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Abstract

Current algorithms for deep learning probably cannot run in the brain because
they rely on weight transport, where forward-path neurons transmit their synaptic
weights to a feedback path, in a way that is likely impossible biologically. An algo-
rithm called feedback alignment achieves deep learning without weight transport by
using random feedback weights, but it performs poorly on hard visual-recognition
tasks. Here we describe two mechanisms — a neural circuit called a weight mirror
and a modification of an algorithm proposed by Kolen and Pollack in 1994 —
both of which let the feedback path learn appropriate synaptic weights quickly and
accurately even in large networks, without weight transport or complex wiring.
Tested on the ImageNet visual-recognition task, these mechanisms outperform
both feedback alignment and the newer sign-symmetry method, and nearly match
backprop, the standard algorithm of deep learning, which uses weight transport.

1 Introduction

The algorithms of deep learning were devised to run on computers, yet in many ways they seem
suitable for brains as well; for instance, they use multilayer networks of processing units, each with
many inputs and a single output, like networks of neurons. But current algorithms can’t quite work
in the brain because they rely on the error-backpropagation algorithm, or backprop, which uses
weight transport: each unit multiplies its incoming signals by numbers called weights, and some
units transmit their weights to other units. In the brain, it is the synapses that perform this weighting,
but there is no known pathway by which they can transmit their weights to other neurons or to other
synapses in the same neuron [1, 2].

Lillicrap et al. [3] offered a solution in the form of feedback alignment, a mechanism that lets
deep networks learn without weight transport, and they reported good results on several tasks. But
Bartunov et al. [4] and Moskovitz et al. [5] have found that feedback alignment does not scale to
hard visual recognition problems such as ImageNet [6].

Xiao et al. [7] achieved good performance on ImageNet using a sign-symmetry algorithm in which
only the signs of the forward and feedback weights, not necessarily their values, must correspond, and
they suggested a mechanism by which that correspondence might be set up during brain development.
Krotov and Hopfield [8] and Guerguiev et al. [9] have explored other approaches to deep learning
without weight transport, but so far only in smaller networks and tasks.

Here we propose two different approaches that learn ImageNet about as well as backprop does, with
no need to initialize forward and feedback matrices so their signs agree. We describe a circuit called
a weight mirror and a version of an algorithm proposed by Kolen and Pollack in 1994 [10], both of
which let initially random feedback weights learn appropriate values without weight transport.
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There are of course other questions about the biological implications of deep-learning algorithms,
some of which we touch on in Appendix C, but in this paper our main concern is with weight
transport.

2 The weight-transport problem

In a typical deep-learning network, some signals flow along a forward path through multiple layers of
processing units from the input layer to the output, while other signals flow back from the output layer
along a feedback path. Forward-path signals perform inference (e.g. they try to infer what objects are
depicted in a visual input) while the feedback path conveys error signals that guide learning. In the
forward path, signals flow according to the equation

yl+1 = φ(Wl+1 yl + bl+1) (1)

Here yl is the output signal of layer l, i.e. a vector whose i-th element is the activity of unit i in layer
l. Equation 1 shows how the next layer l + 1 processes its input yl: it multiplies yl by the forward
weight matrix Wl+1, adds a bias vector bl+1, and puts the sum through an activation function φ.
Interpreted as parts of a real neuronal network in the brain, the y’s might be vectors of neuronal firing
rates, or some function of those rates, Wl+1 might be arrays of synaptic weights, and bl+1 and φ
bias currents and nonlinearities in the neurons.

In the feedback path, error signals δ flow through the network from its output layer according to the
error-backpropagation [11] or backprop equation:

δl = φ′(yl) W
T
l+1 δl+1 (2)

Here φ′ is the derivative of the activation function φ from equation (1), which can be computed from
yl. So feedback signals pass layer by layer through weights WT

l . Interpreted as a structure in the
brain, the feedback path might be another set of neurons, distinct from those in the forward path, or
the same set of neurons might carry inference signals in one direction and errors in the other [12, 13].

