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ABSTRACT

Voice Conversion (VC) is a task of converting perceived speaker identity from a
source speaker to a particular target speaker. The earlier approaches in the lit-
erature primarily find a mapping between the given source-target speaker-pairs.
Developing mapping techniques for many-to-many VC using non-parallel data,
including zero-shot learning, remains less explored areas in VC. Most of the
many-to-many VC architectures require training data from all the target speak-
ers for whom we want to convert the voices. In this paper, we propose a novel
style transfer architecture, which can also be extended to generate voices even
for target speakers whose data were not used in training (i.e., case of zero-shot
learning). In particular, we propose Adaptive Generative Adversarial Network
(AdaGAN), new architectural training procedure that helps in learning normal-
ized speaker-independent latent representation, which will be used to generate
speech with different speaking styles in the context of VC. We compare our re-
sults with the state-of-the-art StarGAN-VC architecture. In particular, the Ada-
GAN achieves 31.73%, and 10.37% relative improvement compared to the Star-
GAN in MOS tests for speech quality and speaker similarity, respectively. The
key strength of the proposed architectures is that it yields these results with less
computational complexity. AdaGAN is 88.6% less complex than StarGAN-VC in
terms of FLoating Operation Per Second (FLOPS), and 85.46% less complex in
terms of trainable parameters.

1 INTRODUCTION

Language is the core of civilization, and speech is the most powerful and natural form of com-
munication. Human voice mimicry has always been considered as one of the most difficult tasks
since it involves understanding of the sophisticated human speech production mechanism (Eriksson
& Wretling (1997)) and challenging concepts of prosodic transfer (Gomathi et al. (2012)). In the
literature, this is achieved using Voice Conversion (VC) technique (Stylianou (2009)). Recently, VC
has gained more attention due to its fascinating real-world applications in privacy and identity pro-
tection, military operations, generating new voices for animated and fictional movies, voice repair in
medical-domain, voice assistants, etc. Voice Conversion (VC) technique converts source speaker’s
voice in such a way as if it were spoken by the target speaker. This is primarily achieved by mod-
ifying spectral and prosodic features while retaining the linguistic information in the given speech
signal (Stylianou et al. (1998)). In addition, Voice cloning is one of the closely related task to VC
(Arik et al. (2018)). However, in this research work we only focus to advance the Voice Conversion.

With the emergence of deep learning techniques, VC has become more efficient. Deep learning-
based techniques have made remarkable progress in parallel VC. However, it is difficult to get par-
allel data, and such data needs alignment (which is a arduous process) to get better results. Building
a VC system from non-parallel data is highly challenging, at the same time valuable for practi-
cal application scenarios. Recently, many deep learning-based style transfer algorithms have been
applied for non-parallel VC task. Hence, this problem can be formulated as a style transfer prob-
lem, where one speaker’s style is converted into another while preserving the linguistic content as it
is. In particular, Conditional Variational AutoEncoders (CVAEs), Generative Adversarial Networks
(GANs) (proposed by Goodfellow et al. (2014)), and its variants have gained significant attention in
non-parallel VC. However, it is known that the training task for GAN is hard, and the convergence
property of GAN is fragile (Salimans et al. (2016)). There is no substantial evidence that the gen-
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erated speech is perceptually good. Moreover, CVAEs alone do not guarantee distribution matching
and suffers from the issue of over smoothing of the converted features.

Although, there are few GAN-based systems that produced state-of-the-art results for non-parallel
VC. Among these algorithms, even fewer can be applied for many-to-many VC tasks. At last, there
is the only system available for zero-shot VC proposed by Qian et al. (2019). Zero-shot conversion is
a technique to convert source speaker’s voice into an unseen target speaker’s speaker via looking at a
few utterances of that speaker. As known, solutions to a challenging problem comes with trade-offs.
Despite the results, architectures have become more complex, which is not desirable in real-world
scenarios because the quality of algorithms or architectures is also measured by the training time
and computational complexity of learning trainable parameters (Goodfellow et al. (2016)).

Motivated by this, we propose computationally less expensive Adaptive GAN (AdaGAN), a new
style transfer framework, and a new architectural training procedure that we apply to the GAN-based
framework. In AdaGAN, the generator encapsulates Adaptive Instance Normalization (AdaIN) for
style transfer, and the discriminator is responsible for adversarial training. Recently, StarGAN-VC
(proposed by Kameoka et al. (2018)) is a state-of-the-art method among all the GAN-based frame-
works for non-parallel many-to-many VC. AdaGAN is also GAN-based framework. Therefore, we
compare AdaGAN with StarGAN-VC for non-parallel many-to-many VC in terms of naturalness,
speaker similarity, and computational complexity. We observe that AdaGAN yields state-of-the-art
results for this with almost 88.6% less computational complexity. Recently proposed AutoVC (by
Qian et al. (2019)) is the only framework for zero-shot VC. Inspired by this, we propose AdaGAN
for zero-shot VC as an independent study, which is the first GAN-based framework to perform zero-
shot VC. We reported initial results for zero-shot VC using AdaGAN.The main contributions of this
work are as follows:

• We introduce the concept of latent representation based many-to-many VC using GAN for
the first time in literature.

