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ABSTRACT

We consider a problem of learning the reward and policy from expert exam-
ples under unknown dynamics. Our proposed method builds on the framework
of generative adversarial networks and introduces the empowerment-regularized
maximum-entropy inverse reinforcement learning to learn near-optimal rewards
and policies. Empowerment-based regularization prevents the policy from over-
fitting to expert demonstrations, which advantageously leads to more generalized
behaviors that result in learning near-optimal rewards. Our method simultane-
ously learns empowerment through variational information maximization along
with the reward and policy under the adversarial learning formulation. We evalu-
ate our approach on various high-dimensional complex control tasks. We also test
our learned rewards in challenging transfer learning problems where training and
testing environments are made to be different from each other in terms of dynam-
ics or structure. The results show that our proposed method not only learns near-
optimal rewards and policies that are matching expert behavior but also performs
significantly better than state-of-the-art inverse reinforcement learning algorithms.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a promising tool for solving complex decision-making
and control tasks from predefined high-level reward functions (Sutton et al., 1998). However, defin-
ing an optimizable reward function that inculcates the desired behavior can be challenging for many
robotic applications, which include learning social-interaction skills (Qureshi et al., 2018; 2017),
dexterous manipulation (Finn et al., 2016b), and autonomous driving (Kuderer et al., 2015).

Inverse reinforcement learning (IRL) (Ng et al., 2000) addresses the problem of learning reward
functions from expert demonstrations, and it is often considered as a branch of imitation learning
(Argall et al., 2009). The prior work in IRL includes maximum-margin (Abbeel & Ng, 2004; Ratliff
et al., 2006) and maximum-entropy (Ziebart et al., 2008) formulations. Currently, maximum entropy
(MaxEnt) IRL is a widely used approach towards IRL, and has been extended to use non-linear
function approximators such as neural networks in scenarios with unknown dynamics by leveraging
sampling-based techniques (Boularias et al., 2011; Finn et al., 2016b; Kalakrishnan et al., 2013).
However, designing the IRL algorithm is usually complicated as it requires, to some extent, hand
engineering such as deciding domain-specific regularizers (Finn et al., 2016b).

Rather than learning reward functions and solving the IRL problem, imitation learning (IL) learns a
policy directly from expert demonstrations. Prior work addressed the IL problem through behavior
cloning (BC), which learns a policy from expert trajectories using supervised learning (Pomerleau,
1991). Although BC methods are simple solutions to IL, these methods require a large amount of
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data because of compounding errors induced by covariate shift (Ross et al., 2011). To overcome
BC limitations, a generative adversarial imitation learning (GAIL) algorithm (Ho & Ermon, 2016)
was proposed. GAIL uses the formulation of Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014), i.e., a generator-discriminator framework, where a generator is trained to generate
expert-like trajectories while a discriminator is trained to distinguish between generated and expert
trajectories. Although GAIL is highly effective and efficient framework, it does not recover trans-
ferable/portable reward functions along with the policies, thus narrowing its use cases to similar
problem instances in similar environments. Reward function learning is ultimately preferable, if
possible, over direct imitation learning as rewards are portable functions that represent the most
basic and complete representation of agent intention, and can be re-optimized in new environments
and new agents.

Reward learning is challenging as there can be many optimal policies explaining a set of demonstra-
tions and many reward functions inducing an optimal policy (Ng et al., 2000; Ziebart et al., 2008).
Recently, an adversarial inverse reinforcement learning (AIRL) framework (Fu et al., 2017), an ex-
tension of GAIL, was proposed that offers a solution to the former issue by exploiting the maximum
entropy IRL method (Ziebart et al., 2008) whereas the latter issue is addressed through learning
disentangled reward functions by modeling the reward as a function of state only instead of both
state and action. However, AIRL fails to recover the ground truth reward when the ground truth
reward is a function of both state and action. For example, the reward function in any locomotion
or ambulation tasks contains a penalty term that discourages actions with large magnitudes. This
need for action regularization is well known in optimal control literature and limits the use cases
of a state-only reward function in most practical real-life applications. A more generalizable and
useful approach would be to formulate reward as a function of both states and actions, which in-
duces action-driven reward shaping that has been shown to play a vital role in quickly recovering
the optimal policies (Ng et al., 1999).

In this paper, we propose the empowerment-regularized adversarial inverse reinforcement learning
(EAIRL) algorithm1. Empowerment (Salge et al., 2014) is a mutual information-based theoretic
measure, like state- or action-value functions, that assigns a value to a given state to quantify the
extent to which an agent can influence its environment. Our method uses variational information
maximization (Mohamed & Rezende, 2015) to learn empowerment in parallel to learning the re-
ward and policy from expert data. Empowerment acts as a regularizer to policy updates to prevent
overfitting the expert demonstrations, which in practice leads to learning robust rewards. Our exper-
imentation shows that the proposed method recovers not only near-optimal policies but also recovers
robust, transferable, disentangled, state-action based reward functions that are near-optimal. The re-
sults on reward learning also show that EAIRL outperforms several state-of-the-art IRL methods by
recovering reward functions that leads to optimal, expert-matching behaviors. On policy learning,
results demonstrate that policies learned through EAIRL perform comparably to GAIL and AIRL
with non-disentangled (state-action) reward function but significantly outperform policies learned
through AIRL with disentangled reward (state-only) and GAN interpretation of Guided Cost Learn-
ing (GAN-GCL) (Finn et al., 2016a).