Either way, we have the problem that the same weight matrix Wl appears in the forward equation (1)
and then again, transposed, in the feedback equation (2), whereas in the brain, the synapses in the
forward and feedback paths are physically distinct, with no known way to coordinate themselves so
one set is always the transpose of the other [1, 2].

3 Feedback alignment

In feedback alignment, the problem is avoided by replacing the transposed Wl’s in the feedback path
by random, fixed (non-learning) weight matrices Bl,

δl = φ′(yl) Bl+1 δl+1 (3)

These feedback signals δ drive learning in the forward weights W by the rule

∆Wl+1 = −ηW δl+1 yT
l (4)

where ηW is a learning-rate factor. As shown in [3], equations (1), (3), and (4) together drive the
forward matrices Wl to become roughly proportional to transposes of the feedback matrices Bl.
That rough transposition makes equation (3) similar enough to the backprop equation (2) that the
network can learn simple tasks as well as backprop does.

Can feedback alignment be augmented to handle harder tasks? One approach is to adjust the feedback
weights Bl as well as the forward weights Wl, to improve their agreement. Here we show two
mechanisms by which that adjustment can be achieved quickly and accurately in large networks
without weight transport.

4 Weight mirrors

4.1 Learning the transpose

The aim here is to adjust an initially random matrix B so it becomes proportional to the transpose
of another matrix W without weight transport, i.e. given only the input and output vectors x and
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y = Wx (for this explanation, we neglect the activation function φ). We observe that E
[
xyT

]
=

E
[
xxTWT

]
= E

[
xxT

]
WT . In the simplest case, if the elements of x are independent and

zero-mean with equal variance, σ2 , it follows that E
[
xyT

]
= σ2WT . Therefore we can push B

steadily in the direction σ2W using this transposing rule,

∆B = ηB xyT (5)

So B integrates a signal that is proportional to WT on average. Over time, B may grow large, but if
we add a mechanism such as weight decay to keep ‖B‖ small [14–16], then the initial, random values
in B shrink away, and B converges to a scalar multiple of WT (see Appendix A for an account of
this learning rule in terms of gradient descent).

4.2 A circuit for transposition

Figure 1 shows one way the learning rule (5) might be implemented in a neural network. This network
alternates between two modes: an engaged mode, where it receives sensory inputs and adjusts its
forward weights to improve its inference, and a mirror mode, where its neurons discharge noisily
and adjust the feedback weights so they mimic the forward ones. Biologically, these two modes may
correspond to wakefulness and sleep, or simply to practicing a task and then setting it aside for a
moment.
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Figure 1: Network modes for weight mirroring. Both panels show the same two-layer section of
a network. In both modes, the three neurons in layer l of the forward path ( ) send their output
signal yl through the weight array Wl+1 (and other processing shown in equation (1)) to yield the
next-layer signal yl+1. And in the feedback path ( ), the two neurons in layer l+ 1 send their signal
δl+1 through weight array Bl+1 to yield δl, as in (3). The figure omits the biases b, nonlinearities φ,
and, in the top panel, the projections that convey yl to the δl cells, allowing them to compute the
factor φ′(yl) in equation (3). a) In engaged mode, cross-projections ( ) convey the feedback signals
δ to the forward-path cells, so they can adjust the forward weights W using learning rule (4). b) In
mirror mode, one layer of forward cells, say layer l, fires noisily. Its signal yl still passes through
Wl+1 to yield yl+1, but now the blue cross-projections ( ) control firing in the feedback path, so
δl = yl and δl+1 = yl+1, and the δl neurons adjust the feedback weights Bl+1 using learning
rule (7). We call the circuit yl, yl+1, δl+1, δl a weight mirror because it makes the weight array
Bl+1 resemble WT

l+1.

In mirror mode, the forward-path neurons in each layer l, carrying the signal yl, project strongly to
layer l of the feedback path — strongly enough that each signal δl of the feedback path faithfully
mimics yl, i.e.