• We show that in the latent space content of the speech can be represented as the distribution
and the properties of this distribution will represent the speaking style of the speaker.

• Although AdaGAN has much lesser computation complexity, AdaGAN shows much better
results in terms of naturalness and speaker similarity compared to the baseline.

2 RELATED WORK

Developing a non-parallel VC framework is challenging task because of the problems associated
with the training conditions using non-parallel data in deep learning architectures. However, at-
tempts have been made to develop many non-parallel VC frameworks in the past decade. For
example, Maximum Likelihood (ML)-based approach proposed by Ye & Young (2006), speaker
adaptation technique by Mouchtaris et al. (2006), GMM-based VC method using Maximum a
posteriori (MAP) adaptation technique by Lee & Wu (2006), iterative alignment method by Erro
et al. (2010), Automatic Speech Recognition (ASR)-based method by Xie et al. (2016), speaker
verification-based method using i-vectors by Kinnunen et al. (2017), and many other frameworks
(Chen et al. (2014); Nakashika et al. (2014); Blaauw & Bonada (2016); Hsu et al. (2016); Kaneko &
Kameoka (2017); Saito et al. (2018a); Sun et al. (2015); Shah et al. (2018b;c); Shah & Patil (2018);
Biadsy et al. (2019)). Recently, a method using Conditional Variational Autoencoders (CVAEs)
(Kingma & Welling (2013)) was proposed for non-parallel VC by (Hsu et al. (2016); Saito et al.
(2018a)). Recently, VAE based method for VC was proposed, which also uses AdaIN to transfer
the speaking style (Chou et al. (2019)). One powerful framework that can potentially overcome the
weakness of VAEs involves GANs. While GAN-based methods were originally applied for image
translation problems, these methods have also been employed with noteworthy success for various
speech technology-related applications, we can see via architectures proposed by (Michelsanti &
Tan (2017); Saito et al. (2018b); Shah et al. (2018a)), and many others. In GANs-based methods,
Cycle-consistent Adversarial Network (CycleGAN)-VC is one of the state-of-the-art methods in the
non-parallel VC task proposed by (Kaneko & Kameoka (2017)).

Among these non-parallel algorithms, a few can produce good results for non-parallel many-to-
many VC. Recently, StarGAN-VC (Kameoka et al. (2018)) is a state-of-the-art method for the non-
parallel many-to-many VC among all the GAN-based frameworks. Past attempts have been made
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to achieve conversion using style transfer algorithms (Atalla et al. (2018); Chou et al. (2018); Qian
et al. (2019)). The most recent framework is the AutoVC (proposed by Qian et al. (2019)) using style
transfer scheme, the first and the only framework in VC literature which achieved state-of-the-art
results in zero-shot VC.

3 APPROACH

3.1 PROBLEM FORMULATION

The traditional VC problem is being reformulated as a style transfer problem. Here, we assume Z is
a set of n speakers denoted by Z = {Z1, Z2, ..., Zn}, where Zi is the ith speaker, and U is the set of
m speech utterances denoted by U = {U1, U2, ..., Um}, where Ui is the ith speech utterance. Now,
probability density function (pdf ) is generated for given Zi, and Ui denoted by pX(.|Zi, Ui) via the
stochastic process of random sampling from the distributions Zi and Ui. Here, Xi ∼ pX(.|Zi, Ui)
can be referred as features of given Ui with speaking style of Zi.

The key idea is to transfer the speaking style of one speaker into another in order to achieve VC.
For this, let us consider a set of random variables (Z1, U1) corresponding to a source speaker, and
(Z2, U2) corresponding to a target speaker. Here, U1 and U2 are spoken by Z1 and Z2, respectively.
Our goal is to achieve pX̂(.|Z2, U1). Now, we want to learn a mapping function to achieve our
goal for VC. Our mapping function is able to generate the distribution denoted by X̂Z1→Z2

with
speaking style of Z2 while retaining the linguistic content of U1. Formally, we want to generate
the pdf (i.e., pX̂Z1→Z2

(.|Z1, U1, Z2, U2)) to be close or equal to the pX̂(.|Z2, U1). Accurately, our
mapping function will achieve this property, as shown in eq. 1.

pX̂Z1→Z2
(.|Z1, U1, Z2, U2) = pX̂(.|Z2, U1). (1)

Intuitively, we want to transfer the speaking style of Z2 to the Z1 while preserving the linguistic
content of U1. Therefore, converted voice is perceptually sound as if utterance U1 were spoken by
Z2. With this, AdaGAN is also designed to achieve zero-shot VC. During zero-shot conversion, U1

and U2 can be seen or unseen utterances, and Z1 and Z2 can be seen or unseen speakers.