2 BACKGROUND

We consider a Markov decision process (MDP) represented as a tuple (S,A,P,R, ρ0, γ) where S
denotes the state-space, A denotes the action-space, P represents the transition probability distri-
bution, i.e., P : S × A × S → [0, 1], R(s, a) corresponds to the reward function, ρ0 is the initial
state distribution ρ0 : S → R, and γ ∈ (0, 1) is the discount factor. Let q(a|s, s′) be an inverse
model that maps current state s ∈ S and next state s′ ∈ S to a distribution over actions A, i.e.,
q : S × S × A → [0, 1]. Let π be a stochastic policy that takes a state and outputs a distribution
over actions such that π : S × A → [0, 1]. Let τ and τE denote a set of trajectories, a sequence of
state-action pairs (s0, a0, · · · sT , aT ), generated by a policy π and an expert policy πE , respectively,
where T denotes the terminal time. Finally, let Φ(s) be a potential function that quantifies a utility of
a given state s ∈ S, i.e., Φ : S → R. In our proposed work, we use an empowerment-based potential
function Φ(·) to regularize policy update under MaxEnt-IRL framework. Therefore, the following

1Supplementary material is available at https://sites.google.com/view/eairl
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sections provide a brief background on MaxEnt-IRL, adversarial reward and policy learning, and
variational information-maximization approach to learn the empowerment.

2.1 MAXENT-IRL

MaxEnt-IRL (Ziebart et al., 2008) models expert demonstrations as Boltzmann distribution using
parametrized reward rξ(τ) as an energy function, i.e.,

pξ(τ) =
1

Z
exp(rξ(τ)) (1)

where rξ(τ) =
∑T
t=0 rξ(st, at) is a commutative reward over given trajectory τ , parameterized by

ξ, andZ is the partition function. In this framework, the demonstration trajectories are assumed to be
sampled from an optimal policy π∗, therefore, they get the highest likelihood whereas the suboptimal
trajectories are less rewarding and hence, are generated with exponentially decaying probability. The
main computational challenge in MaxEnt-IRL is to determine Z. The initial work in MaxEnt-IRL
computed Z using dynamic programming (Ziebart et al., 2008) whereas modern approaches (Finn
et al., 2016b;a; Fu et al., 2017) present importance sampling technique to approximate Z under
unknown dynamics.

2.2 ADVERSARIAL INVERSE REINFORCEMENT LEARNING

This section briefly describes Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2017)
algorithm which forms a baseline of our proposed method. AIRL is the current state-of-the-art IRL
method that builds on GAIL (Ho & Ermon, 2016), maximum entropy IRL framework (Ziebart et al.,
2008) and GAN-GCL, a GAN interpretation of Guided Cost Learning (Finn et al., 2016b;a).

GAIL is a model-free adversarial learning framework, inspired from GANs (Goodfellow et al.,
2014), where the policy π learns to imitate the expert policy behavior πE by minimizing the Jensen-
Shannon divergence between the state-action distributions generated by π and the expert state-action
distribution by πE through following objective

min
π

max
D∈(0,1)S×A

Eπ[logD(s, a)] + EπE [log(1−D(s, a))]− λH(π) (2)

where D is the discriminator that performs the binary classification to distinguish between sam-
ples generated by π and πE , λ is a hyper-parameter, and H(π) is an entropy regularization term
Eπ[log π]. Note that GAIL does not recover reward; however, Finn et al. (2016a) shows that the
discriminator can be modeled as a reward function. Thus AIRL (Fu et al., 2017) presents a formal
implementation of (Finn et al., 2016a) and extends GAIL to recover reward along with the policy by
imposing a following structure on the discriminator:

Dξ,ϕ(s, a, s′) =
exp[fξ,ϕ(s, a, s′)]

exp[fξ,ϕ(s, a, s′)] + π(a|s)
(3)

where fξ,ϕ(s, a, s′) = rξ(s) + γhϕ(s′) − hϕ(s) comprises a disentangled reward term rξ(s) with
training parameters ξ, and a shaping term F = γhϕ(s′) − hϕ(s) with training parameters ϕ. The
entire Dξ,ϕ(s, a, s′) is trained as a binary classifier to distinguish between expert demonstrations τE
and policy generated demonstrations τ . The policy is trained to maximize the discriminative reward
r̂(s, a, s′) = log(D(s, a, s′) − log(1 −D(s, a, s′))). Note that the function F = γhϕ(s′) − hϕ(s)
consists of free-parameters as no structure is imposed on hϕ(·), and as mentioned in (Fu et al., 2017),
the reward function rξ(·) and function F are tied upto a constant (γ − 1)c, where c ∈ R; thus the
impact of F , the shaping term, on the recovered reward r is quite limited and therefore, the benefits
of reward shaping are not fully realized.

