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ABSTRACT

Decision-time planning policies with implicit dynamics models have been shown
to work in discrete action spaces with Q learning. However, decision-time plan-
ning with implicit dynamics models in continuous action space has proven to be
a difficult problem. Recent work in Reinforcement Learning has allowed for im-
plicit model based approaches to be extended to Policy Gradient methods. In
this work we propose Policy Tree Network (PTN). Policy Tree Network lies at
the intersection of Model-Based Reinforcement Learning and Model-Free Rein-
forcement Learning. Policy Tree Network is a novel approach which, for the first
time, demonstrates how to leverage an implicit model to perform decision-time
planning with Policy Gradient methods in continuous action spaces. This work
is empirically justified on 8 standard MuJoCo environments so that it can easily
be compared with similar work done in this area. Additionally, we offer a lower
bound on the worst case change in the mean of the policy when tree planning is
used and theoretically justify our design choices.

1 INTRODUCTION

Reinforcement Learning (RL), the study of learning what to do. Learning what to do in a given
situation so as to maximize reward signals. Generally speaking, Reinforcement Learning problems
are approached from either a Model-Free or Model-Based perspective. A Model-Free approach
builds a policy through interacting with the environment and uses the acquired experience to improve
the policy. A Model-Based approach builds a dynamics model of the environment and uses this
improve a policy in a number of ways. Such as planning, exploration, and even training on imagined
data (Sutton, 1990; Ha & Schmidhuber, 2018). Model-Free Reinforcement Learning generally offers
superior final performance. However, in exchange for strong final performance a large number of
samples are required. Model-Based Reinforcement Learning offers better sample complexity but
comes at the cost of a weaker final policy. In light of this, recent research (Wellmer & Kwok,
2019; Silver et al., 2016; Farquhar et al., 2017; Oh et al., 2017) has been focused on mixing both
Model-Free and Model-Based Reinforcement Learning.

Model-Based Reinforcement Learning can be broken down further into two categories (Wellmer
& Kwok, 2019). The first is explicit dynamics models. Explicit dynamics models are when the
observations are directly being reconstructed. The second is implicit dynamics models. Implicit
dynamics models are when the dynamics model is learned indirectly. Some examples of this could
be through predicting future rewards, values, policies or other auxiliary signals.

The work we present here, Policy Tree Network, lies at the intersection of Model-Free and Model-
Based Reinforcement Learning. Our work builds off the work done by Wellmer & Kwok (2019),
where they showed how to build an implicit dynamics model for Policy Gradient methods in contin-
uous action space. Policy Tree Network takes this a few steps further by showing how to leverage
the implicit dynamics model for decision-time planning.

Our empirical results are on eight MuJoCo (Todorov et al., 2012) environments. In our experiments
we validate the decision-time planning scheme that we introduce. Lastly we show Policy Tree
Network outperforms the model-free baseline (Schulman et al., 2017) and the mixed model-free
model-based baseline (Wellmer & Kwok, 2019).
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2 RELATED WORKS

Value Prediction Network (VPN) (Oh et al., 2017) offers an approach to building and leveraging
an implicit dynamics model in a discrete action space. The implicit dynamics model is constructed
with overshooting objectives which predict future rewards and value estimates. At behavior time,
a Q tree is expanded and actions are selected according to ε-greedy of the backed-up Q estimates.
Decision-time planning is trivial in this case since the action space is discrete. When the action
space is discrete it’s possible to try all possibilities.

TreeQN and ATreeC offer a policy gradient and Q-learning approach building implcit dynamics
models in discrete action spaces. TreeQN (Farquhar et al., 2017) is similar to VPN except the
authors claim that VPN has an issue since the policy being trained is different than the policy actually
being used. In light of this, TreeQN directly optimizes the backed-up Q estimates as opposed to
indirectly (as is done in VPN). Additionally, TreeQN uses overshooting reward estimates as an
auxiliary objective.

ATreeC (Farquhar et al., 2017) takes a similar approach to TreeQN except instead of a Q-learning
approach ATreeC uses a policy gradient approach. We note that even though ATreeC uses a policy
gradient approach it still does not work with continuous action spaces. Crucially, ATreeC optimizes
the backed-up ”Q” estimates to function as logits for a multinomial distribution. Because of this, the
backed-up ”Q” values in this case can be thought of as pseudo Q values.