3.2 ADAPTIVE INSTANCE NORMALIZATION (AdaIN )

Our key idea for style transfer in VC revolves around the AdaIN . First, AdaIN was introduced
for arbitrary style transfer in image-to-image translation tasks by Huang & Belongie (2017). In this
paper, AdaIN helps us to capture the speaking style and linguistic content into a single feature
representation. AdaIN takes features of a source speaker’s speech (i.e., X) and sample features
of the target speaker’s speech (i.e., Y ). Here, x is a feature from the set X related to the linguistic
content of source speech, and Y is features related to the speaking style of the target speaker. AdaIN
will map the mean and standard deviation of X (i.e., µX and σx) in such a way that it will match
with mean, and standard deviation of Y (i.e., µY and σY ). Mathematical equation of AdaIN is
defined as (Huang & Belongie (2017)):

AdaIN(x, Y ) = σY

(x− µX
σX

)
+ µY . (2)

From eq. (2), we can infer that AdaIN first normalizes x, and scales back based on mean and
standard deviations of y. Intuitively, let’s assume that we have one latent space which represents
the linguistic content in the distribution and also contains speaking style in terms of the mean and
standard deviation of the same distribution. To transfer the speaking style, we have adopted the
distribution properties (i.e., its mean and standard deviation) of the target speaker. As a result, the
output produced by AdaIN has the high average activation for the features which are responsible for
style (y) while preserving linguistic content. AdaIN does not have any learning parameters. Hence,
it will not affect the computational complexity of the framework.

4 PROPOSED ADAGAN FRAMEWORK

In this Section, we discuss our proposed AdaGAN architecture in detail. we show that AdaIN helps
the generator make speaking style transfer easy and efficient, and can achieve zero-shot VC. We
present an intuitive and theoretical analysis for the proposed framework.
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The AdaGAN framework consists of an encoderEn(.), a decoderDe(.), and a discriminatorDis(.).
Here, En(.) encodes the input features of speech to the latent space, De(.) generates the features
of speech from the given latent space, and Dis(.) ensures adversarial training. The style transfer
scheme and training procedure are shown in Fig. 1.

(a) Style Transfer Scheme

(b) Training Methodology

Figure 1: Schematic representation of proposed AdaGAN architecture.

4.1 PROPOSED STYLE TRANSFER SCHEME

Features of source speaker’s speech (i.e., x), and any sample features of target speaker’s speech (i.e.,
y), is taken as input to En(.) to get the required latent space representations Sx and Sy as given in
eq. 3. Now, AdaIN is used to transfer distribution properties (i.e., its mean and standard deviation)
of Sy to Sx, and generate the single feature representation denoted by t as per eq. 3. In the next
step, we have used De(.) to generate features of speech (i.e., xZ1→Z2

) from t. This entire process
is illustrated via Fig. 1(a). This generated features xZ1→Z2

contains the speaking style of target
speaker via retaining the linguistic content of source speaker speech. We have encapsulated this
style transfer algorithm into the generator of AdaGAN in order to improve the quality of xZ1→Z2

via adversarial training.

Sx = En(x), Sy = En(y), t = AdaIN(Sx, Sy), xZ1→Z2
= De(t). (3)

4.2 TRAINING AND TESTING METHODOLOGY

We have applied a new training methodology in GAN-based framework. We have designed a train-
ing procedure based on non-parallel data in order to learn the mapping function for many-to-many
as well as zero-shot VC. We know that the idea of transitivity as a way to regularize structured
data has a long history. People have extended this concept into the training methodologies of deep
learning architectures (Zhu et al. (2017); Kim et al. (2017)). In this paper, we have encapsulated the
idea of transitivity via introducing the reconstruction loss along with adversarial training. The entire
training procedure is illustrated in Fig. 1(b).

First, we randomly select the two speakers Z1 and Z2. Formally, we have two sets of random
variables, (Z1, U1, X) and (Z2, U2, Y ) corresponding to the source and target speaker, respectively.
After this, we randomly select x1, x2 ∈ pX(.|Z1, U1), and y1, y2 ∈ pY (.|Z2, U2).

During the training, VC is done from the source speaker (Z1) to target speaker (Z2) via style transfer
scheme illustrated in Fig. 1(a). Using x1, y1, we transfer speaking style of speaker Z2 to Z1. From
eq. (3), we can describe this procedure as shown in eq. (4).

Sx1 = En(x1), Sy1 = En(y1), t1 = AdaIN(Sx1 , Sy1), xZ1→Z2 = De(t1). (4)

Now, using another sample of source speech (i.e., x2), we have reconstructed the source speech
features (i.e., xZ1→Z2→Z1

) from the features of converted speech (xZ1→Z2
) in order to achieve

better conversion efficiency. This procedure is described in eq. (5).

Sx2 = En(x2), SxZ1→Z2
= En(xZ1→Z2), t2 = AdaIN(SxZ1→Z2

, Sx2), xZ1→Z2→Z1 = De(t2).