2.3 EMPOWERMENT AS MAXIMAL MUTUAL INFORMATION

Mutual information (MI), an information-theoretic measure, quantifies the dependency between two
random variables. In intrinsically-motivated reinforcement learning, a maximal of mutual infor-
mation between a sequence of K actions a and the final state s′ reached after the execution of a,
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conditioned on current state s is often used as a measure of internal reward (Mohamed & Rezende,
2015), known as Empowerment Φ(s), i.e.,

Φ(s) = max I(a, s′|s) = maxEp(s′|a,s)w(a|s)

[
log

(
p(a, s′|s)

w(a|s)p(s′|s)

)]
(4)

where p(s′|a, s) is a K-step transition probability, w(a|s) is a distribution over a, and p(a, s′|s) is
a joint-distribution of K actions a and final state s′2. Intuitively, the empowerment Φ(s) of a state
s quantifies an extent to which an agent can influence its future. Thus, maximizing empowerment
induces an intrinsic motivation in the agent that enforces it to seek the states that have the highest
number of future reachable states.

Empowerment, like value functions, is a potential function that has been previously used in re-
inforcement learning but its applications were limited to small-scale cases due to computational
intractability of MI maximization in higher-dimensional problems. Recently, however, a scalable
method (Mohamed & Rezende, 2015) was proposed that learns the empowerment through the more-
efficient maximization of variational lower bound, which has been shown to be equivalent to max-
imizing MI (Agakov, 2004). The lower bound was derived (for complete derivation see Appendix
A.1) by representing MI in term of the difference in conditional entropies H(·) and utilizing the
non-negativity property of KL-divergence, i.e.,

Iw(s) = H(a|s)−H(a|s′, s) ≥ H(a) + Ep(s′|a,s)wθ(a|s)[log qφ(a|s′, s)] = Iw,q(s) (5)

where H(a|s) = −Ew(a|s)[logw(a|s)], H(a|s′, s) = −Ep(s′|a,s)w(a|s)[log p(a|s′, s)], qφ(·) is a
variational distribution with parameters φ and wθ(·) is a distribution over actions with parameters
θ. Finally, the lower bound in Eqn. 5 is maximized under the constraint H(a|s) < η (prevents
divergence, see (Mohamed & Rezende, 2015)) to compute empowerment as follow:

Φ(s) = max
w,q

Ep(s′|a,s)w(a|s)[−
1

β
logwθ(a|s) + log qφ(a|s′, s)] (6)

where β is η dependent temperature term.

Mohamed & Rezende (2015) also applied the principles of Expectation-Maximization (EM)
(Agakov, 2004) to learn empowerment, i.e., alternatively maximizing Eqn. 6 with respect towθ(a|s)
and qφ(a|s′, s). Given a set of training trajectories τ , the maximization of Eqn. 6 w.r.t qφ(·) is shown
to be a supervised maximum log-likelihood problem whereas the maximization w.r.t wθ(·) is deter-
mined through the functional derivative ∂I/∂w = 0 under the constraint

∑
a w(a|s) = 1. The opti-

mal w∗ that maximizes Eqn. 6 turns out to be
1

Z(s)
exp(βEp(s′|s,a)[log qφ(a|s, s′)]), where Z(s) is

a normalization term. Substituting w∗ in Eqn. 6 showed that the empowerment Φ(s) =
1

β
logZ(s)

(for full derivation, see Appendix A.2).

Note that w∗(a|s) is implicitly unnormalized as there is no direct mechanism for sampling ac-
tions or computing Z(s). Mohamed & Rezende (2015) introduced an approximation w∗(a|s) ≈
log π(a|s) + Φ(s) where π(a|s) is a normalized distribution which leaves the scalar function Φ(s)
to account for the normalization term logZ(s). Finally, the parameters of policy π and scalar func-
tion Φ are optimized by minimizing the discrepancy, lI(s, a, s′), between the two approximations
(log π(a|s) + Φ(s)) and β log qφ(a|s′, s)) through either absolute (p = 1) or squared error (p = 2),
i.e.,

lI(s, a, s
′) =

∣∣β log qφ(a|s′, s)− (log πθ(a|s) + Φϕ(s))
∣∣p (7)

3 EMPOWERED ADVERSARIAL INVERSE REINFORCEMENT LEARNING

We present an inverse reinforcement learning algorithm that learns a robust, transferable reward
function and policy from expert demonstrations. Our proposed method comprises (i) an inverse
model qφ(a|s′, s) that takes the current state s and the next state s′ to output a distribution over

2In our proposed work, we consider only immediate step transitions i.e., K = 1, hence variables s,a and
s′ will be represented in non-bold notations.
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actionsA that resulted in s to s′ transition, (ii) a reward rξ(s, a), with parameters ξ, that is a function
of both state and action, (iii) an empowerment-based potential function Φϕ(·) with parameters ϕ
that determines the reward-shaping function F = γΦϕ(s′)− Φϕ(s) and also regularizes the policy
update, and (iv) a policy model πθ(a|s) that outputs a distribution over actions given the current
state s. All these models are trained simultaneously based on the objective functions described in
the following sections to recover optimal policies and generalizable reward functions concurrently.