Policy Prediction Network (PPN) (Wellmer & Kwok, 2019) is an approach to building implicit
dynamics models with policy gradient methods. This was the first work to show how to build an
implicit dynamics model in continuous action spaces. This was done by introducing overshooting
objectives and a clipping scheme designed for overshooting objectives. The training algorithm is
located in Section A.2.
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Where Li,πt , Li,vt , and Li,rt are the policy, value, and reward losses grounded at time t predicting i
steps into the future. Additionally, subscript θ refers to estimates from the latest model parameters,
H is policy entropy, AGAE

t+i is the generalized advantage estimate (Schulman et al., 2016), r is a
reward target, r̂ is a predicted reward, v̂ is a predicted value, and R is a boot-strapped n-step return
target. The α coefficients are hyper-parameters used to trade off importance of objectives. The
clipped estimates are used to stay near estimates from old parameters(θ’) and are further defined in
Section A.3 along with the definition of the importance sampling ratio.

The short coming of PPN is that it did not lend itself well to leveraging the implicit dynamics
model to perform decision-time planning and thus used the model-free policy to sample actions.
Additionally, it does not make use of the Q function, a separate measure of how ”good” an action is
at a given state, as discussed in Section 3.2.

3 POLICY TREE NETWORK

Policy Tree Network uses a combination of model-free and model-based techniques. Policy Tree
Network builds off the PPN (Wellmer & Kwok, 2019) approach to learning an implicit-model. Ac-
tions during behavior time are chosen by a model-free policy. Learning is done with a model-based
approach that follows the behavior policy’s rollout trajectory. However, the test policy follows a
model-based approach. An implicit transition model is embedded into the architecture. Through
overshooting objectives, a dynamics model is learned and the collection of forward predictions offer
the benefit of additional signal in the gradient updates.
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Our novel contribution in this works is a decision-time planning algorithm that allows us to leverage
the implicit dynamics model. The decision-time planning algorithm is based on building a tree of
possible future values, actions, states, and rewards and then performing a tree backup algorithm we
introduce. In previous works it was not possible to directly leverage the implicit model for decision
time planning with policy gradient methods in continuous action space. Our empirical results in
Section 4 demonstrate the advantage of PTN over the model-free baseline (PPO) and the mixed
model-free & model-based baseline (PPN).

3.1 LEARNING

Policy Tree Network is trained over a collection of overshooting objectives. We follow an identical
clipping approach (Section A.3) to the one found in PPN. Targets used for training are computed
exactly the same way as in PPN. More explicitly, no aspect of training depends on the decision-time
planning algorithm described later in Section 3.2. While this might be desirable, we describe why
it is difficult in A.1. We additionally introduce a term β Hafner et al. (2018) used to trade off im-
portance of short and long-term predictions. Lastly, for simplicity we drop the extra value loss term
found in PPN (Equation 1), leaving us with the following: Lt =

∑d−1
i=0 βi(L

i,π
t + αvLi,vt + αrLi,rt ).

Where Li,πt , Li,vt , and Li,rt (equations 2, 3, 4) are the policy, value, and reward losses grounded at
time t predicting i steps into the future.

The implicit dynamics model is jointly learned from the objectives in Lt whenever i > 0. When
i = 0 estimates are not required to pass through the transition network. In Section A.2 we show
the training algorithms for PPO (Schulman et al., 2017), PPN (Wellmer & Kwok, 2019), and PTN
which are quite similar.

PPN (Wellmer & Kwok, 2019) was shown to have returns drastically differ between training depth
values. The point of β is to stabilize returns over different choices of training depth (Section A.6).

3.2 DECISION-TIME PLANNING

Including branching in PTN is appealing because it would allow for decision-time planning. Further-
more, this appears to be a simple task since a transition model is already being learned. However,
because the decision-time planning policy is difficult to directly measure with a PDF (Section A.1),
we resort to performing decision-time planning exclusively at evaluation time.

Traditionally, at every state, the next action in a state is either determined by a policy, π, learned
usually based on a policy gradient method, or an action value function Q that induces a policy that
takes actions with the largest Q value. However, in PTN, we have access to independently learned
policy and Q functions.1 There are three ways of using π and Q to create the final policy, πF .