δl = yl (6)

Also in mirror mode, those forward-path signals yl are noisy. Multiple layers may fire at once, but the
process is simpler to explain in the case where they take turns, with just one layer l driving forward-
path activity at any one time. In that case, all the cells of layer l fire randomly and independently,
so their output signal yl has zero-mean and equal variance σ2. That signal passes through forward
weight matrix Wl+1 and activation function φ to yield yl+1 = φ(Wl+1 yl + bl). By equation (6),
signals yl and yl+1 are transmitted to the feedback path. Then the layer-l feedback cells adjust their
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weights Bl+1 by Hebbian learning,

∆Bl+1 = ηB δl δ
T
l+1 (7)

This circuitry and learning rule together constitute the weight mirror.

4.3 Why it works

To see that (7) approximates the transposing rule (5), notice first that

δl δ
T
l+1 = yl y

T
l+1 = yl φ(Wl+1 yl + bl+1)T (8)

If we assume, for now, that φ is everywhere differentiable, with derivatives everywhere positive, and
if we make the variance σ2 of yl small enough that Wl+1 yl + bl+1 falls in a roughly affine range
of φ, then

φ(Wl+1 yl + bl+1) ≈ φ′(bl+1) (Wl+1 yl) + φ(bl+1) (9)

where φ′(bl+1) is a positive-definite, diagonal matrix. Therefore

δl δ
T
l+1 ≈ yl

[
yT
l WT

l+1 φ
′(bl+1)T + φ(bl+1)T

]
(10)

and so

E
[
∆Bl+1

]
≈ ηB

(
E
[
yly

T
l

]
WT

l+1φ
′(bl+1)T + E

[
yl

]
φ(bl+1)T

)
= ηB E

[
yly

T
l

]
WT

l+1φ
′(bl+1)T

= ηB σ
2φ′(bl+1)WT

l+1

(11)

Hence the weight matrix Bl+1 integrates a teaching signal (7) which is related to WT
l+1 on average

by a positive-definite, diagonal matrix ηBσ2φ′(bl+1). Over time, this integration may drive up the
matrix norm ‖Bl+1‖, but if we add a mechanism to keep the norm small — such as weight decay or
synaptic scaling [15, 16] — then (7) makes Bl+1 approximately positive-definitely related to WT

l+1.

We get a stronger result if we assume the biases bl+1 are small, or if we suppose that neurons are
capable of bias-blocking — of closing off their bias currents when in mirror mode, or preventing their
influence on the axon hillock. Then

E
[
∆Bl+1

]
≈ ηB σ2φ′(0)WT

l+1 (12)

So long as all neurons in forward layer l + 1 have the same activation function, (12) implies that
Bl+1 will come to approximate a positive scalar multiple of WT

l+1.

And with bias-blocking we can also drop the requirement that φ have a positive derivative everywhere.
Now it need only have a positive derivative near 0 (see Appendix C.2 for a more general formulation
that further relaxes the requirements on φ).

In one respect the weight mirror resembles difference target propagation [4], because both mechanisms
shape the feedback path layer by layer, but target propagation learns layer-wise autoencoders (though
see [17]), and uses feedback weights to propagate targets rather than gradients.

5 The Kolen-Pollack algorithm

5.1 Convergence through weight decay

Kolen and Pollack [10] observed that we don’t have to transport weights if we can transport changes
in weights. Consider two synapses, W in the forward path and B in the feedback path (written
without boldface because for now we are considering individual synapses, not matrices). Suppose W
and B are initially unequal, but at each time step t they undergo identical adjustments A(t) and apply
identical weight-decay factors λ, so

∆W (t) = A(t)− λW (t) (13)

and
∆B(t) = A(t)− λB(t) (14)
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ThenW (t+1)−B(t+1) = W (t)+∆W (t)−B(t)−∆B(t) = W (t)−B(t)−λ[W (t)−B(t)] =
(1− λ)[W (t)−B(t)] = (1− λ)t+1[W (0)−B(0)], and so with time, if 0 < λ < 1, W and B will
converge.