3.1 INVERSE MODEL qφ(a|s, s′) OPTIMIZATION

As mentioned in Section 2.3, learning the inverse model qφ(a|s, s′) is a maximum log-likelihood
supervised learning problem. Therefore, given a set of trajectories τ ∼ π, where a single trajectory
is a sequence states and actions, i.e., τi = {s0, a0, · · · , sT , aT }i, the inverse model qφ(a|s′, s) is
trained to minimize the mean-square error between its predicted action q(a|s′, s) and the action a
taken according to the generated trajectory τ , i.e.,

lq(s, a, s
′) = (qφ(·|s, s′)− a)2 (8)

3.2 EMPOWERMENT Φϕ(s) OPTIMIZATION

Empowerment will be expressed in terms of normalization function Z(s) of optimal w∗(a|s), i.e.,

Φϕ(s) =
1

β
logZ(s). Therefore, the estimation of empowerment Φϕ(s) is approximated by mini-

mizing the loss function lI(s, a, s′), presented in Eqn. 7, w.r.t parameters ϕ, and the inputs (s, a, s′)
are sampled from the policy-generated trajectories τ .

3.3 REWARD FUNCTION rξ(s, a)

To train the reward function, we first compute the discriminator as follow:

Dξ,ϕ(s, a, s′) =
exp[rξ(s, a) + γΦϕ′(s

′)− Φϕ(s)]

exp[rξ(s, a) + γΦϕ′(s′)− Φϕ(s)] + πθ(a|s)
(9)

where rξ(s, a) is the reward function to be learned with parameters ξ. We also maintain the target
ϕ′ and learning ϕ parameters of the empowerment-based potential function. The target parameters
ϕ′ are a replica of ϕ except that the target parameters ϕ′ are updated to learning parameters ϕ
after every n training epochs. Note that keeping a stationary target Φϕ′ stabilizes the learning as
also mentioned in (Mnih et al., 2015). Finally, the discriminator/reward function parameters ξ are
trained via binary logistic regression to discriminate between expert τE and generated τ trajectories,
i.e.,

Eτ [logDξ,ϕ(s, a, s′)] + EτE [(1− logDξ,ϕ(s, a, s′))] (10)

3.4 POLICY OPTIMIZATION POLICY πθ(a|s)

We train our policy πθ(a|s) to maximize the discriminative reward r̂(s, a, s′) = log(D(s, a, s′) −
log(1 − D(s, a, s′))) and to minimize the loss function lI(s, a, s

′) =
∣∣β log qφ(a|s, s′) −

(log πθ(a|s) + Φϕ(s))
∣∣p which accounts for empowerment regularization. Hence, the overall policy

training objective is:
Eτ [log πθ(a|s)r̂(s, a, s′)] + λIEτ

[
lI(s, a, s

′)] (11)
where policy parameters θ are updated using any policy optimization method such as TRPO (Schul-
man et al., 2015) or an approximated step such as PPO (Schulman et al., 2017).

Algorithm 1 outlines the overall training procedure to train all function approximators simultane-
ously. Note that the expert samples τE are seen by the discriminator only, whereas all other models
are trained using the policy generated samples τ . Furthermore, the discriminating reward r̂(s, a, s′)
boils down to the following expression (Appendix B.1):

r̂(s, a, s′) = f(s, a, s′)− log π(a|s)

where f(s, a, s′) = rξ(s, a) + γΦϕ′(s
′) − Φϕ(s). Thus, an alternative way to express our policy

training objective is Eτ [log πθ(a|s)rπ(s, a, s′)], where rπ(s, a, s′) = r̂(s, a, s′) − λI lI(s, a, s
′),

5
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Algorithm 1: Empowerment-based Adversarial Inverse Reinforcement Learning
Initialize parameters of policy πθ, and inverse model qφ
Initialize parameters of target Φϕ′ and training Φϕ empowerment, and reward rξ functions
Obtain expert demonstrations τE by running expert policy πE
for i← 0 to N do

Collect trajectories τ by executing πθ
Update φi to φi+1 with the gradient Eτ [5φi lq(s, a, s′)]
Update ϕi to ϕi+1 with the gradient Eτ [5ϕi lI(s, a, s′)]
Update ξi to ξi+1 with the gradient:

Eτ [5ξi logDξi,ϕi+1(s, a, s′)] + EτE [5ξi(1− logDξi,ϕi+1(s, a, s′))]

Update θi to θi+1 using natural gradient update rule (i.e., TRPO/PPO) with the gradient:

Eτ
[
5θi log πθi(a|s)r̂ξi+1

(s, a, s′)
]

+ λIEτ
[
5θi lI(s, a, s′)

