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ABSTRACT

Unsupervised learning is about capturing dependencies between variables and
driven by the contrast between the probable vs improbable configurations of these
variables, often either via a generative model which only samples probable ones
or with an energy function (unnormalized log-density) which is low for probable
ones and high for improbable ones. Here we consider learning both an energy
function and an efficient approximate sampling mechanism for the correspond-
ing distribution. Whereas the critic (or discriminator) in generative adversarial
networks (GANs) learns to separate data and generator samples, introducing an
entropy maximization regularizer on the generator can turn the interpretation of
the critic into an energy function, which separates the training distribution from
everything else, and thus can be used for tasks like anomaly or novelty detection.
This paper is motivated by the older idea of sampling in latent space rather than
data space because running a Monte-Carlo Markov Chain (MCMC) in latent space
has been found to be easier and more efficient, and because a GAN-like generator
can convert latent space samples to data space samples. For this purpose, we show
how a Markov chain can be run in latent space whose samples can be mapped to
data space, producing better samples. These samples are also used for the negative
phase gradient required to estimate the log-likelihood gradient of the data space
energy function. To maximize entropy at the output of the generator, we take
advantage of recently introduced neural estimators of mutual information. We
find that in addition to producing a useful scoring function for anomaly detection,
the resulting approach produces sharp samples (like GANs) while covering the
modes well, leading to high Inception and Frchet scores.

1 INTRODUCTION

The early work on deep learning relied on unsupervised learning (Hinton et al., 2006; Bengio et al.,
2007; Larochelle et al., 2009) to train energy-based models (LeCun et al., 2006), in particular Re-
stricted Boltzmann Machines, or RBMs. However, it turned out that training energy-based models
without an analytic form for the normalization constant is very difficult, because of the challenge
of estimating the gradient of the partition function, also known as the negative phase part of the
log-likelihood gradient (described in more details below, Sec. 2). Several algorithms were pro-
posed for this purpose, such as Contrastive Divergence (Hinton, 2000) and Stochastic Maximum
Likelihood (Younes, 1998; Tieleman, 2008), relying on Monte-Carlo Markov Chains (MCMC) to
iteratively sample from the energy-based model. However, because they appear to suffer from either
high bias or high variance (due to long mixing times), training of RBMs and other Boltzmann ma-
chines has not remained competitive after the introduction of variational auto-encoders (Kingma &
Welling, 2014) and generative adversarial networks or GANs (Goodfellow et al., 2014).

In this paper, we revisit the question of training energy-based models, taking advantage of recent
advances in GAN-related research, and propose a novel approach to training energy functions and
sampling from them, called EnGAN. The main inspiration for the proposed solution is the earlier
observation (Bengio et al., 2013) made on stacks of auto-encoders that sampling in latent space (and
then applying a decoder to map back to data space) led to faster mixing and more efficient sam-
pling. The authors observed that whereas the data manifold is generally very complex and curved,
the corresponding distribution in latent space tends to be much simpler and flatter. This was veri-
fied visually by interpolating in latent space and projecting back to data space through the decoder,
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observing that the resulting samples look like data samples (i.e., the latent space manifold is ap-
proximately convex, with most points interpolated between examples encoded in latent space also
having high probability). We propose a related approach, EnGAN, which also provides two energy
functions, one in data space and one in latent space. A key ingredient of the proposed approach is the
need to regularize the generator (playing the role of the decoder in auto-encoders, but with no need
for an encoder) so as to increase its entropy. This is needed to make sure to produce negative exam-
ples that can kill off spurious minima of the energy function. This need was first identified by Kim &
Bengio (2016), who showed that in order for an approximate sampler to match the density associated
with an energy function, a compromise must be reached between sampling low energy configura-
tions and obtaining a high-entropy distribution. However, estimating and maximizing the entropy
of a complex high-dimensional distribution is not trivial, and we take advantage for this purpose of
very recently proposed GAN-based approaches for maximizing mutual information (Belghazi et al.,
2018; Oord et al., 2018; Hjelm et al., 2018), since the mutual information between the input and the
output of the generator is equal to the entropy at the output of the generator.