1. setting πF = π as done in PPN, (Wellmer & Kwok, 2019), which ignores the Q function.
2. setting πF = argmax Q, called Q-backup which ignores π2.
3. setting πF = f(π,Q), called π-Q-backup, for some function f .

As (1) was described in PPN we will further dig into the details of (2) in Section 3.2.1 and (3) in
Section 3.2.2. Methods discussed in this section do not impact the learning procedure discussed in
Section 3.1 and are only used for decision-time planning at evaluation time.

We use a tree planning method which expands a tree up to a depth d expanding b branches at each
depth and collecting reward, policy, and value predictions along the way. Tree expansion is done
by recursively calling the core module (f core) with b action samples and the abstract state. The
action being passed to the core module could be sampled from a uniform distribution or the policy
(π(a|ŝi,jt,θ)), where ŝi,jt,θ represents the predicted abstract-state i steps into the future with branch j
according to parameters θ. We show that if the correlation between π and Q is positive, sampling
π will be more suitable and Section 4.2 shows that they are in fact positively correlated in practice.
Candidate actions represent branches in the tree. Then the predicted estimates are backed-up with
a TD-λ scheme (Sutton, 1988; Sutton & Barto, 2018; Farquhar et al., 2017) to assign a Q value to
each branch as described in Algorithm 1.

1by independent we mean π is not just a policy induced by selecting max of Q.
2when b = ∞
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Figure 1: Predict policies, rewards, ab-
stract states, and the value of the abstract
states (Wellmer & Kwok, 2019).

xt

Figure 2: PTN Expansion, a, r, v outputs from
f core are omitted for simplicity

When performing decision-time planning, the action associated with the max backed-up Q-value is
taken. This policy is referred to as πθ′,F , where θ′ denotes which parameters were used in the tree.

3.2.1 Q BACKUP

Given an abstract state s = fencθ (x) and an action a, the backed-up Q-value calculated from d-step
planning is defined as:

Qi(s, a) = r + γV i(s′) (5) V i(s) =

{
v if i = d

(1− λ)v + λmaxaQ
i+1(s, a) if i < d

(6)

where s′ = f trθ (s, a), v = fvθ (s), and r = frθ (s, a).

In Q backup, the final policy, πF , aims at selecting an action that maximizes the action value func-
tion, Q0. However, Q0 is a combination of neural networks and finding argmaxaQ

0 is a difficult
problem. We use our tree expansion to achieve this. With tree expansion, at each depth i, we sam-
ple b actions based on π and choose the one with maximum Qi+1 to estimate argmaxaQ

i+1 in
equation 6.

Intuitively, if π and Q are positively correlated, sampling from π allows us to find actions with
higher Q compared with sampling from a uniform distribution, because, for a state s and an action
a, larger π(a|s) value would suggest largerQ(s, a). This is the subject of the following lemma. Note
that, for a given state s, the covariance between π(X|s) and Q(X, s) over a bounded action space is
defined as covU (π(X|s), Q(X, s)) where X is a random variable with distribution U , the uniform
distribution over the action space. π and Q are positively correlated if covU (π(X|s), Q(X, s)) is
positive. Proof of the lemma can be found in the appendix.
Lemma 1. EX∼π[Q(X, s)] > EX∼U [Q(X, s)] if covU (π(X|s), Q(X, s)) > 0.

Section 4.2 shows that the correlation between π and Q0 is in fact positive in practice. Therefore,
sampling actions according to π is justified.

Since sampling is done based on π, our final policy πF now depends on π as well as Q0. Next we
investigate the relationship between πF , π and Q0. Consider the abstract state s = ŝ0,0t,θ . Recall
that Q0(a, s) is an action value function calculated based on the tree expansion and backup. Q0

uses sampling, is probabilistic, and is a function of f coreθ , λ, b and d. Action selection is done by
samplingXi ∼ π for 1 ≤ i ≤ b and selecting argmaxiQ

0(Xi, s). Thus, for an action a, cumulative
density function (cdf) of πF (a|s) is given by

∫ a
−∞ πF (z|s)dz = Pr(argmaxiQ

0(Xi, s) ≤ a).