(5)
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Now, the same cycle process is again applied to transfer the speaking style of Z2 to Z1, we get
following equations:

Sy1 = En(y1), Sx1 = En(x1), t′1 = AdaIN(Sy1 , Sx1), yZ2→Z1 = De(t′1), (6)

Sy2 = En(y2), SyZ2→Z1
= E(yZ2→Z1

), t′2 = AdaIN(SyZ2→Z1
, Sy2), yZ2→Z1→Z2

= De(t′2).

(7)

During testing, we gave features of the source speaker’s speech along with the sample features
of target speaker to the encoder. AdaGAN requires 3 s to 5 s of sample speech features of the
target speaker in order to transfer speaking style of target speaker to source speaker. This sample
speech will be used to estimate the mean and standard deviation of the target speaker’s distribution
in its respective latent space. After this, the speaking style will be transferred in latent space of
source speaker usingAdaIN . Next, the decoder will generate speech back from the converted latent
representation of the source speaker. Briefly, the decoder will generate the speech with speaking
style of the target speaker. Now, the generator of AdaGAN is consist of Encoder and Decoder.
Hence, we can say that the generator of AdaGAN will generate the speech with speaking style of
the target speaker for a given source speaker’s speech along with the sample of target speaker during
testing. The training procedure of AdaGAN is formally presented in Algorithm 1.

Algorithm 1 Algorithm for training of AdaGAN
Input: Weights of Encoder, Decoder, and Discriminator
Output: Optimized weights

1: for number of training iterations do
2: randomly select two speakers (Z1 and Z2)
3: sample 4 minibatches of cepstral features {x1, x2} ∈ pX(.|Z1, U1), and {y1, y2} ∈

pY (.|Z2, U2).
4:
5: /* Comment starts:
6: First column shows the process of transferring speaking style of speaker Z2 to Z1.
7: Second column shows the process of transferring speaking style of speaker Z1 to Z2.
8: Comment ends */
9:

10: SX1
← En(x1); SY1

← En(y1);
11: t1 ← AdaIN(SX1 , SY1); t′1 ← AdaIN(SY1 , SX1);
12: x′ ← De(t1); y′ ← De(t′1);
13: SX2 ← En(x2); SY2 ← En(y2);
14: SX′ ← En(x′); SY ′ ← En(y′);
15: t2 ← AdaIN(SX′ , SY2

); t′2 ← AdaIN(SY ′ , SX2
);

16:
17: Update the generator by descending its stochastic gradient:

θEn,De
+← δθEn,De

(Ladv +λ1Lcyc+λ2LCX→Y
+λ3LCY →X

+λ4LstyX→Y
+λ5LstyY →X

)
18:
19: Update the discriminator by descending its stochastic gradient:

θDis
+← δθDis

(Ladv)
20:
21: end for
22: return

4.3 LOSS FUNCTIONS

To achieve many-to-many and zero-shot VC, AdaGAN uses four different loss functions: Adversar-
ial loss, reconstruction loss, content preserve loss, and style transfer loss.
Adversarial loss: This loss measures how distinguishable the converted data is from the normal
speech data. The smaller the loss is, the converted data distribution is more closer to normal speech
distribution. Hence, we want to minimize objective function given in eq. (9) against an adversary
Dis(.) that tries to maximize it. Here, this loss is used to make the generated or converted speech
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indistinguishable from the original speech, and can be mathematically formulated as:

Ladv(En,De) = (Dis(yZ2→Z1
)− 1)2 + (Dis(xZ1→Z2

)− 1)2, (8)

Ladv(Dis) = (Dis(x1)− 1)2 + (Dis(y1)− 1)2. (9)

Reconstruction Loss: By using only adversarial loss, we may loose linguistic information in the
converted voice. This loss helps the encoder and decoder to retain the linguistic information in
converted voice. We have used L1 norm as a reconstruction loss, and can be described as:

Lcyc = ‖xZ1→Z2→Z1
− x1‖1 + ‖yZ2→Z1→Z2

− y1‖1. (10)

Content Preserve Loss: To preserve the linguistic content of the input speech during AdaIN. This
loss also ensure that our encoder and decoder are noise free. We have used following L1 norm for
this loss, i.e.,

LCX→Y
= ‖SxZ1→Z2

− t1‖1. (11)

Style transfer Loss: This loss function is at the heart of the AdaGAN. This loss plays a vital
role in achieving many-to-many and zero-shot VC using AdaGAN. This loss helps AdaGAN to
create a latent space with the speaking style features in terms of mean and standard deviation of the
distribution while preserving the linguistic content in the same distribution. We have used L1 norm
as style transfer loss, i.e.,

LstyX→Y
= ‖t2 − SX1‖1, (12)

Final Objective Function: The overall objective function of AdaGAN can be defined as:

Ltotal =Ladv(En,De) + Ladv(Dis) + λ1Lcyc + λ2LCX→Y
+

λ3LCY →X
+ λ4LstyX→Y

+ λ5LstyY →X
,

(13)

where λ1, λ2, λ3, λ4, and λ5 are the hyperparameters. These parameters controls the relative im-
portance of each loss w.r.t. each other. We have used λ1 = 10, λ2 = 2, λ3 = 2, λ4 = 3, and λ5 = 3
during the experiments. We theoretically proved that how these simple loss functions are the key
idea behind the performance of AdaGAN in the next Section. We optimized these loss functions
according to the Algorithm 1.