In this context, the main contributions of this paper are the following:

• proposing EnGAN, a general architecture, sampling and training framework for energy
functions, taking advantage of an estimator of mutual information between latent variables
and generator output and approximating the negative phase samples with MCMC in latent
space,

• showing that the resulting energy function can be successfully used for anomaly detection,
improving on recently published results with energy-based models,

• showing that EnGAN produces sharp images - with competitive Inception and Frechet
scores - and which also better cover modes than standard GANs and WGAN-GPs, while
not suffering from the common blurriness issue of many maximum likelihood generative
models.

2 LIKELIHOOD GRADIENT ESTIMATOR FOR ENERGY-BASED MODELS AND
DIFFICULTIES WITH MCMC-BASED GRADIENT ESTIMATORS

Let x denote a sample in the data space X and Eθ : X → R an energy function corresponding to
minus the logarithm of an unnormalized density density function

pθ(x) =
e−Eθ(x)

Zθ
∝ e−Eθ(x) (1)

where Zθ :=
∫
e−Eθ(x)dx is the partition function or normalizing constant of the density sample in

the latent space. Let pD be the training distribution, from which the training set is drawn. Towards
optimizing the parameters θ of the energy function, the maximum likelihood parameter gradient is

∂Ex∼pD [log pθ(x)]

∂θ
= Ex∼pD

[
∂Eθ(x)

∂θ

]
− Ex∼pθ(x)

[
∂Eθ(x)

∂θ

]
(2)

where the second term is the gradient of logZθ, and the sum of the two expectations is zero when
training has converged, with expected energy gradients in the positive phase (under the data pD)
matching those under the negative phase (under pθ(x)). Training thus consists in matching the
shape of two distributions: the positive phase distribution (associated with the data) and the negative
phase distribution (where the model is free-running and generating configurations by itself). This
observation has motivated the pre-GAN idea presented by Bengio (2009) that “model samples are
negative examples” and a classifier could be used to learn an energy function if it separated the data
distribution from the model’s own samples. Shortly after introducing GANs, Goodfellow (2014) also
made a similar connection, related to noise-contrastive estimation (Gutmann & Hyvarinen, 2010).
One should also recognize the similarity between Eq. 2 and the objective function for Wasserstein
GANs or WGAN (Arjovsky et al., 2017). In the next section, we examine a way to train what
appears to be a particular form of WGAN that makes the discriminator compute an energy function.

The main challenge in Eq. 2 is to obtain samples from the distribution pθ associated with the energy
functionEθ. Although having an energy function is convenient to obtain a score allowing to compare
the relative probability of different x’s, it is difficult to convert an energy function into a generative
function. The commonly studied approaches for this are based on Monte-Carlo Markov chains, in
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which one iteratively updates a candidate configuration, until these configurations converge in distri-
bution to the desired distribution pθ. For the RBM, the most commonly used algorithms have been
Contrastive Divergence (Hinton, 2000) and Stochastic Maximum Likelihood (Younes, 1998; Tiele-
man, 2008), relying on the particular structure of the RBM to perform Gibbs sampling. Although
these MCMC-based methods are appealing, RBMs (and their deeper form, the deep Boltzmann
machine) have not been competitive in recent years compared to autoregressive models (van den
Oord et al., 2016), variational auto-encoders (Kingma & Welling, 2014) and generative adversarial
networks or GANs (Goodfellow et al., 2014).

What has been hypothesized as a reason for the poorer results obtained with energy-based models
trained with an MCMC estimator for the negative phase gradient is that running a Markov chain
in data space is fundamentally difficult when the distribution is concentrated (e.g, near manifolds)
and has many modes separated by vast areas of low probability. This mixing challenge is discussed
by Bengio et al. (2013) who argue that a Markov chain is very likely to produce only sequences
of highly probable configurations. If two modes are far from each other and only local moves are
possible (which is typically the case with MCMCs), it becomes exponentially unlikely to traverse
the ’desert’ of low probability which can separate two modes. This makes mixing between modes
difficult in high-dimensional spaces with strong concentration of probability mass in some places
(e.g. corresponding to different categories) and very low probability elsewhere. In the same papers,
the authors propose a heuristic method for jumping between modes, based on performing the random
walk not in data space but in the latent space of an auto-encoder. Data samples can then be obtained
by mapping the latent samples to data space via the decoder. They argue that auto-encoders tend
to flatten the data distribution and bring the different modes closer to each other. The EnGAN
sampling method proposed here is highly similar but leads to learning both an energy function in
data space and one in latent space, from which we find that better samples are obtain. The energy
function can be used to perform the appropriate Metropolis-Hastings rejection. Having an efficient
way to approximately sample from the energy function also opens to the door to estimating the
log-likelihood gradient with respect to the energy function according to Eq. 2, as outlined below.