Intuitively, the branching factor b can be thought of as interpolating how much confidence we have
in π and reward, value and transition networks (which make up Q0): low b signifies confidence in
π and larger b signifies more confidence in reward, value and transition networks. As b increases
πF becomes less dependant on π. When b goes to infinity, πF only depends on reward, value
and transition networks and not π. To investigate the maximum possible difference between mean
of π and πF over all Q0 functions we provide the next theorem. The theorem is provided in a
one dimensional action space for better illustration, but the argument can be extended to higher
dimensions. Proof of the theorem can be found in the appendix.
Theorem 1. Let µF be the mean of actions selected based on πF and µ, σ the mean and standard
deviation of actions selected based on π. In the worst-case over all possibleQ0 functions, |µ−µF | ≥
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Figure 3: PTN Backup

Algorithm 1 π Q expand(s, i)
initialize â, r, s, v′, Q
for j in b do

â[j] ∼ π(s)
r̂[j] = frθ (s, â[j])

ŝ′[j] = ftrθ (s, â[j])

v̂′[j] = f
va
θ

(ŝ′[j])
if i + 1 == d then

Q[j] =

√(
r̂[j] + γv̂′[j]

)
π(a = â[j]|s)

else
Q tmp = π Q expand(ŝ′[j], i + 1)

Q[j] =

√(
r̂[j] + γ((1− λ)v̂′[j] + λmaxâ Q tmp)

)
π(a = â[j]|s)

return Q

Figure 4: pseudo-code for π-Q expansion and backup algo-
rithm. Where the Q returned is a b dimensional vector.

b|σ
∫∞
−∞ zφ(z)( erfc(z)

2 ( z√
2
))b−1dz|, where erfc is the complementary error function and φ is the p.d.f

of standard normal distribution. Setting b = 2, we get the looser bound |µ−µF | ≥ σ√
π

in the worst-
case.

The bound is a lower bound on the worst-case and it shows that µF can move at least as far as σ√
π

from µ. In other words, there exist Q0 functions for which the difference between mean of πF and
π is at least σ√

π
. Observe that the bound decreases as σ decreases, which intuitively makes sense

since with lower σ, it takes more number of samples to obtain an action further away from µ.

The bound above sheds a light on one of the downsides of this approach. The final policy πF can
become significantly different from π, depending on Q0 and σ, even when b = 2 and as b grows
it becomes only reliant on Q0 (Section A.5 shows the numerical value of the bound for several b
values). Although Section 4.2 shows empirically that π and Q0 are on average correlated, there can
be states where they are not. In such a scenario, Q backup may rely too heavily on Q0.

We previously mentioned that b can be seen as a confidence parameter, adjusting how much we rely
on π and the networks that make up Q0. Nevertheless, it does not remedy the above mentioned
problem. This is for two reasons, one is that b only takes discrete values. We mentioned above
that b = 2 may shift the policy by too much, but we cannot reduce b any more without exclusively
relying on π. Secondly, choosing a b for a given confidence level is a difficult problem, even if a
discrete confidence parameter is sufficient. This is because b has a complicated relationship with
πF , π and Q involving integrals. Thus, it is not clear that, for instance, if we have equal confidence
in Q and π, what the value of b should be.

3.2.2 π-Q BACKUP

Motivated by the issues discussed in section 3.2.1, we introduce a π-Q backup. Given a policy π and
a Q-function Q, we want our final policy πF to depend on Q and π based on how much confidence
we have in each. If we have equal confidence in both Q and π, then we would like πF to be a
function depending on π and Q equally. One way to achieve this is using geometric mean of π and
Q as an indicator of how good an action is 3. That is, we would like to select an action such that√
π ×Q is maximized (note that if we have reasons to believe π or Q provide better estimates, we

can take the weighted geometric mean).

The backup procedure is defined as mentioned in Section 3.2.1 , however, given an abstract state
s = fencθ (x) and an action a, the backed-up Q-value calculated from d-step planning is defined as:

Qi(s, a) =
√
(r + γV i(s′))π(a|s) (7) V i(s) =

{
v if i = d

(1− λ)v + λmaxaQ
i+1(s, a) if i < d

(8)

Note that neither Qi or V i in Equations (5, 6, 7, 8) are directly being optimized, they are only
used for decision-time planning. Notice how estimates are scaled by likelihood of the action
being sampled from π. This removes the previously mentioned issue of selected actions no longer
depending on π. It’s interesting to note that in this case when b = ∞ the policy is deterministic.