4.4 ARCHITECTURAL DETAILS

AdaGAN framework contains a Generator and a Discriminator. In this Section, we provide detailed
information about each component of the AdaGAN framework.

As shown in Fig. 1, Generator of AdaGAN consists of mainly 2 modules: Encoder and Decoder.
AdaGAN uses the same encoder to extract the features from the source and target speakers’ speech.
Input of encoder is a vector of 40 Mel cepstral features, which it converts to a latent space of size
1x512. The decoder takes normalized feature vector of size 1x512 as input and converts it to 1x40
target speech features.

In encoder and decoder, all layers are fully-connected layers. In encoder, the input and output layer
has 40 and 512 cell size, respectively. In decoder, input and output layer have 512 and 40 cell size,
respectively. All the hidden layers in encoder and decoder consist 512 cell size. All the layers are
followed by Rectified Linear Unit (ReLU) activation function except output layer.

In AdaGAN, main goal of the discriminator is similar to traditional GAN training. Accurately, it
will discriminate whether the input is generated (xZ1→Z2

) or from the original distribution. Same as
Encoder and Decoder, structure of discriminator follows the stacked fully-connected layers. It con-
sists of an input layer, 3 hidden layers and, an output layer with 40, 512, and 1 cell size, respectively.
In discriminator, each layer followed by the ReLU activation function and output layer followed by
a sigmoid activation function.
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5 ANALYSIS AND COMPARISON

In this Section, we show the theoretical correctness and intuitive explanation of AdaGAN. The key
idea of the AdaGAN is to learn the latent space, where we can represent our features as per our
requirements.

5.1 THEORETICAL ANALYSIS

Consider the training procedure of AdaGAN described in Section 4.2. Let us take two latent space
features Sx1 and Sx2 corresponding to two different sample features, x1 and x2, respectively, of the
same speaker Z1. We are also going to take Sy1 from latent space of another speaker Z2, where y1
is a sample feature of that speaker, and Z1 6= Z2. After training of AdaGAN for a large number of
iteration of τ , where theoretically τ →∞, let us assume the following:

1. In the latent space, mean and standard deviation of the same speaker are constant irrespec-
tive of the linguistic content. Formally, we have µSx1

= µSx2
, and σSx1

= σSx2
.

2. If we have different speakers, then mean and standard deviation of respective latent repre-
sentations are different. Accurately, µSx1

6= µSy1
, and σSx1

6= σSy1
.

Theorem 1: Given these assumptions, ∃ a latent space where normalized latent representation of
input features will be the same irrespective of speaking style. Here, we take input features of same
utterance U1. Hence,

DKL( pIN (.|Z1, U1) ‖ pIN (.|Z2, U1) ) = 0, (14)

where KL(·|·) is the KL-divergence, and pN (.|Zi, Ui) is pdf of normalized latent representation of
input feature Ui, with speaking style of speaker Zi.

This is the fundamental theorem that lies behind the concept of AdaGAN. Intuitively, from this
theorem, we can observe that the normalized latent representation of the same utterance spoken by
different speakers is the same. This fact leads to the conclusion that linguistic content of speech
is captured by the distribution of normalized latent space, and speaking style of a speaker is being
captured by mean and standard deviation of the same distribution.

Theorem 2: By optimization of minEn,De LCX→Y
+ LstyX→Y

, the assumptions made in Theorem
1 can be satisfied.

The proof of both the theorems are given in Appendix A. Both the theorems conclude that AdaIN
made style transfer easy and efficient via only using the mean and standard deviation of the distri-
bution. In Appendix B, we provided the t-SNE visualization of the features in latent space to give
the empirical proof.

5.2 ADAGAN vs. STARGAN

In this Section, we show a comparison between AdaGAN and StarGAN-VC in terms of compu-
tational complexity. Table 1 and 2 provided the number of layers, FLoating point Operations Per
Second (FLOPS), and trainable parameters1 for the AdaGAN and StarGAN-VC, respectively.