]
After every n epochs sync ϕ′ with ϕ

(a) Ant environment (b) Pointmass-maze environment

Figure 1: Transfer learning problems. Fig. (a) represents a problem where agent dynamics are
modified during testing, i.e., a reward learned on a quadruped-ant (left) is transferred to a crippled-
ant (right). Fig (b) represents a problem where environment structure is modified during testing, i.e.,
a reward learned on a maze with left-passage is transferred to a maze with right-passage to the goal
(green).

which would undoubtedly yield the same results as Eqn. 11, i.e., maximize the discriminative reward
and minimize the loss lI . The analysis of this alternative expression is given in Appendix B to
highlight that our policy update rule is equivalent to MaxEnt-IRL policy objective (Finn et al., 2016a)
except that it also maximizes the empowerment, i.e.,

rπ(s, a, s′) = rξ(s, a, s
′) + γΦ(s′) + λĤ(·) (12)

where, λ and γ are hyperparameters, and Ĥ(·) is the entropy-regularization term depending on π(·)
and q(·). Hence, our policy is regularized by the empowerment which induces generalized behavior
rather than locally overfitting to the limited expert demonstrations.

4 RESULTS

Our proposed method, EAIRL, learns both reward and policy from expert demonstrations. Thus,
for comparison, we evaluate our method against both state-of-the-art policy and reward learning
techniques on several control tasks in OpenAI Gym. In case of policy learning, we compare our
method against GAIL, GAN-GCL, AIRL with state-only reward, denoted as AIRL(s), and an aug-
mented version of AIRL we implemented for the purposes of comparison that has state-action re-
ward, denoted as AIRL(s, a). In reward learning, we only compare our method against AIRL(s)
and AIRL(s, a) as GAIL does not recover rewards, and GAN-GCL is shown to exhibit inferior per-
formance than AIRL (Fu et al., 2017). Furthermore, in the comparisons, we also include the expert
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(a) Ant environment (b) Pointmass-maze environment

Figure 2: The performance of policies obtained from maximizing the learned rewards in the transfer
learning problems. It can be seen that our method performs significantly better than AIRL (Fu et al.,
2017) and exhibits expert-like performance in all five randomly-seeded trials which imply that our
method learns near-optimal, transferable reward functions.

performances which represents a policy learned by optimizing a ground-truth reward using TRPO
(Schulman et al., 2015). The performance of different methods are evaluated in term of mean and
standard deviation of total rewards accumulated (denoted as score) by an agent during the trial, and
for each experiment, we run five randomly-seeded trials.

Table 1: The evaluation of reward learning on transfer learning tasks. Mean scores (higher the better)
with standard deviation are presented over 5 trials.

Algorithm States-Only Pointmass-Maze Crippled-Ant
Expert N/A −4.98± 0.29 432.66± 14.38
AIRL Yes −8.07± 0.50 175.51± 27.31
AIRL No −19.28± 2.03 46.12± 14.37
EAIRL(Ours) No −7.01 ± 0.61 348.43 ± 43.17

4.1 REWARD LEARNING PERFORMANCE (TRANSFER LEARNING EXPERIMENTS)

To evaluate the learned rewards, we consider a transfer learning problem in which the testing en-
vironments are made to be different from the training environments. More precisely, the rewards
learned via IRL in the training environments are used to re-optimize a new policy in the testing
environment using standard RL. We consider two test cases shown in the Fig. 1.

In the first test case, as shown in Fig. 1(a), we modify the agent itself during testing. We trained
a reward function to make a standard quadruped ant to run forward. During testing, we disabled
the front two legs (indicated in red) of the ant (crippled-ant), and the learned reward is used to re-
optimize the policy to make a crippled-ant move forward. Note that the crippled-ant cannot move
sideways (Appendix C.1). Therefore, the agent has to change the gait to run forward. In the second
test case, shown in Fig 1(b), we change the environment structure. The agent learns to navigate a
2D point-mass to the goal region in a simple maze. We re-position the maze central-wall during
testing so that the agent has to take a different path, compared to the training environment, to reach
the target (Appendix C.2).

Fig. 2 compares the policy performance scores over five different trials of EAIRL, AIRL(s) and
AIRL(s, a) in the aforementioned transfer learning tasks. The expert score is shown as a horizontal
line to indicate the standard set by an expert policy. Table 1 summarizes the means and standard
deviations of the scores over five trials. It can be seen that our method recovers near-optimal reward
functions as the policy scores almost reach the expert scores in all five trials even after transfering
to unseen testing environments. Furthermore, our method performs significantly better than both
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(a) HalfCheetah (b) Ant (c) Swimmer (d) Pendulum

Figure 3: Benchmark control tasks for imitation learning

AIRL(s) and AIRL(s, a) in matching an expert’s performance, thus showing no downside to the
EAIRL approach.