3When a negative or zero valued Q exists in the tree backup, modify the geometric mean by adding
|min(Q)|+ δ to the Q estimates. δ is a positive small non-zero term which can be optimized Habib (2012)
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This does not manifest itself as an issue because the decision-time planning policy isn’t used as the
behavior policy so we are less concerned about exploration.

Note that we still need to estimate maxaQ
i+1 in equation 8. We take a similar approach to Q-

backup mentioned in Section 3.2.1, since π and
√
πQ are expected to be correlated. Furthermore,

regarding the use of geometric mean, we note that it is more meaningful than the arithmetic mean
in this scenario as the values may be of different scales and that it preserves proportional change as
opposed to absolute change.

In Section 4.3 we will empirically explore both approaches to backup. The π-Q backup is shown in
Algorithm 4. Though we note that if the scaling ofQ estimates by π and the square root are dropped
it would reduce to the max Q-backup algorithm described in Section 3.2.1.

4 EXPERIMENTS

Our experiments seek to answer the following questions: (1) Is correlation between π and Q pos-
itive? (2) What style of backup performs better: a standard Q-value backup or a policy weighted
Q-value backup and how does branching effect the returns of the decision-time planning policy? (3)
Does PTN outperform the baselines?

4.1 EXPERIMENTAL SETUP

Preprocessing in our experiments was done similarly to that of PPO (Schulman et al., 2017) and
identical to the preprocessing in PPN (Wellmer & Kwok, 2019). All models, PPO2, PPN, and
PTN were implemented in Pytorch (Paszke et al., 2017). The parameters (θ) are updated with the
Adam optimizer (Kingma & Ba, 2014). All the experiments are run for 1 million time steps unless
otherwise noted.

Our PPO2 implementation uses the same hyperparameters as the baselines implementation (Dhari-
wal et al., 2017): 3 fully connected layers with 128 hidden units and tanh activations for the policy.
3 fully connected layers 128 hidden units and tanh activations for the critic. The largest difference
in our PPO2 implementation is that we do not perform orthogonal initialization.

Our PTN implementation uses similar hyperparameters (identical to PPN): 2 fully connected layers
with 128 hidden units and tanh activations for the embedding. 2 fully connected residual layers with
128 hidden units, tanh activations, and unit length projections of the abstract-state (Farquhar et al.,
2017) for the transition module. 1 fully connected layer with 128 hidden units for the policy mean.
1 fully connected layer with 128 hidden units for the value. 1 fully connected layer with 128 hidden
units for the reward. In practice we use Huber losses instead of L2 losses, as was done in related
implicit model based works (Oh et al., 2017).

We set β0 = d and β>0 = 1. Values used for branching and depth are explicitly stated in corre-
sponding experiments. We test on the 8 standard OpenAI MuJoCo environments (Todorov et al.,
2012; Brockman et al., 2016): Hopper, Walker2d, Swimmer, HalfCheetah, InvertedPendulum, In-
vertedDoublePendulum, Humanoid, and Ant.

4.2 CORRELATION

sample correlation mean sample correlation variance

Hopper-v2 0.937 0.018
Walker2d-v2 0.971 0.017
Swimmer-v2 0.945 0.016

HalfCheetah-v2 0.968 0.018
InvertedPendulum-v2 0.969 0.008

InvertedDoublePendulum-v2 0.971 0.005
Humanoid-v2 0.934 0.022

Ant-v2 0.972 0.019

Table 1: Summary of correlation between Q and π.
In this experiment we empirically measure the correlation between π and Q0(with d = 1). Positive
correlation empirically justifies the use of lemma 1 that sampling from π offers a better approach to
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maximizing the backup objective (for both Q backup and πQ backup) as opposed to uniform sam-
pling. To measure correlation we first train a PPN policy for 200 thousand time-steps on the MuJoCo
environments. Next we collect trajectories over 10 thousand timesteps. Then at each observation
we uniformly sample 100 actions and compute the corresponding Q-values and corresponding PDF
points from π. This gives us 10 thousand estimates of correlation. From here we fit a normal
distribution to the correlation results and report them in Table 3.