But biologically, it is no more feasible to transport weight changes than weights, and Kolen and
Pollack do not say how their algorithm might run in the brain. Their flow diagram (Figure 2 in their
paper) is not at all biological: it shows weight changes being calculated at one locus and then traveling
to distinct synapses in the forward and feedback paths. In the brain, changes to different synapses are
almost certainly calculated separately, within the synapses themselves. But it is possible to implement
Kolen and Pollack’s method in a network without transporting weights or weight changes.

5.2 A circuit for Kolen-Pollack learning

The standard, forward-path learning rule (4) says that the matrix Wl+1 adjusts itself based on a
product of its input vector yl and a teaching vector δl+1. More specifically, each synapse Wl+1,ij

adjusts itself based on its own scalar input yl,j and the scalar teaching signal δl+1,i sent to its neuron
from the feedback path.

We propose a reciprocal arrangement, where synapses in the feedback path adjust themselves based
on their own inputs and cell-specific, scalar teaching signals from the forward path,

∆Bl+1 = −η yl δ
T
l+1 (15)

If learning rates and weight decay agree in the forward and feedback paths, we get

∆Wl+1 = −ηW δl+1 y
T
l − λWl+1 (16)

and
∆Bl+1 = −ηW yl δ

T
l+1 − λBl+1 (17)

i.e.
∆BT

l+1 = −ηW δl+1 y
T
l − λBT

l+1 (18)

In this network (drawn in Figure 2), the only variables transmitted between cells are the activity
vectors yl and δl+1, and each synapse computes its own adjustment locally, but (16) and (18) have
the form of the Kolen-Pollack equations (13) and (14), and therefore the forward and feedback weight
matrices converge to transposes of each other.

δl+1

δ  l

yl

yl +1

Wl

Wl+2

Wl+1

Bl

Bl+1 

Bl+2 

Figure 2: Reciprocal network for Kolen-Pollack learning. There is a single mode of operation.
Gold-colored cross-projections ( ) convey feedback signals δ to forward-path cells, so they can
adjust the forward weights W using learning rule (16). Blue cross-projections ( ) convey the signals
y to the feedback cells, so they can adjust the feedback weights B using (17).

We have released a Python version of the proprietary TensorFlow/TPU code for
the weight mirror and the KP reciprocal network that we used in our tests; see
github.com/makrout/Deep-Learning-without-Weight-Transport.

5

https://github.com/makrout/Deep-Learning-without-Weight-Transport


6 Experiments

We compared our weight-mirror and Kolen-Pollack networks to backprop, plain feedback alignment,
and the sign-symmetry method [5, 7]. For easier comparison with recent papers on biologically-
motivated algorithms [4, 5, 7], we used the same types of networks they did, with convolution [18],
batch normalization (BatchNorm) [19], and rectified linear units (ReLUs) without bias-blocking. In
most experiments, we used a ResNet block variant where signals were normalized by BatchNorm
after the ReLU nonlinearity, rather than before (see Appendix D.3). More brain-like implementations
would have to replace BatchNorm with some kind of synaptic scaling [15, 16], ReLU with a bounded
function such as rectified tanh, and convolution with non-weight-sharing local connections.
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Figure 3: ImageNet results. a) With ResNet-18 architecture, the weight-mirror network (— WM)
and Kolen-Pollack (— KP) outperformed plain feedback alignment (— FA) and the sign-symmetry
algorithm (— SS), and nearly matched backprop (— BP). b) With the larger ResNet-50 architecture,
results were similar.

Run on the ImageNet visual-recognition task [6] with the ResNet-18 network (Figure 5a), weight
mirrors managed a final top-1 test error of 30.2(7)%, and Kolen-Pollack reached 29.2(4)%, versus
97.4(2)% for plain feedback alignment, 39.2(4)% for sign-symmetry, and 30.1(4)% for backprop.
With ResNet-50 (Figure 5b), the scores were: weight mirrors 23.4(5)%, Kolen-Pollack 23.9(7)%,
feedback alignment 98.9(1)%, sign-symmetry 33.8(3)%, and backprop 22.9(4)%. (Digits in paren-
theses are standard errors).