3 TURNING GAN DISCRIMINATORS INTO ENERGY FUNCTIONS WITH
ENTROPY MAXIMIZATION

Turning a GAN discriminator into an energy function has been studied in the past (Kim & Bengio,
2016; Zhao et al., 2016; Dai et al., 2017) but in order to turn a GAN discriminator into an energy
function, a crucial and difficult requirement is the maximization of entropy at the output of the
generator. Let’s see why. In Eq. 2, we can replace the difficult to sample pθ by another generative
process, say pG, such as the generative distribution associated with a GAN generator:

LE = Ex∼pD

[
∂Eθ(x)

∂θ

]
− Ex∼pG(x)

[
∂Eθ(x)

∂θ

]
+ Ω (3)

where Ω is a regularizer which we found necessary to avoid numerical problems in the scale (tem-
perature) of the energy. In this paper we use a gradient norm regularizer (Gulrajani et al., 2017)
Ω =

∣∣∣∣∇xEθ(x)
∣∣∣∣2 for this purpose. This is similar to the training objective of a WGAN as to Eq. 2,

but this interpretation allows to train the energy function only to the extent that pG is sufficiently sim-
ilar to pθ. To make them match, consider optimizingG to minimize the KL divergenceKL(pG||pθ),
which can be rewritten in terms of minimizing the energy of the samples from the generator while
maximizing the entropy at the output of the generator: KL(pG||pθ) = H[pG] − EpG [log pθ(x)] as
already shown by Kim & Bengio (2016). When taking the gradient of KL(pG||pθ) with respect to
the parameters w of the generator, the partition function of pG disappears and we equivalently can
optimize w to minimize

LG = −H[pG] + Ez∼pzEθ(G(z)) (4)

where pz is the prior distribution of the latent variable of the generator.

In order to maximize the entropy at the output of the generator, we propose to exploit another GAN-
derived framework in order to estimate and maximize mutual information between the input and
output of the generator network. The entropy at the output of a deterministic function (the generator
in our case) can be computed using an estimator of mutual information between the input and output
of that function, since the conditional entropy term is 0 because the function is deterministic. With
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x = G(z) the function of interest:

I(X,Z) = H(X)−H(X|Z) = H(G(Z))−���
���:

0
H(G(Z)|Z)

Hence, any neural mutual information maximization method such as MINE (Belghazi et al., 2018),
noise constrastive estimation (Oord et al., 2018) and DeepINFOMAX (Hjelm et al., 2018) can
be applied to estimate and maximize the entropy of the generator. All these estimators are based
on training a discriminator which separates the joint distribution p(X,Z) from the product of the
corresponding marginals p(X)p(Z). As proposed by Brakel & Bengio (2017) in the context of
using a discriminator to minimize statistical dependencies between the outputs of an encoder, the
samples from the marginals can be obtained by creating negative examples pairing an X and a Z
from different samples of the joint, e.g., by independently shuffling each column of a matrix holding
a minibatch with one row per example. The training objective for the discriminator can be chosen
in different ways. In this paper, we used the Deep INFOMAX (DIM) estimator (Hjelm et al., 2018),
which is based on maximizing the Jensen-Shannon divergence between the joint and the marginal
(see Nowozin et al. for the original F-GAN formulation).