Positive correlation tells us that sampling according to π will better maximize πF than a uniform
sample over actions. This empirically justifies our approach to performing tree expansion.

4.3 BRANCHING & BACKUP

PTN π-Q backup PTNQ Backup
b=1 b=2 b=3 b=5 b=1 b=2 b=3 b=5

Hopper 2296.8 ±
403.6

2784.4 ±
357.8

2981.3 ±
306.7

3083.5 ±
244.1

2155.9 ±
343.9

1763.0 ±
431.9

1400.8 ±
423.5

1103.4 ±
398.1

Walker2d 3442.7 ±
182.0

4080.3 ±
295.5

4189.1 ±
355.9

4253.8 ±
334.3

3381.5 ±
378.3

3539.7 ±
517.6

3160.7 ±
743.5

2722.8 ±
1033.0

Swimmer 102.1 ±
28.4

105.6 ±
29.2

106.6 ±
29.2

107.5 ±
29.2

89.5 ±
35.1

88.6 ±
34.4

84.5 ±
32.0

75.5 ±
30.9

HalfCheetah 4082.1 ±
659.9

4346.3 ±
649.1

4459.8 ±
638.8

4555.0 ±
643.6

3435.8 ±
742.4

3501.7 ±
748.2

3526.3 ±
734.5

3467.7 ±
741.1

InvertedPendulum 1000.0 ±
0.0

1000.0 ±
0.0

1000.0 ±
0.0

1000.0 ±
0.0

995.2 ±
9.6

998.7 ±
2.6

998.6 ±
2.8

998.2 ±
3.6

InvertedDoublePendulum 6301.4 ±
299.8

9347.6 ±
0.2

9353.2 ±
0.2

9356.9 ±
0.1

6286.6 ±
308.4

9244.3 ±
64.5

9159.7 ±
225.1

7929.4 ±
1498.2

Ant 1730.3 ±
225.7

2109.3 ±
329.7

2183.2 ±
324.8

2370.0 ±
371.3

1946.4 ±
266.1

2047.1 ±
202.7

2078.5 ±
197.5

2013.3 ±
279.1

Humanoid 747.8 ±
280.7

788.0 ±
355.6

817.8 ±
410.5

895.5 ±
566.3

933.1 ±
432.9

957.3 ±
449.2

919.2 ±
345.9

859.8 ±
272.9

Table 2: branching and backup experiment where d = 2 and λ = 0.95

In this section we explore the impact of using planning as the test policy and which backup scheme
captures the highest returns. We consider a PTN trained with a depth equal to 2 and we evaluate
both backup procedures found in Section 3.2.

As we can see in Table 2, nearly all environment suffer from an increased branching factor when
using Q backup. None of the environments show a clear trend that increasing the branching benefits
returns. In fact, both Hopper and Walker2d environments show the opposite, as b increases returns
decrease. Intuitively this makes sense, as b increases to infinity the action taken no longer relies on
the policy π but instead relies entirely on the Q backup from reward and value predictions.

When the backup scheme takes into account the likelihood of an action coming from the policy,
it is no longer true that as b increases to infinity the action selected by decision-time planning is
independent from the policy. As we can see in Table 2, every environment benefits from increasing
branching used in decision-time planning when the backup scheme is π-Q backup discussed in
Section 3.2.2. Comparing Q-backup and π-Q-backup in Table 2 it’s obvious to see that the policy
weighted Q backup offers much more robust returns.

Now we clearly see that decision-time planning is indeed helpful. Furthermore, we now know that a
π-Q backup offers a reliable approach. Going forward we will ask if it’s possible to learn from this
decision-time planning policy.

4.4 BASELINE COMPARISON

To test our model, we chose to benchmark against PPO2 and PPN on eight MuJoCo (?) environ-
ments. We include our d = 2 b = 5 model in our baseline comparison. However, we note that it is
possible that other configurations perform better on some environments.

As can be seen in Figure 5, we find that PTN finds a better if not comparable policy in all of the
environments. PTN has large performance gains over PPO’s model-free approach, even though
PTN’s implicit planning module only looks a short distance into the future.