Sign-symmetry did better in other experiments where batch normalization was applied before the
ReLU nonlinearity. In those runs, it achieved top-1 test errors of 37.8(4)% with ResNet-18 (close to
the 37.91% reported in [7] for the same network) and 32.6(6)% with ResNet-50 (see Appendix D.1
for details of our hyperparameter selection, and Appendix D.3 for a figure of the best result attained
by sign-symmetry on our tests). The same change in BatchNorm made little difference to the other
four methods — backprop, feedback alignment, Kolen-Pollack, and the weight mirror.

Weight mirroring kept the forward and feedback matrices in agreement throughout training, as shown
in Figure 4. One way to measure this agreement is by matrix angles: in each layer of the networks,
we took the feedback matrix Bl and the transpose of the forward matrix, WT

l , and reshaped them
into vectors. With backprop, the angle between those vectors was of course always 0. With weight
mirrors (Figure 4a), the angle stayed < 12° in all layers, and < 6° later in the run for all layers except
the final one. That final layer was fully connected, and therefore its Wl received more inputs than
those of the other, convolutional layers, making its WT

l harder to deduce. For closer alignment, we
would have needed longer mirroring with more examples.

The matrix angles grew between epochs 2 and 10 and then held steady at relatively high levels till
epoch 32 because during this period the learning rate ηW was large (see Appendix D.1), and mirroring
didn’t keep the Bl’s matched to the fast-changing WT

l ’s. That problem could also have been solved
with more mirroring, but it did no harm because at epoch 32, ηW shrank by 90%, and from then on,
the Bl’s and WT

l ’s stayed better aligned.
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Figure 4: Agreement of forward and feedback matrices in the ResNet-50 from Figure 5b. a) Weight
mirrors kept the angles between the matrices Bl and WT

l small in all layers, from the input layer (—)
to the output (—). b) Feedback vectors δl computed by the weight-mirror network were also well
aligned with those that would have been computed by backprop. c, d) The Kolen-Pollack network
kept the matrix and δ angles even smaller. e, f) The sign-symmetry method was less accurate.

We also computed the δ angles between the feedback vectors δl computed by the weight-mirror
network (using Bl’s) and those that would have been computed by backprop (using WT

l ’s). Weight
mirrors kept these angles < 25° in all layers (Figure 4b), with worse alignment farther upstream,
because δ angles depend on the accumulated small discrepancies between all the Bl’s and WT

l ’s in
all downstream layers.

The Kolen-Pollack network was even more accurate, bringing the matrix and δ angles to near zero
within 20 epochs and holding them there, as shown in Figures 4c and 4d.
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The sign-symmetry method aligned matrices and δ’s less accurately (Figures 4e and 4f), while with
feedback alignment (not shown), both angles stayed > 80° for most layers in both the ResNet-18 and
ResNet-50 architectures.

7 Discussion

Both the weight mirror and the Kolen-Pollack network outperformed feedback alignment and the
sign-symmetry algorithm, and both kept pace, at least roughly, with backprop. Kolen-Pollack has
some advantages over weight mirrors, as it doesn’t call for separate modes of operation and needn’t
proceed layer by layer. Conversely, weight mirrors don’t need sensory input but learn from noise, so
they could tune feedback paths in sleep or in utero. And while KP kept matrix and δ angles smaller
than WM did in Figure 4, that may not be the case in all learning tasks. With KP, the matrix B
converges to WT at a rate that depends on λ, the weight-decay factor in equation (17). A big λ
speeds up alignment, but may hamper learning, and at present we have no proof that a good balance
can always be found between λ and learning rate ηW . In this respect, WM may be more versatile than
KP, because if mirroring ever fails to yield small enough angles, we can simply do more mirroring,
e.g. in sleep. More tests are needed to assess the two mechanisms’ aptitude for different tasks,
their sensitivity to hyperparameters, and their effectiveness in non-convolutional networks and other
architectures.

