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Aggregating Crowdsourced Labels in Subjective Domains

Supervised learning problems—particularly those involving social data—are often subjective. That is, human
readers, looking at the same data, might come to legitimate but completely different conclusions based on
their personal experiences. Yet in machine learning settings feedback from multiple human annotators is often
reduced to a single “ground truth” label, thus hiding the true, potentially rich and diverse interpretations of
the data found across the social spectrum. We explore the rewards and challenges of discovering and learning
representative distributions of the labeling opinions of a large human population. A major, critical cost to this
approach is the number of humans needed to provide enough labels not only to obtain representative samples,
but also to train a machine to predict representative distributions on unlabeled data. We propose aggregating
label distributions over, not just individuals, but also data items, in order to maximize the costs of humans
in the loop. We test different aggregation approaches on state-of-the-art deep learning models. Our results
suggest that careful label aggregation methods can greatly reduce the number of samples needed to obtain
representative distributions.
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1 INTRODUCTION
This paper explores the problem of label aggregation in domains that are highly subjective, i.e.,
where different annotators may disagree for perfectly legitimate reasons. Such settings are common,
if underacknowledged. Though increasingly, mass media provides stories about the unintended
consequences of ignoring this diversity in machine learning.
For example, Beauty.ai sponsored a worldwide beauty contest, judged by a machine learning

algorithm. Though light-skinned entrants made up the majority of entrants, they nonetheless won a
disproportionate number of contests.1 Tay, a Twitter-based learning agent, developed by Microsoft,
was taught to tweet that the Holocaust was made up2 (though the Holocaust factually existed,
the same cybersocial dynamics of training bias found in subjective domains led to this outcome).
ProPublica discovered that Northpointe risk assessment software—used to help judges determine
sentence length for convicts—recommended longer sentences for African-American men than other
groups, even when controlled for confounding factors.3

1https://motherboard.vice.com/en_us/article/78k7de/why-an-ai-judged-beauty-contest-picked-nearly-all-white-winners
2https://www.theguardian.com/technology/2017/jan/27/ai-artificial-intelligence-watchdog-needed-to-prevent-
discriminatory-automated-decisions
3https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Author’s address:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2573-0142/2018/4-ARTX $15.00
https://doi.org/0000001.0000001

Proc. ACM Hum.-Comput. Interact., Vol. X, No. X, Article X. Publication date: April 2018.

https://doi.org/0000001.0000001
https://motherboard.vice.com/en_us/article/78k7de/why-an-ai-judged-beauty-contest-picked-nearly-all-white-winners
https://www.theguardian.com/technology/2017/jan/27/ai-artificial-intelligence-watchdog-needed-to-prevent-
 discriminatory-automated-decisions
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/0000001.0000001


X:2

Fig. 1. In this example, data items (black dots) are labeled by five human annotators each (left), where color
indicates label choice, yielding an empirical label distribution yi for each data item i . By clustering similarly
labeled objects, we pool together (right) the labels of all data items assigned to the same cluster k into a
single, much larger sample θk for all items in the cluster. Our research suggests that, in some cases, this
larger sample (or a mixture of cluster samples) is a better representation of the true population distribution of
beliefs about each data item in the cluster and can lead to better predictive supervised learning.

Learning a distribution of beliefs about a data item, rather than a single “ground truth” label,
poses unique challenges. It increases the dimensionality of the learning problem so that more data
items may be needed. It also may require more labels per item to get a representative sample of
the human populations’ beliefs. And for most problems, labels are relatively expensive to obtain.
Though crowdsourcing platforms have made this task convenient, they are frequently a resource
bottleneck in supervised learning loops.
Our main contribution is a method for minimizing the number of labels needed to learn to

predict socially representative label distributions. It is based on the hypothesis that the sources are
subjectivity are limited, and so the number of distinct distributions of beliefs over all data items is
likewise limited. In other words, the label distributions are samples from a relatively small number
of true, but hidden, distributions. See Figure 1. These hidden distributions can be seen as latent
classes representing population-level beliefs about the labels. According to this hypothesis, we
can use unsupervised clustering algorithms to pool together the labels of data items with similar
distributions into higher resolution distributions of beliefs shared commonly among all data items
in the same cluster.