Environments with larger meaningful observation spaces, such as Humanoid, we suspect could ben-
efit from a bigger latent space. In Humanoid, the latent space (128) is far smaller than the observa-
tion dimensions (376) and makes learning a useful implicit transition model infeasible. Given more
compute we would explore increasing the latent space.
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Figure 5: Results on 1 million step MuJoCo benchmark. Dark lines represent the mean return and
the shaded region is a standard deviation above and below the mean.

5 CONCLUSION

In this work we present for the first time an approach to decision-time planning for implicit dynamics
models in continuous action space. We provide a theoretical justifications for our design choices
and show strong empirical results which are improvements over previous related work. In future
work we would like to investigate distilling the tree policy into the model-free policy, find a better
sampling procedure for expansion, and incorporate research from recurrent networks to avoid issues
with vanishing and exploding gradients in the implicit dynamics model.
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A APPENDIX

A.1 DECISION-TIME PLANNING AS THE BEHAVIOR POLICY

Including branching in Policy Tree Network’s behavior policy is appealing because it would allow
for directly optimizing the test policy we intend to use and appears to be simple since an implicit
transition model is already learned. However, as we will soon see this is not the case.

A natural first thought is just to recursively sample π b times up to a depth d, perform a backup on
the expanded tree, and then take the action associated with the maximal base branch. This is the
approach described in Section 3.2.

However, this can not be used as the behavior policy because you are changing the distribution of
how rollout actions are chosen in a way that is difficult to directly measure. The rollout policy πθ′,F
is not equal to πθ′ used to do importance sampling in the policy gradient loss. When b = 1 then
πθ′,F is the same as πθ′ . However as soon as b > 1 we begin to rely on the reward and value network
to help decide which actions to take.

The previously mentioned issues can be avoided if πθ′,F is not used as the behavior policy. Instead
with decision-time planning we can only use πθ′,F as our test policy. Interestingly, there is no
guarantee that this should work because the policy we are optimizing for (πθ) is not the same as the
test policy. We note that a theoretical issue does arise when using πθ′,F as the test policy. The fvθ′
network parameters are trained to predict the value for policy πθ′ not πθ′,F . However, in practice
this turns out not to be a large issue.

A.2 PPN TRAINING ALGORITHM

Algorithm 2 Policy Prediction Network(PPN) (Wellmer & Kwok, 2019)
Initialize parameters θ
θ′ = θ
for iteration=1, 2, . . . do

Run policy πθ′ in environment for n time steps
Compute advantage estimates AGAE1 , . . . , AGAEn
for epoch= 1, . . . , K do

Shuffle n samples into mini-batches of size M ≤ n
for each mini-batch do
T is the set of samples selected for the mini-batch
Lmb = 1

M

∑
t∈T Lt

Optimize Lmb w.r.t. θ
θ′ = θ

PPO, PPN, and PTN use similar training algorithms, the main difference stems from how Lt is
defined. Where in Algorithm 2, n time steps are used to collect trajectories, K is the number of
epochs, M is mini-batch size, and T represents the randomly sampled time steps in a specific mini-
batch.

A.3 CLIPPING

ratioit =
πθ(a = at+i|s = ŝit,θ)

πθ′ (a = at+i|s = ŝ0t+i,θ′)

ratioit,clip = clip(ratioit, 1− ε, 1 + ε),

v̂it,clip = clip(v̂it,θ − v0t+i,θ′ ,−ε, ε) + v̂0t+i,θ′ ,

r̂it,clip = clip(r̂it,θ − r̂0t+i,θ′ ,−ε, ε) + r̂0t+i,θ′ .

During training we follow the grounded clipping approach shown in PPN (Wellmer & Kwok, 2019).
The clipped estimates are defined above. Where ε is a hyperparameter that defines the size of the
clipping region. Clipping all the network heads turns out to be imperative to the learning pro-
cess (Wellmer & Kwok, 2019).
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A.4 PROOFS

Proof of Lemma 1. Note that covU (π(X|s), Q(X, s)) = EU [Q(X, s)π(X|s)] −
EU [Q(X, s)]EU [π(X|s)]. Let R be a bounded action space. By definition, the covariance equals

1
area(R)

∫
x∈R(Q(x, s)π(x|s)) − EU [Q(X, s)] 1

area(R)

∫
x∈R π(x|s), where

∫
x∈R π(x|s) = 1 and∫

x∈R(Q(x, s)π(x|s)) = Eπ[Q(X, s)]. The result follows because the covariance is positive.