IJSD(X,Z) = Ep(X,Z)[−s+(−T (X,Z))]− Ep(X)p(Z)[s+(T (X,Z))] (5)
where s+(a) = log(1+ea) is the softplus function. The discriminator T used to increase entropy at
the output of the generator is trained by maximizing IJSD(X,Z) with respect to the parameters of
T . WithX = G(Z) the output of the generator, IJSD(G(Z), Z) is one of the terms to be minimized
the objective function for training G, with the effect of maximizing the generator’s output entropy
H(G(Z)). The overall training objective for G is

LG = −IJSD(G(Z), Z) + Ez∼pzEθ(G(z)) (6)
where Z ∼ pz , the latent prior (typically a N(0, I) Gaussian).

4 PROPOSED LATENT SPACE MCMC AND MAXIMUM ENTROPY
GENERATOR FOR ENERGY-BASED MODELS

Figure 1: EnGAN model overview
where Gω is the Generator network, Tφ
is the Statistics network used for MI es-
timation and Eθ is the energy network

One option to generate samples is simply to use the usual
GAN approach of sampling a z ∼ pz from the latent prior
and then output x = G(z), i.e., obtain a sample x ∼ pG.
Since we have an energy function, another option is to
run an MCMC in data space, and we have tried this with
both Metropolis-Hastings (with a Gaussian proposal) and
adjusted Langevin (detailed below, which does a gradi-
ent step down the energy and adds noise, then rejects
high-energy samples). However, we have interestingly
obtained the best samples by considering Eθ ◦ G as an
energy function in latent space and running an adjusted
Langevin in that space (compare Fig. 4 with Fig. 7.1).
Then, in order to produce a data space sample, we ap-
ply G. For performing the MCMC sampling, we use the
Metropolis-adjusted Langevin algorithm (MALA), with
Langevin dynamics producing a proposal distribution in
the latent space as follows:

z̃t+1 = zt−α
∂Eθ(Gω(z))

∂z
+ε
√

2 ∗ α, where ε ∼ N (0, Id)

Next, the proposed z̃t+1 is accepted or rejected using the Metropolis Hastings algorithm, by com-
puting the acceptance ratio

r =
p(x̃t+1)

p(xt)
= exp

{
− Eθ(Gω(z̃t+1)) + Eθ(Gω(zt))

}
and accepting (setting zt+1 = z̃t+1) with probability r.

The overall training procedure for EnGAN is detailed in Algorithm 1, with MALA referring to the
above procedure for sampling by MCMC, with nmcmc steps. When nmcmc=0, we recover the base
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case where z is only sampled from the prior and passed through G, and no MCMC is done to clean
up the sample.

Algorithm 1 EnGAN Training Procedure Default values: Adam parameters α = 0.0001, β1 = 0.5, β2 =
0.9;λ = 0.1; nϕ = 5

Require: Score penalty coefficient λ, number of energy function updates nϕ per generator updates,
number of MCMC steps nmcmc, number of training iterations T , Adam hyperparameters α, β1
and β2.

Require: Energy function Eθ with parameters θ, entropy statistics network Tφ with parameters φ,
generator network Gω with parameters ω, minibatch size m
for t = 1, ..., T do

for 1, ..., nϕ do
Sample minibatch of real data {x(1), ...,x(m)} ∼ PD.
Sample minibatch of latent variables {z(1)0 , ..., z

(m)
0 } ∼ Pz .

for τ = 1, ..., nmcmc do
zτ+1 ← MALA(zτ , Eθ ◦G)

end for
x̃← Gω(znmcmc)

LE ←
1

m

[ m∑
i

Eθ(x
(i))−

m∑
i

Eθ(x̃
(i)) + λ

m∑
i

∣∣∣∣∇x(i)Eθ(x
(i))
∣∣∣∣2]

θ ← Adam(LE , θ, α, β1, β2)
end for
Sample minibatch of latent variables z = {z(1), ..., z(m)} ∼ Pz .
x̃← Gω(z)
Per-dimension shuffle of the minibatch z of latent variables, obtaining {z̃(1), ..., z̃(m)}.

LH ←
1

m

m∑
i

[
log σ(Tφ(x(i), z(i)))− log

(
1− σ(Tφ(x(i), z̃(i)))

)]
LG ←

1

m

[ m∑
i

Eθ(x̃
(i))

]
+ LH

ω ← Adam(LG, ω, α, β1, β2)
φ← Adam(LH , φ, α, β1, β2)

end for
The gradient-based updates can be performed with any gradient-based learning rule. We used
Adam in our experiments.

