|). Since f(x) is strictly decreasing for x ≥ 0, we have
|uik(1 + γ)| = |uik|. Finally because −1 < −δ′ < γ < 0, we have uik = 0.
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D PRECONDITION STRENGTHENING

Theorem 3. Given a program C: assume(P ); while (LC) {C} assert(Q);
If we can find a loop invariant I ′ for program C ′: assume(P ∧ LC); while (LC) {C} assert(Q);
and P ∧ ¬LC =⇒ Q, then I ′ ∨ (P ∧ ¬LC) is a correct loop invariant for program C.

Proof. Since I ′ is a loop invariant of C ′, we have

(P ∧ LC) ∧ LC =⇒ I ′ (a) {I ′ ∧ LC}C{I ′} (b) I ′ ∧ ¬LC =⇒ Q (c)

We want to prove I ′ ∨ (P ∧ ¬LC) is a valid loop invariant of C, which means

P ∧ LC =⇒ I ′ ∨ (P ∧ ¬LC) {(I ′ ∨ (P ∧ ¬LC)) ∧ LC}C{I ′ ∨ (P ∧ ¬LC)}
(I ′ ∨ (P ∧ ¬LC)) ∧ ¬LC =⇒ Q

We prove the three propositions separately. To prove P ∧ LC =⇒ I ′ ∨ (P ∧ ¬LC), we transform
it into a stronger proposition P ∧ LC =⇒ I ′, which directly comes from (a).

For {(I ′∨(P ∧¬LC))∧LC}C{I ′∨(P ∧¬LC)}, after simplification it becomes {I ′∧LC}C{I ′∨
(P ∧ ¬LC)}, which is a direct corollary of (b).

For (I ′∨(P ∧¬LC))∧¬LC =⇒ Q, after simplification it will become two separate propositions,
I ′ ∧ ¬LC =⇒ Q and P ∧ ¬LC =⇒ Q. The former is exactly (c), and the latter is a known
condition in the theorem.

E IMPLEMENTATION DETAILS

Training Data Generation Example. Figure 8 provides an example of our training data generation
procedure. The uninitialized variable k is sampled according to the precondition k ≤ 8 within the
predefined width r = 10. So we end up enumerating k = 8, 7, ...,−2. For each k, the loop is
executed repeatedly until termination, thus generating a small set of samples. The final training set
is the union of these small sets.

//pre: t=10
//pre: u=0
//pre: k<=8
//invariant: 2t+u=20
while (t != k){
t = t - 1;
u = u + 2;

}
//post: u=20-2k

(a) The original loop program.

// run with k={-2..8}
k = atoi(argv[1]);
t=10; u=0;
while (t != k){

log(t, u, k);
t = t - 1;
u = u + 2;

}
log(t, u, k);

(b) The sampling procedure.

Figure 8: Illustration of how training data is generated. After the sampling procedure in (b) we have
a collection of 88 samples which will later be fed to the CLN model.

Template Generation. Templates are first generated from the pre- and post-conditions, followed by
every pair of clauses extracted from the precondition, post-condition, and loop condition. Generic
templates are then constructed consisting of one or more general equality constraints containing all
variables conjoined with inequality constraints.

Three iterations of the generic template generation are shown here:

1 : (W1X = a1) ∧ (x1 ≤ u1) ∧ (x1 ≥ l1) ∧ · · · ∧ (xn ≤ un) ∧ (xn ≥ ln)
2 : ((W1X = a1) ∧ (W2X = a2)) ∧ (x1 ≤ u1) ∧ (x1 ≥ l1) ∧ · · · ∧ (xn ≤ un) ∧ (xn ≥ ln)
3 : ((W1X = a1) ∨ (W2X = a2)) ∧ (x1 ≤ u1) ∧ (x1 ≥ l1) ∧ · · · ∧ (xn ≤ un) ∧ (xn ≥ ln)

Algorithm 1 summarizes the template generation process. In it the following functions are defined:
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construct template: Construct a template given an smt formula.
extract clauses: Extract individual clauses from smt formulas.
estimate degrees: Performs log-log linear regression to estimate degree of each variable.
polynomial kernel: Executes polynomial kernel on variables and data for a given degree.
is single constraint: Checks if condition is a single inequality constraint.
extract loop constraint: Converts the loop condition to learnable smt template.

Note that templates are generated on demand, so each template is used to infer a possible invariant
before the next is generated.