Both methods may have applications outside biology, because the brain is not the only computing
device that lacks weight transport. Abstractly, the issue is that the brain represents information in two
different forms: some is coded in action potentials, which are energetically expensive but rapidly
transmissible to other parts of the brain, while other information is stored in synaptic weights, which
are cheap and compact but localized — they influence the transmissible signals but are not themselves
transmitted. Similar issues arise in certain kinds of technology, such as application-specific integrated
circuits (ASICs). Here as in the brain, mechanisms like weight mirroring and Kolen-Pollack could
allow forward and feedback weights to live locally, saving time and energy [20–22].
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Appendices

A The transposing rule as gradient descent

The learning rule (5) can be expressed as a form of gradient descent,

∆B = η xyT = −η ∂f

∂B
(19)

where
f(x,y,B) = −sum(xyT �B) = −

∑
i,j

xi yj Bij (20)

This function f is not a loss or objective function, as it has no minimum for any fixed, non-zero x
and y, and neither is it a quantity we would wish to minimize, because it can be pushed farther and
farther below zero by making B larger and larger. But if we combine (5) with weight decay

∆B = ηB xyT − λWM B (21)

then we do descend the gradient of a loss

L = f +
λWM

2 ηB
‖B‖2 (22)

B Computational costs

Weight mirroring is slightly more expensive computationally than is Kolen-Pollack learning. Suppose
layers l and l + 1 of a learning network are fully connected, with nl and nl+1 forward units (and the
same numbers of feedback units if they are separate from the forward ones), and let n =min(nl, nl+1).
Then for each training example, KP does n+ 4nlnl+1 flops to adjust Bl+1 using equation (17). WM
does the same number to adjust Bl+1 using equation (7) and weight decay. But WM also has to
generate a random vector yl and then perform about 2nlnl+1 flops to compute yl+1 from yl using
equation (1), whereas KP uses the same yl and yl+1 that train the forward matrices. In short, WM
needs twice as many forward passes as KP does to collect as many training examples for its B
matrices (whether the net is fully-connected or not).

C Biological interpretations

The variables in the weight-mirror and Kolen-Pollack equations can be interpreted physically in
several different ways. Here we describe some issues and options:

C.1 Distinct feedback neurons?

Figures 1 and 2 show learning networks where inference signals y and error signals δ are carried by
distinct sets of neurons. But their equations work just as well if the same neurons carry inference
signals in one direction and errors in the other.

If the forward and feedback paths are distinct sets of neurons, then our proposed methods call
for a one-to-one pairing, connecting each forward-path cell with a partner cell in the feedback
path. Such connections might arise during development. We know that very precise and consistent
neuronal wiring is found in simple organisms such as C. elegans and in the compound eyes of insects,
while in primate cerebellum each Purkinje cell connects with exactly one appropriate climbing fiber.
Alternatively, something less than strict one-to-one wiring may suffice for effective learning, and may
itself be learned.

Getting a one-to-one correspondence is of course trivial if the same neurons make up the forward and
feedback paths, though then we face the new problem of signal segregation — explaining how signals
y and δ can flow through the same cells without interfering. Some possibilities are that neurons
segregate y and δ by conveying them with different intracellular messengers or computing them in
different parts of the cell [23] or by multiplexing [24], or cells may take turns carrying one or the
other signal.
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C.2 Zero-mean signals

In equation (11), we provided a rationale for our learning rule (7), but to do it we had to assume
that the signal yl had a zero mean. That assumption is awkward if we interpret the signals in our
equations as firing rates of neurons, because neurons can’t have negative rates, and so can’t have zero
means except by remaining utterly silent. But we can drop the zero-mean requirement if we suppose
that neurons convey positive and negative values by modulating about a baseline rate β. For instance,
we might have

yl+1 = φ
(
Wl+1(yl − β) + bl+1

)
(23)

where φ is a non-negative activation function and yl − β means that the same scalar β is subtracted
from each element of the signal vector yl. In engaged mode, forward matrices are adjusted by the
learning rule

∆Wl+1 = −ηW δl+1(yl − β)T (24)

whereas in mirror mode, yl fires noisily with a mean of β rather than 0, and Bl+1 is adjusted by the
rule

∆Bl+1 = ηB (δl − β)(δl+1 − β)T (25)

This baseline parameter β may be built into forward and feedback neurons by the genome or it may
be estimated locally, for example by taking the average of the firing rates over a period of mirroring,
as we did in our experiments. And it is easy to show that a slight generalization of bias blocking lets
us work with any activation function φ so long as there is some neighborhood where it is positive and
has a positive derivative.