4.2 POLICY LEARNING PERFORMANCE (IMITATION LEARNING)

Next, we considered the performance of the learned policy specifically for an imitation learning
problem in various control tasks.The tasks, shown in Fig. 3, include (i) making a 2D halfchee-
tah robot to run forward, (ii) making a 3D quadruped robot (ant) to move forward, (iii) making a
2D swimmer to swim, and (iv) keeping a friction less pendulum to stand vertically up. For each
algorithm, we provided 20 expert demonstrations generated by a policy trained on a ground-truth
reward using TRPO (Schulman et al., 2015). Table 2 presents the means and standard deviations
of policy learning performance scores, over the five different trials. It can be seen that EAIRL,
AIRL(s, a) and GAIL demonstrate similar performance and successfully learn to imitate the expert
policy, whereas AIRL(s) and GAN-GCL fails to recover a policy.

Table 2: The evaluation of imitation learning on benchmark control tasks. Mean scores (higher the
better) with standard deviation are presented over 5 trials for each method.

Methods Environments
HalfCheetah Ant Swimmer Pendulum

Expert 2139.83± 30.22 935.12± 10.94 76.21± 1.79 −100.11± 1.32
GAIL 1880.05± 15.72 738.72± 9.49 50.21± 0.26 −116.01± 5.45
GCL −189.90± 44.42 16.74± 36.59 15.75± 7.32 −578.18± 72.84
AIRL(s,a) 1826.26± 19.64 645.90± 41.75 49.52± 0.48 −118.13± 11.33
AIRL(s) 121.10± 42.31 271.31± 9.35 33.21± 2.40 −134.82± 10.89
EAIRL 1870.10 ± 17.86 641.12 ± 25.92 49.55 ± 0.29 −116.26 ± 8.313

5 DISCUSSION

This section highlights the importance of empowerment-regularized MaxEnt-IRL and modeling re-
wards as a function of both state and action rather than restricting to state-only formulation on
learning rewards and policies from expert demonstrations.

In the scalable MaxEnt-IRL framework (Finn et al., 2016a; Fu et al., 2017), the normalization term is
approximated by importance sampling where the importance-sampler/policy is trained to minimize
the KL-divergence from the distribution over expert trajectories. However, merely minimizing the
divergence between expert demonstrations and policy-generated samples leads to localized policy
behavior which hinders learning generalized reward functions. In our proposed work, we regularize
the policy update with empowerment i.e., we update our policy to reduce the divergence from expert
data distribution as well as to maximize the empowerment (Eqn.12). The proposed regularization
prevents premature convergence to local behavior which leads to robust state-action based rewards
learning. Furthermore, empowerment quantifies the extent to which an agent can control/influence
its environment in the given state. Thus the agent takes an action a on observing a state s such that
it has maximum control/influence over the environment upon ending up in the future state s′.

Our experimentation also shows the importance of modeling discriminator/reward functions as a
function of both state and action in reward and policy learning under GANs framework. The re-
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ward learning results show that state-only rewards (AIRL(s)) does not recover the action dependent
terms of the ground-truth reward function that penalizes high torques. Therefore, the agent shows
aggressive behavior and sometimes flips over after few steps (see the accompanying video), which
is also the reason that crippled-ant trained with AIRL’s disentangled reward function reaches only
the half-way to expert scores as shown in Table 1. Therefore, the reward formulation as a function
of both states and actions is crucial to learning action-dependent terms required in most real-world
applications, including any autonomous driving, robot locomotion or manipulation task where large
torque magnitudes are discouraged or are dangerous. The policy learning results further validate the
importance of the state-action reward formulation. Table 2 shows that methods with state-action re-
ward/discriminator formulation can successfully recover expert-like policies. Hence, our empirical
results show that it is crucial to model reward/discriminator as a function of state-action as other-
wise, adversarial imitation learning fails to learn ground-truth rewards and expert-like policies from
expert data.

6 CONCLUSIONS AND FUTURE WORK

We present an approach to adversarial reward and policy learning from expert demonstrations by reg-
ularizing the maximum-entropy inverse reinforcement learning through empowerment. Our method
learns the empowerment through variational information maximization in parallel to learning the
reward and policy. We show that our policy is trained to imitate the expert behavior as well to
maximize the empowerment of the agent over the environment. The proposed regularization pre-
vents premature convergence to local behavior and leads to a generalized policy that in turn guides
the reward-learning process to recover near-optimal reward. We show that our method success-
fully learns near-optimal rewards, policies, and performs significantly better than state-of-the-art
IRL methods in both imitation learning and challenging transfer learning problems. The learned
rewards are shown to be transferable to environments that are dynamically or structurally different
from training environments.

In our future work, we plan to extend our method to learn rewards and policies from diverse hu-
man/expert demonstrations as the proposed method assumes that a single expert generates the train-
ing data. Another exciting direction would be to build an algorithm that learns from sub-optimal
demonstrations that contains both optimal and non-optimal behaviors.
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APPENDICES

A VARIATIONAL EMPOWERMENT

For completeness, we present a derivation of presenting mutual information (MI) as variational
lower bound and maximization of lower bound to learn empowerment.

A.1 VARIATIONAL INFORMATION LOWER BOUND

As mentioned in section 2.3, the variational lower bound representation of MI is computed by defin-
ing MI as a difference in conditional entropies, and the derivation is formalized as follow.