In particular, we: (1) explore subjectivity as the problem of learning representative distributions
from a target population of responses to target questions, (2) propose clustering as a sensible means
for pooling together labels from similar data items, to reduce the number of labels needed (3) test
what we call our clustering hypothesis, that the label distributions of subjective data are clustered
around a small number of underlying, true distributions (4) study how different label aggregation
strategies and representations affect the performance of state-of-the art deep learning predictors.

It would seem that bias is an inherent part of any information reduction process, such as those
found in statistical learning [28]. So it seems naive to expect that machines can learn unbiased
models through unsupervised learning alone, or even for any supervised learning that assumes
a singular, correct answer to most problems. We hope that this research sparks a broader debate
about the best practices for machine learning with humans in the loop.
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The rest of this paper is organized as follows. Section 2 describes our experimental workflow,
Section 3 presents our results, Section 4 discusses our study, Section 5 presents related work, and
Section 6 is the conclusion.

2 METHODS
Figure 2 describes the basic experimental workflow in this study. We discuss each phase below.
Note that there are two testing phases, one for determining how well each aggregation method
fits the data and another for how well supervised learning algorithms trained by each aggregation
strategy perform. Since these test phases share some methods, we discuss them together at the end
of the section.

unlabeled 
data label aggregate test learn test 

Crowdflower
AMT

majority
repeated
probability
Max
Avg

MMM
GMM
DS
LDA

likelihood
EG
KL

CNN loss
accuracy
KL
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Fig. 2. The basic experimental workflow involves obtaining crowdsourced labels for raw data (yielding
empirical label distributions for each data item), trying various strategies for aggregating and pooling those
labels (including no aggregation), and finally testing how each method affects the accuracy of machine learning
prediction. Note there are two testing phases: one for how well each aggregation strategy fits the data and
one for machine learning performance. We also list important terms, keywords, and abbreviations associated
with each phase of the workflow.

2.1 Data and labeling
We performed extensive experiments, through the aggregation phase, on a number of publicly
available, human-labeled datasets [1, 2, 22, 29, 37], including the data described below. However,
due to space and time constraints—and because our preliminary studies suggested that these sets
covered most of the features of the other sets and exhibited representative performance, we decided
to report and focus this study on two of them. Table 1 summarizes the basic properties of these
sets, which we now describe in detail.
Before conducting this research, we consulted with our institutional review board, who deter-

mined that it did not fall under federal or institutional guidelines as human subjects research.
Nonetheless, we took extra precautions to ensure the privacy of all human-generated data. For the
twitter data, we replaced all mentions with “@SOMEONE” and URLs with “URL,” paraphrased all
examples, and adhered to Twitter’s developer policy. 4

2.1.1 Job-themed data. We obtained directly from Liu et al. [23] a corpus of machine-filtered
job-related tweets (i.e., Twitter posts). From this corpus, we randomly selected 2,000 tweets to
acquire human annotations from two popular crowdsourcing platforms—Amazon Mechanical Turk5
(abbreviated as MT ) and CrowdFlower6 (CF ). For each tweet and each platform, we asked five
crowdworkers to answer three questions (see Figure 3). We provided contextual information in the
form of the three tweets proceeding and succeeding the target tweet made by the target user.
4https://developer.twitter.com/en/developer-terms/agreement-and-policy
5https://www.mturk.com/
6https://www.crowdflower.com/; now Figure Eight https://www.figure-eight.com/
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#Choices/
ID Dataset #Items item #Workers #Labels Density MVTD RMSD
1 jobQ1CF 2000 5 171 10000 5.00 0.37 0.21
2 jobQ1MT 2000 5 1014 12202 6.10 0.17 0.10
3 jobQ1BOTH 2000 5 1185 22202 11.10 0.29 0.16
4 jobQ1MTdeep 50 5 249 2969 59.38 0.43 0.22
5 jobQ2CF 2000 5 171 10000 5.00 0.28 0.16
6 jobQ2MT 2000 5 1014 12202 6.10 0.15 0.09
7 jobQ2BOTH 2000 5 1185 22202 11.10 0.23 0.13
8 jobQ2MTdeep 50 5 249 2969 59.38 0.34 0.19
9 jobQ3CF 2000 12 171 10967 5.48 0.45 0.16
10 jobQ3MT 2000 12 1014 12900 6.45 0.28 0.10
11 jobQ3BOTH 2000 12 1185 23867 11.93 0.40 0.14
12 jobQ3MTdeep 50 12 249 3196 63.92 0.41 0.14
13 Suicide 2000 4 124 13175 6.59 0.27 0.17