Another way to get positive and negative signals in the brain is to think of each processing unit not as
a single neuron but as a group of cells acting in push-pull, some carrying positive signals and others
negative [25]. Both mechanisms — baselines and push-pull — operate in the brain, for instance in
the vestibulo-ocular reflex [26].

C.3 Multipurpose projections?

To avoid clutter, Figure 1a omitted the cross-projections which convey yl to the feedback cells,
allowing them to compute the factor φ′(yl) in equation (3). Figure 1b does show cross-projections
from forward to feedback cells, carrying the same signal, yl, but having a different effect on the
target cells, setting δl = yl. We may interpret these two sets of projections — the ones omitted from
Figure 1a and the ones drawn as thin blue arrows in 1b — as two distinct sets of axons carrying
the same signal, or as a single set of axons whose effects on their targets differ in the two modes.
Maybe these axons form two types of synapses, some onto ionotropic receptors and some onto
metabotropic, or maybe some switch in intracellular signaling within the feedback cells makes them
respond differently to identical signals. Similar issues arise in Figure 2, where blue cross-projections
convey the signals y for use in both (3) and (17).

C.4 Multilayer mirroring

In Figure 1b and accompanying text, we assumed that just one forward layer yl was noisy, and just
one feedback array Bl+1 was adjusted, at any one time. Why not adjust all the B’s at once? The
problem is, when we adjust Bl+1 we need a zero-mean (or β-mean), uncorrelated, equal-variance
signal yl, which drives yl+1. But the resulting yl+1 generally will not be zero-mean, uncorrelated, or
equal-variance, and so may not be effective at driving Bl+2 toward WT

l+2. We can of course apply
noise simultaneously to every second layer — for instance to y2, y4, y6, etc. — and adjust as many
as half the B’s at any one moment, so the mirroring does not really have to proceed one layer at a
time. And there may be other options in networks with batch normalization or synaptic scaling [19].
Those mechanisms tend to keep all the forward signals approximately zero-mean and equal-variance
(though not uncorrelated), and in that case it may be possible to adjust all the B’s at once, driving the
entire network with a single noisy input vector yl, though we haven’t tested that idea here.
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D Experimental details

D.1 Architecture and training

We ran our experiments using 18- and 50-layer deep-residual networks ResNet-18 and ResNet-50
[27]. These networks consisted of sequences of sub-blocks, each made up of two (ResNet-18) or three
(ResNet-50) convolutional layers in series. In parallel with these layers was a shortcut connection
whose output was added to the output from the convolutional layers. The output of the network
passed through a final fully-connected layer followed by a softmax.

For the sign-symmetry algorithm, we carried out grid searches of the learning rate over the range
[0.01, 2.0] while running training out to 140 epochs to ensure convergence. We found that 0.5
gave the lowest top-1 errors with both ResNet-18 and ResNet-50, and so we used that value for all
sign-symmetry experiments. Otherwise, all hyperparameters in all algorithms (except those for mirror
mode) were taken from [28], including forward-path Nesterov momentum [29] 0.9 and a weight
decay factor (L2 regularizer) λ of 10−4. We used TF-Replicator [28] to distribute training across 32
TPU v2 workers, for a total mini-batch of 2048 images. And we applied the annealing schedule from
[28], i.e. ηW grew linearly over the first 6 epochs (or over epochs 3 to 8 for weight-mirror networks,
see below), and shrank 10-fold after epochs 32, 62, and 82.