Algorithm 1 Template Generation Algorithm.
Input: Pre← precondition

Post← post-condition
LC← loop condition
Max Template Len ← max template eq
clauses
vars← vars in program
X← training data

1: construct template(Post)
2: construct template(Pre)
3: clauses← extract clauses(Pre, Post, LC)
4: for (c1, c2) in all pairs(clauses) do
5: construct template(c1 ∧ c2)
6: construct template(c1 ∨ c2)
7: end for
8: max degree←estimate degrees(X)
9: if max degree > 1 then

10: vars← polynomial kernel(vars, max degree)
11: end if
12: bound constraints← ()
13: for var in vars do
14: bound constraints← bound contraints ∧ (var ≤ uvar)
15: bound constraints← bound contraints ∧ (var ≥ lvar)
16: end for
17: if is single constraint(LC) then
18: bound constraints← bound contraints∧extract loop constraint(LC)
19: end if
20: construct template((W · vars = b)) ∧ bound constraints)
21: eq clauses← [(W · vars = b)]
22: template len← 1
23: while template len ≤Max Template Len do
24: for eq clause in eq clauses do
25: construct template((eq clause ∧ (W · vars = b)) ∧ bound constraints)
26: eq clauses← [eq clauses, eq clause ∧ (W · vars = b)]
27: construct template((eq clause ∨ (W · vars = b)) ∧ bound constraints)
28: eq clauses← [eq clauses, eq clause ∨ (W · vars = b)]
29: end for
30: template len← template len+ 1
31: end while
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F PROPERTIES OF GAUSSIAN FUNCTION

We use a Gaussian-like function S(t = u) = exp(− (t−u)2
2σ2

) to represent equalities in our exper-
iments. It has the following two properties. First, it preserves the original semantic of = when
σ → 0, similar to the mapping S(t = u) = 1

1+e−B(t−u+ε) ⊗ 1
1+eB(t−u−ε) we defined in §3.

lim
σ→0+

exp(− (t− u)2

2σ2
) =

{
1 t = u
0 t 6= u

Second, if we view S(t = u) as a function over t − u, then it reaches its only local maximum at
t− u = 0, which means the equality is satisfied.

G INVALID PROBLEMS FROM CODE2INV DATASET

Here we provide an example which is Problem 106 in the dataset. The post-condition a ≥ m is
wrong if we start from a = 0, m = 1, and k = 0.

int k = 0;
int a, m;
assume(a <= m);
while (k < 1) {

if (m < a) m = a;
k = k + 1;

}
assert(a >= m);

Executing the program with these inputs results in a = 0, m = 1, and k = 1 as the if condi-
tion is never satisfied. But clearly, the post condition a ≥ m is violated. Below we tabulate the
counterexamples invalidating the nine removed problems from the dataset:

Table 3: Invalid problems from Code2Inv dataset

Problem Counterexample starting state

26 x, n = 0, 0
27 x, n = 0, 0
31 x, n = 0, 0
32 x, n = 0, 0
61 c, n = 0, 1
62 c, n = 0, 1
72 c, y = 0, 128
75 c, y = 0, 128
106 a,m, k = 0, 1, 0

H POLYNOMIAL INVARIANTS

Here we provide results and an example of the higher order polynomial problems; more precisely,
the power summation problems in the form u =

∑k
t=0 t

d for a given degree d. We found that
CLN2INV was able to learn invariants for programs which computes the sum of consecutive in-
tegers, which has 10 monomial terms and a maximum degree of 2. Since CLN2INV simply uses
the polynomial kernel the number of terms quickly become unwieldy. We observe that CLN2INV
struggles beginning with sum of squares, which has 20 monomial terms up to degree 3. Table 4
summarizes these results.

For further illustration, we describe in detail the case where d is 3, i.e. sum of cubes.
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Table 4: Results on power summation polynomial problems.

Number Terms Highest Degree Solved?

5 1 3
10 2 3
20 3 7
35 4 7
56 5 7

//pre: t = u = 0 /\ k >= 0
while (t < k) {
t++;
u += t * t * t;

}
//post: 4u == k**2 * (k + 1)**2

Figure 9: Pseudocode for Polynomial Invariant Problem

The example loop in Figure 9 computes the sum of the first k cubes. We know this sum has a closed
form solution:

k∑
i=0

k3 =
k2(k + 1)2

4
=
k4 + 2k3 + k2

4

For this problem, we would hope to extract the invariant:

(4u = t4 + 2t3 + t2) ∧ (t <= k)

However, by naively using the polynomial kernel just as methods like NumInv suggest (Nguyen
et al., 2017), we will have 35 monomials of degree at most four over three variables as candidate
terms (t3u, t2k2, tu2k, ...), and the model must learn to ignore all the terms except u, t4, t3, and t2.
We observe our model finds far more accurate coefficient for t4 but than for lower ordered terms.
We hypothesize that by nature of polynomials the highest order term is a good approximation for
the whole polynomial. Thus, u = t4 is a good approximation based on the data. The difficulty of
learning polynomial invariants using CLN is an interesting direction for future studies.
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