Table 1. Basic properties of the label sets we use. Density indicates the average number of labels per data
item. “MVTD” (majority-voted-true-class deviation) and “RMSD” (root-mean-square deviation) are two
divergence measures for estimating the uncertainty of different label sets, motivated by the literature
on scale and outliers [17, 33, 44]. MVTD is the average (over all data items) weight of the weight of the
most frequent label: MVTD = 1 −

∑n
i=1maxj {y′i j }/n. RMSD is the L2 deviation from the average label:

RMSD =
∑n
i=1

√
(yi − ŷ)T (yi − ŷ)/n, where ŷ is the average label distribution over all data. After adding labels

(ID 4, 8, and 12 in Table 1), we obtained jobQ1MT-new, jobQ2MT-new, and jobQ3MT-new, respectively. We
further integrated labels from both platforms to form jobQ1BOTH-new, jobQ2BOTH-new, and jobQ3BOTH-
new.

Q1. Which of the following items could best describe the point of view of job /employment-related
information in the target tweet?

• 1st person • 2nd person • 3rd person
• Unclear • Not job-related

Q2. Which of the following items could best describe the employment status of the subject in the tweet?
• Employed • Not Employed • Not in Labor Force
• Unclear • Not job-related

Q3. Does the subject specifically mention any job/employment transition event in the tweet? (Choose
all that apply)

1. Getting hired/job seeking 2. Getting Fired 3. Quitting a job
4. Losing job some other way 5. Getting promoted/raised 6. Getting cut in hours
7. Complaining about work 8. Offering support 9. Going to work
10. Coming home from work 11. None of the above, but job-related 12. Not job-related

Fig. 3. Our work-related annotation task contains these three questions.

This resulted six distinct label sets, one for each choice of platform and question, where each
question and each platform, each data item has labels from five crowdworkers. We additionally
constructed three additional label sets by combining the labels from both crowdsourcing platforms
(denoted BOTH), so that each tweet has ten labels.

2.1.2 Suicide-themed data. We obtained another data set of 2000 tweets, filtered for suicide-
related discourse [22]. Labels come from 122 CrowdFlower workers and 2 suicide prevention domain
experts. For each tweet, five crowdworkers chose the label that described its content from four

Proc. ACM Hum.-Comput. Interact., Vol. X, No. X, Article X. Publication date: April 2018.
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possible choices: A. Suicidal thoughts, B. Supportive messages or helpful information, C. Reaction
to suicide news/movie/music and D. Others. Experts were invited to the second stage to annotate
the tweets without unanimous labels from five crowdworkers. Thus tweet can have up to 7 labels,
from crowdworkers and experts.

2.1.3 Data splits. Due to the expense of obtaining detailed samples from the populations of
crowdworkers, we used two different train/dev/test splits.

Broad split. We randomly split each 2,000-tweet dataset into 1000/500/500 train/dev/test sets.

Deep split. We randomly split the job-related dataset only into 1500/540/50 train/dev/test sets.
For each item in the 50-item held-out test set, we obtain 50 additional labels from new AMT
crowdworkers.

2.2 Aggregation strategies
For a given data set with items i ∈ {1, . . . ,n} and label choice j ∈ {1, . . . ,d}, let yi j denote the
number of crowdworkers who select label j for data item i . Thus yi is a distribution over labels for
data item i . We will sometimes abuse notation and also use yi to denote the probability distribution
obtained by normalizing the label distribution.
Aggregation composes two substages: clustering (including no clustering) and reduction, which

depends on whether or not no clustering is the strategy used. We discuss this case first.