�

Proof of Theorem 1. We prove this by showing the existence of Q0 functions for which the inequal-
ities holds. We drop s from our notation for convenience and write Q(a, s) as Q(a) and π(a|s) as
π(a).

Let XF ∼ πF , i.e., XF = argmaxiQ
0(Xi), where Xi ∼ π. Consider a Q0(a) that is strictly

decreasing as a increases. Then
∫ c
−∞ πF (x)dx = Pr(XF ≤ c) = Pr(∃i,Xi ≤ c)=1−Pr(∀i, Xi >

c). Since Xi’s are i.i.d, Pr(∀i, Xi > c) = Pr(X > c)b =
( erfc( c−µ√

2σ2
)

2

)b
(setting X = X1).

Therefore, πF (x) = b
( erfc( c−µ√

2σ2
)

2

)b−1
π(c).

Then µF = b
∫∞
−∞ c

( erfc( c−µ√
2σ2

)

2

)b−1
π(c)dc. Substitute c = σz + µ, we have

µF = bσ

∫ ∞
−∞

z
(erfc( z√

2
)

2

)b−1
φ(z)dz + bµ

∫ ∞
−∞

(erfc( z√
2
)

2

)b−1
φ(z)dz

where,

bµ

∫ ∞
−∞

(erfc( z√
2
)

2

)b−1
φ(z)dz = µ

(erfc( z√
2
)

2

)b∣∣∣∣∞
−∞

= 0− (−µ)

and when b = 2,

(2)σ

∫ ∞
−∞

z
(erfc( z√

2
)

2

)(2)−1
φ(z)dz = 2σ

(erfc( z√
2
)

2

)
φ(z)− erf(z)

4
√
π

)∣∣∣∣∞
−∞

= − σ√
π

Observe that b
∫∞
−∞

( erfc( z√
2
)

2

)b−1
φ(z)dz = 1, which gives the first bound.

Setting b = 2, we have that µF − µ = − σ√
π
+ µ− µ = − σ√

π
.

A similar argument but setting Q0 to be a strictly increasing function in a gives the inequality for
when µF is larger than µ.

�

A.5 NUMERICAL EVALUATION OF BOUND IN THEOREM 1

Fig. 6 shows the numerical values for the bound in Theorem 1 for several branching values. Note
that the bound becomes larger than 1 × σ when b = 4. This means that when b = 4, the difference
between the mean of πF and π can become larger than one standard deviation of π, which is a
significant difference.

A.6 LEARNING MODIFICATIONS

Notice that these returns are worse than PTN(with decision-time planning) shown in Figure 5. This
shows performance benefits from the modifications shown in Section 3.1(ex: β). The point of
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Figure 6: Numerical evaluation of bound in Theorem 1 for various branching values

train depth = 5 train depth = 10
PTN PPN PTN PPN

Hopper-v2 1944.0 ± 258.5 2191.6 ± 183.3 1672.7 ± 457.5 1752.3 ± 625.4
Walker2d-v2 2936.9 ± 893.2 2808.4 ± 647.3 3054.8 ± 434.0 2565.9 ± 327.9
Swimmer-v2 89.4 ± 35.3 73.3 ± 34.5 80.3 ± 35.7 57.5 ± 30.3
HalfCheetah-v2 3439.8 ± 698.6 3410.5 ± 840.9 3638.9 ± 545.2 3632.8 ± 819.0
InvertedPendulum-v2 971.7 ± 56.5 979.6 ± 25.7 1000.0 ± 0.0 1000.0 ± 0.0
InvertedDoublePendulum-v2 4332.6 ± 192.9 3344.5 ± 234.4 4360.2 ± 145.1 3186.8 ± 87.7

Table 3: Returns from PTN(no πF /decision-time planning) and PPN using only the model-free
policies

β(found in PTN but not PPN) is to stabilize returns over different values of training depth. In PPN,
Wellmer & Kwok (2019) showed that optimal depth is highly dependent on the environment and
returns can drastically differ. While the modifications certainly do not entirely fix this, we find that
it mitigates large differences in returns from different training depths.
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