Iw,q(s) = H(a|s)−H(a|s′, s)
= H(a|s) + Ep(s′|a,s)w(a|s)[log p(a|s′, s)]

= H(a|s) + Ep(s′|a,s)w(a|s)[log
p(a|s′, s)q(a|s′, s)

q(a|s′, s)
]

= H(a|s) + Ep(s′|a,s)w(a|s)[log q(a|s′, s)] + Ep(s′|a,s)w(a|s)[log
p(a|s′, s)
q(a|s′, s)

]

= H(a|s) + Ep(s′|a,s)w(a|s)[log q(a|s′, s)] + KL[p(a|s′, s)||q(a|s′, s)]
≥ H(a|s) + Ep(s′|a,s)w(a|s)[log q(a|s′, s)]
≥ −Ew(a|s) logw(a|s) + Ep(s′|a,s)w(a|s)[log q(a|s′, s)]

A.2 VARIATIONAL INFORMATION MAXIMIZATION

The empowerment is a maximal of MI and it can be formalized as follow by exploiting the variational
lower bound formulation (for details see (Mohamed & Rezende, 2015)).

Φ(s) = max
w,q

Ep(s′|a,s)w(a|s)[−
1

β
logw(a|s) + log q(a|s′, s)] (13)

As mentioned in section 2.3, given a training trajectories, the maximization of Eqn. 13 w.r.t in-
verse model q(a|s′, s) is a supervised maximum log-likelihood problem. The maximization of
Eqn. 13 w.r.t w(a|s) is derived through a functional derivative ∂Iw,q/∂w = 0 under the constraint∑
a w(a|s) = 1. For simplicity, we consider discrete state and action spaces, and the derivation is

as follow:

Îw(s) = Ep(s′|a,s)w(a|s)[−
1

β
logw(a|s) + log q(a|s′, s)] + λ

(∑
a

w(a|s)− 1
)

=
∑
a

∑
s′

p(s′|a, s)w(a|s){−
1

β
logw(a|s) + log q(a|s′, s)}+ λ

(∑
a

w(a|s)− 1
)

∂Îw(s)

∂w
=
∑
a

{(λ− β)− logw(a|s) + βEp(s′|a,s)[log q(a|s′, s)]} = 0

w(a|s) = eλ−βeβEp(s′|a,s)[log q(a|s
′,s)]

By using the constraint
∑
a w(a|s) = 1, it can be shown that the optimal solution w∗(a|s) =

1

Z(s)
exp(u(s, a)), where u(s, a) = βEp(s′|a,s)[log q(a|s′, s)] and Z(s) =

∑
a u(s, a). This solu-

tion maximizes the lower bound since ∂2Iw(s)/∂w2 = −
∑
a

1

w(a|s)
< 0.
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B EMPOWERMENT-REGULARIZED MAXENT-IRL FORMULATION.

In this section we derive the Empowerment-regularized formulation of maximum en-
tropy IRL. Let τ be a trajectory sampled from expert demonstrations D and pξ(τ) ∝
p(s0)ΠT−1

t=0 p(st+1|st, at) exprξ(st,at) be a distribution over τ . As mentioned in Section 2, the IRL
objective is to maximize the likelihood:

max
ξ
J(ξ) = max

ξ
ED[log pξ(τ)]

Furthermore, as derived in (Fu et al., 2017), the gradient of above equation w.r.t ξ can be written as:

max
ξ
J(ξ) = ED[

T∑
t=0

∂

∂ξ
rξ(st, at)]− Epξ [

T∑
t=0

∂

∂ξ
rξ(st, at)]

=

T∑
t=0

ED[
∂

∂ξ
rξ(st, at)]− Epξ,t [

∂

∂ξ
rξ(st, at)]

where rξ(·) is a parametrized reward to be learned, and pξ,t =
∫
st′ 6=t,at′ 6=t

pξ(τ) denotes marginal-
ization of state-action at time t. Since, it is unfeasible to draw samples from pξ, Finn et al. (2016a)
proposed to train an importance sampling distribution µ(τ) whose varience is reduced by defining

µ(τ) as a mixture of polices, i.e., µ(a|s) =
1

2
(π(a|s) + p̂(a|s)), where p̂ is a rough density estimate

over demonstrations. Thus the above gradient becomes:

∂

∂ξ
J(ξ) =

T∑
t=0

ED[
∂

∂ξ
rξ(st, at)]− Eµt [

pξ,t(st, at)

µt(st, at)

∂

∂ξ
rξ(st, at)] (14)

We train our importance-sampler/policy π to maximize the empowerment Φ(·) for generalization
and to reduce divergence from true distribution by minimizing DKL(π(τ)‖pξ(τ)). Since, π(τ) =

p(s0)ΠT−1
t=0 p(st+1|st, at)π(st, at), the matching terms of π(τ) and pξ(τ) cancel out, resulting into

entropy-regularized policy update. Furthermore, as we also include the empowerment Φ(·) in the
policy update to be maximized, hence the overall objective becomes:

max
π

Eπ[

T−1∑
t=0

rξ(st, at) + Φ(st+1)− log π(at|st)] (15)

Our discriminator is trained to minimize cross entropy loss as mention in Eqn. 10, and for the
proposed structure of our discriminator Eqn. 9, it can be shown that the discriminator’s gradient
w.r.t its parameters turns out to be equal to Equation 14 (for more details, see (Fu et al., 2017)). On
the other hand, our policy training objective is

rπ(s, a, s′) = log(D(s, a, s′))− log(1−D(s, a, s′))− lI(s, a, s′) (16)

In the next section, we show that the above policy training objective is equivalent to Equation 15.