Table 1: Number of layers and trainable parameters in AdaGAN

Module Layers FLOPS Trainable Parameters
GAdaGAN 8 fully-connected layers 4,271,576,064 2,142,760
DisAdaGAN 4 fully-connected layers 1,612,798,976 809,473

Total FLOPS and parameters: 5,884,375,040 2,952,233

1All the parameters are calculated using the thop library, version - 0.0.31.post1909021322.
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Table 2: Number of layers and trainable parameters in StarGAN

Module Layers FLOPS Trainable Parameters
GStarGAN 18 conv layer 15,751,839,744 9,073,536
DStarGAN 6 conv layer 35,858,677,760 1,152,320

Cls 6 conv layer 51,904,512 81,920
Total FLOPS and parameters: 51,662,422,016 20,307,776

In Table 1, GAdaGAN and DAdaGAN are the generator and discriminator of AdaGAN, respectively.
Parameters of the generator are calculated by adding the parameters of encoder and decoder. To
calculate the FLOPS and parameters for StarGAN, we have used the open-source implementation
of StarGAN-VC2. In the Table 2, GStarGAN , DStarGAN , and Cls are generator, discriminator,
and classifier of StarGAN, respectively. All these three modules contain convolution layers. In
StarGAN, there is weight sharing between the 5 convolution layers of discriminator and classifier.
Here, we remove the FLOPS and trainable parameters of shared layers from the Cls. Hence, we
consider it once in the calculation of total FLOPS and trainable parameters.

We can observe that AdaGAN is 88.6% less complex than StarGAN in terms of FLOPS, and 85.46%
less complex in terms of trainable parameters. Moreover, StarGAN uses a one-hot encoding to get
the information about the target speaker. However, AdaGAN requires any sample of 3 s - 5 s from
the target speaker.

6 EXPERIMENTAL RESULTS

In this Section, we will show experimental setup, and subjective evaluation (or results) of AdaGAN.
Samples of converted audio files are provided here3.

6.1 EXPERIMENTAL SETUP

The experiments are performed on the VCTK corpus (Veaux et al. (2017)), which contains 44 hours
of data for 109 speakers. The statistics of the database are given Veaux et al. (2017). The database
is designed to provide non-parallel data for VC. From this database, AdaGAN system was devel-
oped on data of 20 speakers (10 males and 10 females). Out of this, we have used 80% data for
training and 20% data for testing for each speaker. Particularly, we have used 6.27 and 1.45 hours
of data for the training and testing, respectively. The 40-dimensional (dim) Mel Cepstral Coeffi-
cients (MCCs) (including the 0th coefficient) and 1-dimensional F0 are extracted from the speech
of source, and the target speakers with 25 ms window and 5 ms frame-shift. For analysis-synthesis,
we have used AHOCODER (Erro et al. (2011)). Mean-variance transformation method has been
applied for fundamental frequency F0 conversion Toda et al. (2007).

To evaluate AdaGAN empirically, we performed two subjective tests for evaluating naturalness and
speaker similarity. In particular, Mean Opinion Score (MOS) test have been conducted, where sub-
jects have been asked to rate the randomly played converted speech on 5-point scale for naturalness,
where 1 means converted voice is very robotic, and 5 means converted voice is very natural. In the
second test, subjects have been asked to rate how similar the converted voice given the reference
target speech in terms of speaker similarity. Subjects rated converted voices for speaker similarity
on the 5-point scale, where 1 means dissimilar with high confidence and 5 means similar with high
confidence w.r.t. the given target speaker. Total 15 subjects (6 females and 9 males with no known
hearing impairments with age varies between 18 to 31 years) took part in the subjective evaluations.

6.2 RESULTS FOR MANY-TO-MANY CONVERSION

Randomly 2 male and 2 female speakers have been selected from the testing dataset for subjective
evaluations. We evaluated four different conversion systems, i.e., male-male (M2M), female-female

2https://github.com/liusongxiang/StarGAN-Voice-Conversion
3https://drive.google.com/open?id=1VzA2bRhUz1lZ4DBDOIKUO9wOM8xkcTj2
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(F2F), male-female (M2F), and female-male (F2M) developed using proposed AdaGAN and Star-
GAN. From each system, two converted audio files have been selected. Hence, 8 audio files from
AdaGAN and another 8 audio files from the StarGAN have been taken for subjective evaluations.
We kept the same source-target speaker-pairs for fair comparison.

Fig. 2 shows the comparison of MOS scores between AdaGAN and the baseline StarGAN-VC.
Total of 15 subjects (6 females and 9 males) between 18-30 years of age and with no known hearing
impairments took part in the subjective test. For statistically significant analysis, results are shown in
different conversion possibilities with 95% confidence interval. In addition, for our subjective tests,
we obtain p-value 0.013, which is much lesser then 0.05. Therefore, it clearly shows the statistical
significance of the results. From Fig. 2, it is clear that there is 31.73 % relative improvement
(on an average) in MOS score for the AdaGAN compared to the baseline StarGAN. In terms of
speaker similarity, AdaGAN yields on an average 10.37% relative improvement in speaker similarity
compare to baseline (as shown in Fig. 3). Although AdaGAN outperforms StarGAN, both the
methods are not able to achieve good score in the similarity test. The main reason is due to the F0

conversion and errors in statistical vocoder (i.e., AHOCODER and WORLD-vocoder). However,
neural network-based Wavenet-vocoder shows very promising results on speech synthesis. Although
they are very accurate, they are data-driven approaches. In summary, AdaGAN achieves better
performance in MOS tests compared to the StarGAN-VC for naturalness and speaker similarity.