D.2 Mirroring

Each weight-mirror network spent its first two epochs entirely in mirror mode, bringing its initial,
random weights into alignment. Thereafter, it did a small amount of mirroring after each mini-batch
of engaged-mode learning. It mirrored layer-wise: it created a new mini-batch of noisy activity in
layer l (independent Gaussian signals with zero mean and unit variance across the 2048 examples in
the mirroring mini-batch) and it sent those signals through the convolutional layer and then the ReLU
function. It computed the means of the post-ReLU outputs across the mini-batch and subtracted them
to give zero-mean outputs in each layer.

As in equation (21), the covariance matrix of these zero-mean signals was estimated by multiplying
them and averaging over the mini-batch. In convolutional layers, because of weight sharing, each
weight connected multiple sets of inputs and outputs, and so we estimated the covariance associated
with any given weight by averaging the estimated covariances over the pairs of inputs and outputs it
connected.

We used these covariance estimates to train the feedback weights, as in (21), with a learning-rate
factor ηB of 0.1 and a weight decay λWM of 0.5.

D.3 Batch normalization

The weight mirror and Kolen-Pollack learned to match feedback matrices Bl to forward matrices
Wl, but didn’t try to reproduce the batch normalization parameter vectors µ or σ used in the forward
path. In fact no Bl could have mirrored the combined effects of Wl, µ, and σ in our convolutional
networks, because the Bl matrices had the same convolutional, weight-sharing structure as the Wl’s
did — a structure which µ and σ ignored. Therefore we simply passed the scaling parameter σ from
the forward to the feedback path (µ was not needed). This transfer involved very little information —
just one scalar variable per feedback neuron — and could be avoided if we replaced convolution by
more biological local connections without weight sharing.

In most of our experiments we applied batch normalization after the activation function, but the
sign-symmetry method learned slightly better the other way, with normalization applied before the
activation, as in [27]. We gave the numerical results for both cases in Section 6, but here we provide
also a figure of the best result achieved by sign-symmetry in our tests, its 32.6(6)% final error with
the ResNet-50 architecture:
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Figure 5: ResNet-50 ImageNet results with batchnorm applied before ReLU.

E Pseudo Code

Algorithm 1 Weight Mirrors

1: procedure WEIGHT MIRRORS(network, data)
. network has L layers

2: for each epoch do
3: for each batch = (y0, y∗) ∈ data do

. Engaged mode
4: compute the batch prediction yL . forward pass
5: δL = yL − y∗ . compute error
6: for layer l from L-1 to 0 do
7: Wl+1 = (1− λ)Wl+1 − ηW δl+1 y

T
l . equation (4), with weight decay

8: bl+1 = (1− λ)bl+1 − ηW δl+1

9: δl = φ′(yl)Bl+1 δl+1 . compute error gradients using B, equation (3)
10: end for

. Mirror mode
11: for layer l from 1 to L-1 do
12: sample yl ∼ N (µ, σ2) . ideally zero-mean, small-variance
13: yl+1 = φ(Wl yl + bl)
14: δl = yl − ȳl . subtract batch average
15: δl+1 = yl+1 − ȳl+1 . forward cells drive feedback cells
16: Bl+1 = (1− λWM )Bl+1 + ηB δl δ

T
l+1 . equations (7) and (21)

17: end for
18: end for
19: end for
20: end procedure
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Algorithm 2 Kolen-Pollack algorithm

1: procedure KOLEN-POLLACK ALGORITHM(network, data)
. network has L layers

2: for each epoch do
3: for each batch = (y0, y∗) ∈ data do
4: compute the batch prediction yL . forward pass
5: δL = yL − y∗ . compute error
6: for layer l from L-1 to 0 do
7: Wl+1 = (1− λ)Wl+1 − ηW δl+1 y

T
l . equation (16)

8: bl+1 = (1− λ)bl+1 − ηW δl+1

9: Bl+1 = (1− λ)Bl+1 − ηB yl δ
T
l+1 . equation (17)

10: δl = φ′(yl)Bl+1 δl+1 . compute error gradients using B, equation (3)
11: end for
12: end for
13: end for
14: end procedure
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