2.2.1 Reduction strategies when no clustering is used.

Majority. Typically, when annotators disagree on which label is best for a data item xi , majority
voting is used to determine a single gold-standard label: ŷi = argmax

j ∈{1, ...,d }
{yi j }.

Repeated. This strategy assumes each (data item, label) is a separate data item, e.g., if three
annotators choose to label ‘A.’ then we make three identical copies of the data in each training
epoch. The model effectively weighs each choice by the number of times it is selected, with the
goal of learning a single label, and treats each empirical label distribution as a Bayesian model of
the degree of belief in each label choice.

Probability. This is a baseline method for predicting population distributions over label choices.
Instead of training on a single label choice for each data item, it uses a d-dimensional vector
representing the distribution yi of labels for data item i as a probability distribution (which by
abuse of notationwe also call yi ). It effectively treats each empirical label distribution as a frequentist
sample of the true distribution of beliefs (though it crucially does not capture the degree of belief
labels, either individually or collective).

2.2.2 Clustering strategies. These associate with each data item a probability distribution zi over
a finite number p of clusters, i.e., a mixture of models, over the space of empirical label distributions
yi . According to our main hypothesis, pooling labels by cluster reveals the true label distributions
underlying our empirical distributions, thus amplifying the labeling power of each crowdworker.
We can thus associate with each cluster k ∈ {1, . . . ,p} a distribution θk over the label choices. This
is simply the cluster centroid if the strategy has one (like MMM and GMM below), or the weighted
average (θk =

∑
i zikyi/n) of the labels (as in DS and LDA below; we call them “centroids” in either

case). Our goal is to improve prediction accuracy by replacing each empirical label yi with one
based on its cluster likelihoods zi and cluster-wide label distributions θk .

Proc. ACM Hum.-Comput. Interact., Vol. X, No. X, Article X. Publication date: April 2018.
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We consider five different clustering strategies: the multinomial mixture model (MMM), the
Gaussian mixture model7 (GMM), Dawid and Skene’s model 8 for selecting labels conditioned on
annotator accuracy (DS) [9] and latent Dirichlet allocation9 (LDA) [5]. We wrote our own MMM
from scratch. We get two distinct strategies from LDA by, in addition to clustering over empirical
labels, also clustering on bag-of-word representations of each data item’s text, i.e., as LDA is most
commonly used.

Though rather elementary, these models collectively provide an informative experimental basis
for testing our central hypothesis, i.e., that label distributions in subjective domains are clustered
around a finite number of true label distribution. According to this hypothesis, the model that best
describes subjective domains should be MMM since it is a generative model where each centroid
is defined as a distribution of which each cluster item is a sample. (By contrast, the centroid of
GMM has a very different generative interpretation—i.e., as a parameter of a multivariate Gaussian
distribution—even though in both models they are the (weighted) means of their respective cluster
items.)

Although DS and LDA are not, strictly speaking, clustering models, we can easily obtain cluster-
like latent classes—along with likelihood estimates—by integrating over the users (for David and
Skene) or the data items (for LDA). Moreover, both models provide useful comparisons to our true
clustering models. In particular, DS is widely-used in collaborative filtering settings, of which this
can be seen as an example. This model incorporates labeler accuracy and is effective in settings
where a labeler provides many examples. In our setting, which uses microtask crowdworkers,
anyone labeler only provides ten or so examples (see Table 1), and so we would not expect this
model to fit our data especially well.
LDA is very similar to MMM, though it is more commonly used, in part because it tends to be

a better fit, both hypothetically and empirically, for more problems, but also because estimating
prior distributions is computationally more efficient (in our case, we sidestep and use a maximum
likelihood estimator for MMM, but not for LDA). The main difference between these models is in
how data is generated. In MMM an empirical label distribution is assumed to come from choosing
a cluster, then choosing all samples from that one chosen cluster. In LDA we choose a new cluster
for each sample. If each cluster represented the beliefs of an individual, this might make sense,
especially if we had a lot of data about the labeling preferences of individual labelers. However,
since that is not the case in our setting, and since we are assuming that each cluster represents
the distribution of beliefs across society, MMM makes more sense as the best model to fit our
hypothesis.