5 EXPERIMENTAL SETUP

5.1 SYNTHETIC TOY DATASETS

Generative models trained with maximum likelihood often suffer from the problem of spurious
modes and excessive entropy of the trained distribution, where the model incorrectly assigns high
probability mass to regions not present in the data manifold. Typical energy-based models such
as RBMs suffer from this problem partly because of the poor approximation of the negative phase
gradient, as discussed above.

To check if EnGAN suffers from spurious modes, we train the energy-based model on synthetic 2D
datasets (swissroll, 25gaussians and 8gaussians) similar to Gulrajani et al. (2017) and visualize the
energy function.

From the probaility density plots on Figure 1, we can see that the energy model doesn’t suffer from
spurious modes and learns a sharp energy distribution.
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Figure 2: Top: Training samples for the 3 toy datasets - 25gaussians, swissroll and 8gaussians.
Bottom: Corresponding probabiltiy density visualizations. Density was estimated using a sample
based approximation of the partition function.

5.2 DISCRETE MODE COLLAPSE EXPERIMENT

GANs have been notoriously known to have issues with mode collapse, by which certain modes of
the data distribution are not at all represented by the generative model. Similar to the mode dropping
issue that occurs in GANs, our generator is prone to mode dropping as well, since it is matched
with the energy model’s distribution using a reverse KL penalty DKL[PG || PE ]. Although the
entropy maximization term attempts to fix this issue by maximizing the entropy of the generator’s
distribution, it is important to verify this effect experimentally. For this purpose, we follow the
same experimental setup as Metz et al. (2016) and Srivastava et al. (2017). We train our generative
model on the StackedMNIST dataset, which is a synthetic dataset created by stacking MNIST on
different channels. The number of modes can be counted using a pretrained MNIST classifier, and
the KL divergence can be calculated empirically between the mode count distribution produced by
the generative model and true data (assumed to be uniform).

Table 1: Number of captured modes and Kullblack-Leibler divergence between the training and
samples distributions for ALI (Dumoulin et al., 2016), Unrolled GAN (Metz et al., 2016), Vee-
GAN (Srivastava et al., 2017), PacGAN (Lin et al., 2017), WGAN-GP (Gulrajani et al., 2017).
Numbers except our model and WGAN-GP are borrowed from Belghazi et al. (2018)

(Max 103) Modes KL

Unrolled GAN 48.7 4.32
VEEGAN 150.0 2.95
WGAN-GP 959.0 0.7276
PacGAN 1000.0± 0.0 0.06± 1.0e−2

Our EnGAN 1000.0 0.0313

(Max 104) Modes KL

WGAN-GP 9538.0 0.9144

Our EnGAN 10000.0 0.0480

From Table 1, we can see that our model naturally covers all the modes in that data, without dropping
a single mode. Apart from just representing all the modes of the data distribution, our model also
better matches the data distribution as evidenced by the very low KL divergence scores as compared
to the baseline WGAN-GP.

We noticed empirically that modeling 103 modes was quite trivial for benchmark methods such as
WGAN-GP (Gulrajani et al., 2017). Hence, we also try evaluating our model on a new dataset with
104 modes (4 stacks). The 4-StackedMNIST was created to have similar statistics to the original
3-StackedMNIST dataset. We randomly sample and fix 128 × 104 images to train the generative
model and take 26× 104 samples for evaluations.
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5.3 PERCEPTUAL QUALITY OF SAMPLES

Generative models trained with maximum likelihood have often been found to produce more blurry
samples. Our energy model is trained with maximum likelihood to match the data distribution and
the generator is trained to match the energy model’s distribution with a reverse KL penalty. To eval-
uate if our generator exhibits blurriness issues, we train our EnGAN model on the standard bench-
mark 32x32 CIFAR10 dataset for image modeling. We additionally train our models on the 64x64
cropped CelebA - celebrity faces dataset to report qualitative samples from our model. Similar to
recent GAN works (Miyato et al., 2018), we report both Inception Score (IS) and Frchet Incep-
tion Distance (FID) scores on the CIFAR10 dataset and compare it with a competitive WGAN-GP
baseline.