Figure 2: MOS for naturalness of AdaGAN and
StarGAN with 95% confidence interval.

Figure 3: MOS for speaker similarity of Ada-
GAN and StarGAN with 95% confidence inter-
val.

6.3 ZERO-SHOT LEARNING

In traditional many-to-many VC, all the target speakers are seen while training the architecture.
Hence, traditional algorithms are not able to do VC for an unseen speaker (i.e., for the cases of zero-
shot VC). Along with many-to-many VC, we extended our study of AdaGAN for zero-shot VC.
Zero-shot conversion is the task of transferring the speaking style of seen/unseen source speaker to
seen/unseen target speaker. In simple terms, conversion can be done between any speaker whether
their data were present in the corpus or not at the time of training. StarGAN-VC uses a one-hot
vector for target speaker reference during conversion. In the case of an unseen target speaker, it will
not be able to perform the zero-shot conversion. However, AdaGAN maps the input to the required
latent space (as proved in Appendix A). Therefore, AdaGAN will be able to learn more promised
latent space for even unseen speakers. Here, we show our experimental results for the zero-shot
VC task. We performed subjective tests in a similar manner as performed in many-to-many VC.
We have used AdaGAN trained on 20 speakers (10 males and 10 females). Later on, we selected
randomly 1 seen, and 1 unseen male speakers and 1 seen, and 1 unseen female speakers. And we
applied the permutations on these different speakers to get all the different conversion samples, such
as seen-seen (S2S), seen-unseen (S2U), unseen-seen (U2S), and unseen-unseen (U2U). Fig. 4, and
Fig. 5 shows the MOS scores for naturalness, and speaker similarity, respectively.
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Figure 4: MOS for naturalness of AdaGAN for
zero-shot VC with 95% confidence interval.

Figure 5: MOS for Speaker Similarity of Ada-
GAN for zero-shot VC with 95% confidence in-
terval.

Recently, AutoVC has been proposed, which is the only framework for zero-shot conversion VC
Qian et al. (2019). To the best of authors’ knowledge, this is the first GAN-based framework to
achieve zero-shot VC. To do the zero-shot conversion, AutoVC requires few samples (20 s) of
possible target speakers. However, AdaGAN requires only 3s to 5s of sample speech of the seen
or unseen target speaker to extract latent representation for the target speaker in order to generate
voices that sound perceptually similar to the target speaker. Moreover, trained AdaGAN architecture
can work on any source or target speaker.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed novel AdaGAN primarily for non-parallel many-to-many VC task. More-
over, we analyzed our proposed architecture w.r.t. current GAN-based state-of-the-art StarGAN-VC
method for the same task. We know that the main aim of VC is to convert the source speaker’s voice
into the target speaker’s voice while preserving linguistic content. To achieve this, we have used the
style transfer algorithm along with the adversarial training. AdaGAN transfers the style of the target
speaker into the voice of a source speaker without using any feature-based mapping between the
linguistic content of the source speaker’s speech. For this task, AdaGAN uses only one generator
and one discriminator, which leads to less complexity. AdaGAN is almost 88.6% computationally
less complex than the StarGAN-VC. We have performed subjective analysis on the VCTK corpus to
show the efficiency of the proposed method. We can clearly see that AdaGAN gives superior results
in the subjective evaluations compared to StarGAN-VC.

Motivated by the work of AutoVC, we also extended the concept of AdaGAN for the zero-shot con-
version as an independent study and reported results. AdaGAN is the first GAN-based framework
for zero-shot VC. In the future, we plan to explore high-quality vocoders, namely, WaveNet, for fur-
ther improvement in voice quality. The perceptual difference observed between the estimated and
the ground truth indicates the need for exploring better objective function that can perceptually op-
timize the network parameters of GAN-based architectures, which also forms our immediate future
work.
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A MATHEMATICAL PROOF OF ADAGAN CONCEPT AND DIFFERENT LOSS
FUNCTIONS

Here, we will first give the proof of the concept behind AdaGAN and later we will prove how our
loss functions help us to satisfy the derived constrained in Theorem 1.

Theorem 1: Given assumptions in Section 5.1, we can say that there exists a latent space where
normalized latent representation of input features will be the same irrespective of speaking style.

Proof: From eq. (1), we can write the goal of AdaGAN as following:

DKL( pX̂Z1→Z2
(.|Z1, U1, Z2, U2) ‖ pX̂Z2→Z2

(.|Z2, U1, Z2, U
′
2) ) = 0. (15)

From eq. (15), we can conclude that the output of AdaGAN after conversion using (Z1, U1) and
(Z2, U2) is the same as conversion using (Z1, U1) and (Z2, U2). Because in either way, we are
transferring speaking style of speaker Z2 to utterance U1. We can say that the output for AdaIN is
the same for both the cases in the latent space. Hence, we can write above eq. (15) as:

=⇒ DKL( pAdaIN (.|Z1, U1, Z2, U2) ‖ pAdaIN (.|Z2, U1, Z2, U
′
2) ) = 0, (16)

where pAdaIN (.|.) is the pdf of the latent representation. For given input samples x1 and y1, we
can write following term from eq. (16):

pAdaINx1
(.|Z1, U1, Z2, U2) = pAdaINy1

(.|Z2, U1, Z2, U
′
2), (17)

From Fig. 1, we can write eq. (17) as:

=⇒
[Sx1

(τ)− µ1(τ)

σ1(τ)

]
σ2(τ) + µ2(τ) =

[Sy1(τ)− µ′′
2(τ)

σ′′
2 (τ)

]
σ′
2(τ) + µ′

2(τ),

where τ represents the training iteration. Now, giving limτ→∞ both side we assume that µ′′
2(τ) =

µ′
2(τ) = µ2(τ), and σ′′

2 (τ) = σ′
2(τ) = σ2(τ). Therefore,[Sx1

(τ)− µ1(τ)

σ1(τ)

]
σ2(τ) + µ2(τ) =

[Sy1(τ)−�
��µ′′
2(τ)

�
��σ′′
2 (τ)

]
�
��σ′
2(τ) +���µ′

2(τ) ,

=⇒
[Sx1

(τ)− µ1(τ)

σ1(τ)

]
=

[Sy1(τ)− µ2(τ)

σ2(τ)

]
. (18)

At τ → ∞, the assumptions that made in Section 5.1 are true. Hence, from eq. (18), we can
conclude that there exists a latent space where normalized latent representation of input features
will be the same irrespective of speaking style.

Theorem 2: By optimization of minEn,De LCX→Y
+ LstyX→Y

, the assumptions made in Theorem
1 can be satisfied.

Proof: Our objective function is the following:

min
En,De

LCX→Y
+ LstyX→Y

. (19)

Iterate step by step to calculate the term (t2) used in loss function LstyX→Y
. Consider, we have the

latent representations Sx1 and Sy1 corresponding to the source and target speech, respectively.

Step 1:
[Sx1

(τ)− µ1(τ)

σ1(τ)

]
σ2(τ) + µ2(τ) (Representation of t1),

Step 2&3: En
{
De
[[Sx1(τ)− µ1(τ)

σ1(τ)

]
σ2(τ) + µ2(τ)

]}
.
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After applying decoder and encoder sequentially on latent representation, we will again get back to
the same representation. This is ensured by the loss function LCX→Y

. Formally, we want to make
LCX→Y

→ 0. Therefore, we can write step 4 as:

Step 4:
[Sx1(τ)− µ1(τ)

σ1(τ)

]
σ2(τ) + µ2(τ) (i.e., reconstructed t1),

Step 5:
1

���σ2(τ)

[[Sx1
(τ)− µ1(τ)

σ1(τ)

]
���σ2(τ) +�

��µ2(τ) −�
��µ2(τ)

]
(Normalization with its own (i.e., latent representation in Step 4) µ and σ during AdaIN),

Step 6:
[Sx1

(τ)− µ1(τ)

σ1(τ)

]
(Final output of Step 5),

Step 7:
[Sx1(τ)− µ1(τ)

σ1(τ)

]
σ′
1(τ) + µ′

1(τ)

(Output after de-normalization in AdaIN . Representation of t2),
where µ′

1 and σ′
1 are the mean and standard deviations of the another input source speech, x2. Now,

using the mathematical representation of t2, we can write loss function LstyX→Y
as:

LstyX→Y
=
[(Sx1(τ)− µ1(τ)

σ1(τ)

)
σ′
1(τ) + µ′

1(τ)− Sx1(τ)
]
. (20)

According to eq. (19), we want to minimize the loss function LstyX→Y
. Formally, LstyX→Y

→ 0.
Therefore, we will get µ1 = µ′

1, and σ1 = σ′
1 to achieve our goal. Hence, mean and standard

deviation of the same speaker are constant, and different for different speakers irrespective of the
linguistic content. We come to the conclusion that our loss function satisfies the necessary con-
straints (assumptions) required in proof of Theorem 1.

B T-SNE VISUALIZATION OF LATENT SPACE LEARNED BY ADAGAN

Figure 6: t-SNE visualization of latent representation of two speakers’ speech and its normalized
form, where, each point denotes a feature extracted from the 25 ms of speech segment.

As we know, Neural Networks (NNs) are hard to train and optimize. Even if everything has been
proven in terms of theoretical proofs, statistical and empirical analysis is required. For this analysis,
we have adopted t-SNE visualization. Here, we randomly selected few utterances from two different
speakers from the VCTK corpus. Latent representations are extracted for the speech of that speakers,
and features are reduced to 2-D using t-SNE. The scatter plot shown in Fig. 6 shows that data
points are clustered based on the speaking style. After normalized with their respective means and
standard deviations, these distribution overlapped. This shows that the distribution of normalized
latent representation captures linguistic information-based features irrespective of speaking style as
proved in Theorem 1. Therefore, we can say that AdaGAN, and its losses are efficient for practical
purposes.
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