B.1 POLICY OBJECTIVE

We train our policy to maximize the discriminative reward r̂(s, a, s′) = log(D(s, a, s′) − log(1 −
D(s, a, s′))) and minimize the information-theoretic loss function lI(s, a, s′). The discriminative
reward r̂(s, a, s′) simplifies to:

r̂(s, a, s′) = log(D(s, a, s′))− log(1−D(s, a, s′))

= log
ef(s,a,s

′)

ef(s,a,s′) + π(a|s)
− log

π(a|s)
ef(s,a,s′) + π(a|s)

= f(s, a, s′)− log π(a|s)

where f(s, a, s′) = r(s, a) + γΦ(s′) − Φ(s). The entropy-regularization is usually scaled by the
hyperparameter, let say λh ∈ R, thus r̂(s, a, s′) = f(s, a, s′) − λh log π(a|s). Hence, assuming
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single-sample (s, a, s′), absolute-error for lI(s, a, s′) = | log qφ(a|s, s′)− (log π(a|s) + Φ(s))|, and
li > 0, the policy is trained to maximize following:

rπ(s, a, s′) = f(s, a, s′)− λh log π(a|s)− lI(s, a, s′)
= r(s, a) + γΦ(s′)− Φ(s)− λh log π(a|s)− log q(a|s, s′) + log π(a|s) + Φ(s)

= r(s, a) + γΦ(s′)− λh log π(a|s)− log q(a|s, s′) + log π(a|s)

Note that, the potential function Φ(s) cancels out and we scale the leftover terms of lI with a hyper-
parameter λI . Hence, the above equation becomes:

rπ(s, a, s′) = r(s, a, s′) + γΦ(s′) + (λI − λh) log π(a|s)− λI log q(a|s, s′)

We combine the log terms together as:

rπ(s, a, s′) = r(s, a) + λIΦ(s′) + λĤ(·) (17)
(18)

where λ is a hyperparameter, and Ĥ(·) is an entropy regularization term depending on q(a|s, s′) and
π(a|s). Therefore, it can be seen that the Eqn. 17 is equivalent/approximation to Eqn. 15.

C TRANSFER LEARNING PROBLEMS

C.1 ANT ENVIRONMENT

The following figures show the difference between the path profiles of standard and crippled Ant. It
can be seen that the standard Ant can move sideways whereas the crippled ant has to rotate in order
to move forward.

Figure 4: The top and bottom rows show the gait of standard and crippled ant, respectively.

C.2 MAZE ENVIRONMENT

The following figures show the path profiles of a 2D point-mass agent to reach the target in training
and testing environment. It can be seen that in the testing environment the agent has to take the
opposite route compared to the training environment to reach the target.

D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURES

We use two-layer ReLU network with 32 units in each layer for the potential function hϕ(·) and
Φϕ(·), reward function rξ(·), discriminators of GAIL and GAN-GCL. Furthermore, policy πθ(·) of
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Figure 5: The top and bottom rows show the path followed by a 2D point-mass agent (yellow) to
reach the target (green) in training and testing environment, respectively.

all presented models and the inverse model qφ(·) of EAIRL are presented by two-layer RELU net-
work with 32 units in each layer, where the network’s output parametrizes the Gaussian distribution,
i.e., we assume a Gaussian policy.

D.2 HYPERPARAMETERS

For all experiments, we use the temperature term β = 1. We evaluated both mean-squared and
absolute error forms of lI(s, a, s′) and found that both lead to similar performance in reward and
policy learning. We set entropy regularization weight to 0.1 and 0.001 for reward and policy learn-
ing, respectively. The hyperparameter λI was set to 1.0 for reward learning and 0.001 for policy
learning. The target parameters of the empowerment-based potential function Φϕ′(·) were updated
every 5 and 2 epochs during reward and policy learning respectively. Although reward learning
hyperparameters are also applicable to policy learning, we decrease the magnitude of entropy and
information regularizers during policy learning to speed up the policy convergence to optimal val-
ues. Furthermore, we set the batch size to 2000- and 20000-steps per TRPO update for the pendulum
and remaining environments, respectively. For the methods (Fu et al., 2017; Ho & Ermon, 2016)
presented for comparison, we use their suggested hyperparameters. We also use policy samples from
previous 20 iterations as negative data to train the discriminator of all IRL methods presented in this
paper to prevent the parametrized reward functions from overfitting the current policy samples.
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