Table 2: Inception scores and FIDs with unsupervised image generation on CIFAR-10. 50000 sam-
ples were used to compute Inception Score and FID.

Method Inception score FID

Real data 11.24±.12 7.8
WGAN-GP 6.52 ± .08 35.85

Our model 6.31 ± .06 39.01

From Table 2, we can see that in addition to learning an energy function, EnGAN trains generative
model producing samples comparable to recent adversarial methods such as WGAN-GP (Gulrajani
et al., 2017) widely known for producing samples of high perceptual quality. Additionally, we
attach samples from the generator trained on the CelebA dataset and the 3-StackedMNIST dataset
for qualitative inspection. As shown below in Fig. 4, the visual quality of the samples can be further
improved by using the proposed MCMC sampler.

Figure 3: Left: 64x64 samples from the CelebA dataset Right: 28x28 samples from the 3-
StackedMNIST dataset. All samples are produced by the generator in a single step, without MCMC
fine-tuning (see Fig. 4 for that).

5.4 APPLICATION TO ANOMALY DETECTION

Apart from the usefulness of energy estimates for relative density estimation (up to the normalization
constant), energy functions can also be useful to perform unsupervised anomaly detection. Unsuper-
vised anomaly detection is a fundamental problem in machine learning, with critical applications in
many areas, such as cybersecurity, complex system management, medical care, etc. Density estima-
tion is at the core of anomaly detection since anomalies are data points residing in low probability
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density areas. We test the efficacy of our energy-based density model for anomaly detection using
two popular benchmark datasets: KDDCUP and MNIST.

KDDCUP We first test our generative model on the KDDCUP99 10 percent dataset from the UCI
repository (Lichman et al., 2013).

Our baseline for this task is Deep Structured Energy-based Model for Anomaly Detection (DSEBM)
(Zhai et al., 2016), which trains deep energy models such as Convolutional and Recurrent EBMs
using denoising score matching instead of maximum likelihood, for performing anomaly detection.
We also report scores on the state of the art DAGMM (Zong et al., 2018), which learns a Gaussian
Mixture density model (GMM) over a low dimensional latent space produced by a deep autoencoder.

We train our model on the KDD99 data and use the score norm ||∇xEθ(x)||22 as the decision func-
tion, similar to Zhai et al. (2016).

Table 3: Performance on the KDD99 dataset. Values for OC-SVM, DSEBM, Efficient GAN values
were obtained from Zong et al. (2018). Values for our model are derived from 5 runs. For each
individual run, the metrics are averaged over the last 10 epochs.

Model Precision Recall F1
Kernel PCA 0.8627 0.6319 0.7352

OC-SVM 0.7457 0.8523 0.7954
DSEBM-e 0.8619 0.6446 0.7399
DAGMM 0.9297 0.9442 0.9369

Our EnGAN 0.9307 ± 0.0146 0.9472 ± 0.0153 0.9389 ± 0.0148

From Table 3, we can see that our EnGAN energy function outperforms the previous SOTA energy-
based model (DSEBM) by a large margin (+0.1990 F1 score) and is comparable to the current SOTA
model (DAGMM) specifically designed for anomaly detection.

MNIST Next we evaluate our generative model on anomaly detection of high dimensional image
data. We follow the same experiment setup as (Zenati et al., 2018) and make each digit class an
anomaly and treat the remaining 9 digits as normal examples. We also use the area under the
precision-recall curve (AUPRC) as the metric to compare models.

Table 4: Performance on the unsupervised anomaly detection task on MNIST measured by area
under precision recall curve. Numbers except ours are obtained from (Zenati et al., 2018). Results
for our model are averaged over last 10 epochs to account for the variance in scores.