Except for DS, each model requires the number of clusters p as a hyperparameter. We considered
all values for p between roughly half and twice the number of label choices for each question. We
investigated several model selection strategies, including some of the methods described below,
and discovered that numbers they provided were roughly correlated. Furthermore, many of these
strategies were designed for specific models or are based on strong prior assumptions. We ultimately
chose the native likelihood function of each model, because we felt it provided the most externally
consistent strategy for choosing the best p within each clustering strategy, even though it cannot
really be used to compare models from different families.

As the estimators for these models are stochastic and/or sensitive to initial conditions, for every
model and every choice of hyperparameters, we ran 100 trials on the training data and chose the
model with the highest estimated likelihood.

7http://scikit-learn.org/
8Adapted from https://github.com/dallascard/dawid_skene
9Adapted from https://radimrehurek.com/gensim/
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2.2.3 Cluster-based reduction strategies. We use these strategies to replace each empirical label
distribution yi with one based on the cluster centroids {θk } and the likelihood of i belonging to
each cluster zi . Maximum a posteriori (Max) selection replaces yi with the most likely cluster
centroid θk : k = argmaxk zik and expected distribution (Avg) replaces yi by integrating out the
clusters

∑
k zikθk .

Fig. 4. The convolutional neural
networks used in our text-based
supervised experiments.

Note that the integration step we use to produce aggregate dis-
tributions from LDA or DS essentially applies the Avg reduction
to each model and that the Max reduction does not have a reason-
able interpretation for these models (other than selecting the most
likely label, which we can do more directly by simply not cluster-
ing). Yet understanding the performance differences between these
two reduction strategies stands to yield important insights into the
clustering hypothesis. If the clusters can discover the true repre-
sentative label distribution underlying each empirical distribution,
then we would expect predictive models to perform better using
the Max strategy for training data, as it commits to a single dis-
tribution. Since LDA and DS cannot support both reductions, and
thus deny us this important observation, we used only MMM- and
GMM- based aggregations (to which either reduction can apply)
as inputs to the supervised learning phase.

2.3 Supervised learning methods
We built various text-based supervised classifiers based on a single
convolutional neural network (CNN) architecture as illustrated in
Figure 4, using Keras with a Tensorflow back end. The differences
among the model inputs are rooted in the aggregation strategies
used.
CNNs have been used for various sentiment analysis and topic

categorization tasks [19] and proved effective across a wide range
of corpora. Each takes the text of a tweet as input and outputs a
predicted label distribution.

The CNN architecture we use consists of an input layer compos-
ing concatenated pre-trained word embeddings, a convolutional
layer with numerous filters, a max-pooling layer which captures
the most significant feature, and a softmax classifier which out-
puts the probability distribution over labels/classes. We tested this
supervised approach with various label aggregation strategies to
obtain the ground truth labels, including clustering approaches, in
our text classification experiments.
The hyper-parameter settings of the CNN architecture depend

on the splits of datasets. We use the GloVe pre-trained word embeddings trained particularly on a
Twitter corpus with 2B tweets [32]. We set the vector size of the word embeddings as 100 through
our experiments. In our text pre-processing step, we keep the most common 20,000 words and pad
the sentence up to 1,000 tokens. We use the Adam optimizer to minimize the loss function [20]. We
set the batch size as 32 and the number of epochs to train the model as 25.

Proc. ACM Hum.-Comput. Interact., Vol. X, No. X, Article X. Publication date: April 2018.
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2.4 Testing
For each data item i , we now have three associated probability distributions: the empirical distribu-
tion of labels yi , the likelihood distribution over the clusters zi , and a new label distribution from
the aggregation phase wi .