Heldout Digit VAE Our EnGAN BiGAN-σ
1 0.063 0.281 ± 0.035 0.287 ± 0.023
4 0.337 0.401 ± 0.061 0.443 ± 0.029
5 0.325 0.402 ± 0.062 0.514 ± 0.029
7 0.148 0.29 ± 0.040 0.347 ± 0.017
9 0.104 0.342 ± 0.034 0.307 ± 0.028

From Table 4, it can be seen that our energy model outperforms VAEs for outlier detection and is
comparable to the SOTA BiGAN-based anomaly detection methods for this dataset (Zenati et al.,
2018) which train bidirectional GANs to learn both an encoder and decoder (generator) simultane-
ously. An advantage with our method is that it has theoretical justification for the usage of energy
function as a decision function, whereas the BiGAN-σ model lacks justification for using a combi-
nation of the reconstruction error in output space as well as the discriminator’s cross entropy loss
for the decision function.
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5.5 MCMC SAMPLING

To show that the Metropolis Adjusted Langevin Algorithm (MALA) performed in latent space pro-
duced good samples in observed space, we attach samples from the beginning (with z sampled from
a Gaussian) and end of the chain for visual inspection. From the attached samples, it can be seen
that the MCMC sampler appears to perform a smooth walk on the image manifold, with the initial
and final images only differing in a few latent attributes such as hairstyle, background color, face
orientation, etc.

Figure 4: Left: Samples at the beginning of the chain (i.e. simply from the ordinary generator, z ∼
N(0, I)). Right: Generated samples after 100 iterations of MCMC using the MALA sampler. We
see how the chain is smoothly walking on the image manifold and changing semantically meaningful
and coherent aspects of the images.

6 CONCLUSIONS

We proposed EnGAN, an energy-based generative model that produces energy estimates using an
energy model and a generator that produces fast approximate samples. This takes advantage of novel
methods to maximize the entropy at the output of the generator using a GAN-like technique. We
have shown that our energy model learns good energy estimates using visualizations in toy 2D data
and through performance in unsupervised anomaly detection. We have also shown that our generator
produces samples of high perceptual quality by measuring Inception and Frchet scores and shown
that EnGAN is robust to the respective weaknesses of GAN models (mode dropping) and maximum-
likelihood energy-based models (spurious modes). We found that running an MCMC in latent space
rather than in data space (by composing the generator and the data-space energy to obtain a latent-
space energy) works substantially better than running the MCMC in data-space.
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7 APPENDIX

7.1 MCMC IN DATA SPACE

Figure 5: Samples from the beginning, middle and end of the chain performing MCMC sampling in
visible space. Initial sample is from the generator (pG) but degrades as we follow MALA directly in
data space. Compare with samples obtained by running the chain in latent space and doing the MH
rejection according to the data space energy (Fig. 4). It can be seen that MCMC in data space has
poor mixing and gets attracted to spurious modes.

7.2 ARCHITECTURE AND HYPERPARAMETERS

For all experiments we use Adam as the optimizer with α = 0.0001, β1 = 0.5, β2 = 0.9. We used
nmcmc = 0 (no MCMC steps during training) for all scores reported in the paper.

Toy Data: The generator, energy-model and the statistics network are simple 3-hidden layer MLPs
with dimensionality 512. The input to the statistics network is a conatenation of the inputs x and
latents z. For these experiments, we use the energy norm co-efficient λ = 0.1

StackedMNIST: : In line with previous work, we adopt the same architectural choices for the
generator and energy-model / discriminator as VeeGAN (Srivastava et al., 2017). The statistics
network is modeled similar to the energy-model, except with the final MLP which now takes as
input both the latents z and reduced feature representation of x produced by the CNN.

CIFAR10: For the CIFAR10 experiments, we adopt the same ’Standard CNN’ architecture as in
SpectralNorm (Miyato et al., 2018). We adapt the architecture for the Statistics Network similar
to the StackedMNIST experiments as mentioned above. For these experiments, we use the energy
norm co-efficient λ = 10

Anomaly Detection: For the KDD99 dataset, we adopt the same architecture as (Zenati et al.,
2018). We noticed that using nψ = 1 and λ = 105 worked best for these experiments. A large
energy norm coefficient was specifically necessary since the energy model overfit to some artifacts
in the data and exploded in value.

For the MNIST anomaly detection experiments, we use the same architecture as the StackedMNIST
experiments.
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