For the sake of using the clustering strategies to test our main hypothesis, we argue that the set
of distributions θ1, . . . ,θp is a good fit for the hypothesis if, in addition to maximizing likelihood,
the entropy over the cluster likelihoods H (zi ) is less than that of the empirical distributions H (yi ).
However, these entropies cannot be directly compared because the number d of alternatives in
the label set may be different from the number p of clusters. So we normalize by dividing by
the logarithm of the number of items in each distribution. We call this the entropy gap (EG):
H (yi )/logd −H (zi )/logp. This score applies to any label aggregation model or clustering approach
that has likelihoods associated with each (data point, cluster) pair and where each point can be
interpreted as a probability distribution. The danger with this score is that it is easy to “cheat” to
get a good score, say, by assigning all data items to the same cluster. Since, however, we select our
models based on maximum likelihood, we use this metric honestly here.
Another useful, and standard test is the Kullback–Leibler divergence, which measures how

one probability distribution diverges from a second one [21]. For discrete probability distributions P
(say, yi ) andQ (say,wi , or, later, the label predicted by the CNN) it is:DKL(P | |Q) = −

∑
j P(j) log

Q (j)
P (j) .

We also use KL divergence to evaluate the performance of the CNN model (entropy gap does not
make sense here). In addition, KL1 measures the divergence from the CNN predicted probability to
the empirical distribution of labels yi , and, when clustering is used. KL2 measures the divergence
from the CNN predicted probability to the label distribution from the aggregation phase wi .
Additionally, Score is the loss (cost) function—categorical cross entropy—used to train the CNN.
Accuracy measures how often the prediction have the maximum probability in the same class as
the true value does. Note that KL divergence and cross entropy are standard tools for comparing
probability distributions, while accuracy requires us to convert each distribution into a single scalar
label.

3 RESULTS
3.1 Testing the clustering hypothesis
Table 2, 3, 4 show the performance results for each XT est of datasets in Table 1 using the best model
selected by the likelihood criterion.
Since we only had 50 data items with 50 extra labels, we tried clustering them visually using

histograms. Figure 5 shows that the labels do appear to group clearly into seven clusters. We
describe the tweets that fall into each cluster.
Group 1 (Red) distributions have most of their mass on label choices Getting hired/job seeking

and None of the above, but job-related. Here, all the tweets in this group were talking about plans
to get a job (e.g., really want a job, dont put that on ur resume for a minimum wage job), or the
process of getting a job. In contrast, Group 2 (cyan) has almost all the mass exclusively on Getting
hired/job seeking (e.g., got the job). The third group (brown) clusters around Complaining about work
and Going to work, suggesting a topic about complaining about having to go to work. Group four
(green) are a set of tweets complaining about work while at work. Groups five and six (blue and
orange) have most of their labels on None of the above, but job-related and Not job-related. Group
six (where Not job-related was more frequent than None of the above) were mostly about road work.
Group five (where None of the above was more frequent and complicated. It seemed to contain
cases where work was mentioned, but was central to the other topics (e.g., TODAY AT WORK I
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Broad split CL MMM LDAl abel GMM LDAt ex t FMM DPMM
jobQ1CF 10 9 4 2 11 6
jobQ1MT 11 11 4 2 2 6

jobQ1BOTH 11 2 2 2 3 6
jobQ2CF 11 10 3 2 10 6
jobQ2MT 2 11 4 2 2 6

jobQ2BOTH 2 11 2 4 2 6
jobQ3CF 19 18 5 5 17 6
jobQ3MT 5 14 5 5 7 6

jobQ3BOTH 5 18 15 5 5 6
RWsuicide 8 7 2 2

Deep split CL MMM LDAl abel GMM LDAt ex t FMM DPMM
jobQ1CF 11 9 11 3 10 6

jobQ1MT-new 2 11 2 2 2 6
jobQ1BOTH-new 2 11 2 2 2 6

jobQ2CF 11 10 2 2 11 6
jobQ2MT-new 2 11 2 3 4 6

jobQ2BOTH-new 2 8 2 2 3 6
jobQ3CF 19 19 10 6 17 6

jobQ3MT-new 5 15 19 8 11 6
jobQ3BOTH-new 5 11 17 6 7 6

Table 2. Numbers of clusters for the optimal label aggregation model we achieved on each dataset using two
splits. “CL”: Number of clusters in the best model.

LEARNED ABOUT...) or used “work” or “job” metaphorically, though there exist some clear None of
the above, but job-related tweets, like Perks of working overnight: donuts fresh out of the fryer.

3.2 Supervised learning
In Table 5-10, we show the score, accuracy, and KL divergence metrics for a series of CNN-based
text classifiers for the job (Broad split: 5-7, Deep split: 8-10) and suicide datasets built with different
label aggregation approaches.

4 DISCUSSION
4.1 Testing the clustering hypothesis
Among the aggregation methods tested, MMM and LDA had the best KL scores (Table 4). Since
this metric is the best honest score for testing fitness across models, and since the MMM and LDA
are better fits for the clustering hypothesis, this seems to partially support the hypothesis.

This would seem to suggest that LDA is a better model for the underlying space of label distribu-
tions, and one reason for this could be because the labels indeed depend on independent classes of
labelers (or possibly even individual labelers, as witnessed by the somewhat unexpectedly good
performance of DS). Note that another explanation could be that even in the MMM model the
clusters have a substantial enough amount of uncertainty (captured by the wi distributions) and
that averaging over this uncertainty leads to better predictions. This is a common phenomenon,
even in situations where the data is known to be generated from a single model; that is, maximum
a posteriori estimates often underperform fully Bayesian ones.

We were surprised by how much worse GMM performed compared to the other methods (except
LDAtext , which uses a different feature set than the others and so is a priori an outlier), as for
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Broad split EG MMM LDAl abel GMM DS LDAt ex t FMM DPMM
jobQ1CF 0.07 0.18 0.50 0.70 0.09 0.37 0.33
jobQ1MT 0.06 -0.06 0.24 0.19 -0.14 0.16 0.08

jobQ1BOTH 0.29 0.23 0.46 0.68 0.07 0.38 0.30
jobQ2CF 0.03 0.06 0.37 0.54 -0.02 0.25 0.18
jobQ2MT 0.15 -0.09 0.20 0.18 -0.19 0.15 -0.01

jobQ2BOTH 0.30 0.12 0.36 0.54 -0.03 0.30 0.20
jobQ3CF 0.00 0.00 0.40 0.97 -0.01 0.24 0.11
jobQ3MT 0.16 -0.10 0.24 0.36 -0.18 0.15 0.14

jobQ3BOTH 0.32 0.12 0.41 1.00 -0.02 0.34 0.33
RWsuicide 0.22 0.12 0.41 0.58 0.08

Deep split EG MMM LDAl abel GMM DS LDAt ex t FMM DPMM
jobQ1CF 0.03 0.19 0.50 0.64 0.17 0.35 0.27

jobQ1MT-new 0.63 0.19 0.66 1.05 0.31 0.66 0.64
jobQ1BOTH-new 0.61 0.35 0.67 1.08 0.31 0.67 0.64

jobQ2CF 0.05 0.08 0.41 0.57 0.06 0.25 0.13
jobQ2MT-new 0.53 0.13 0.53 0.85 0.18 0.52 0.52

jobQ2BOTH-new 0.54 0.25 0.54 0.87 0.18 0.54 0.52
jobQ3CF -0.04 -0.02 0.34 0.71 -0.06 0.16 0.02

jobQ3MT-new 0.45 0.09 0.47 1.02 0.05 0.46 0.46
jobQ3BOTH-new 0.47 0.21 0.48 1.12 0.08 0.47 0.47

Table 3. Entropy gap obtained using the optimal label aggregation model on each dataset using two splits.
“EG”: Normalized entropy gap (i.e., the average entropy gap per data item). The highest EG for each dataset is
highlighted in bold.

large samples GMM and MMM rather similar. However, the sample sizes (number of labels) we use
here are normal for many supervised learning tasks, and at this scale, the differences appear to be
significant.
Regarding EG (Table 3): that GMM and DS tend to outperform the other models is not too

surprising, given that EG is not honest (see discussion in the testing subsection). And we expected
LDA to perform poorly on this metric, due to the fact that, under LDA, most empirical distributions
are drawn from multiple clusters. Thus we would expect the cluster likelihood distribution to have
higher entropy than in the MMM model (which assumes all labels are drawn from a single cluster).

4.2 Supervised learning
Starting again with KL divergence (Tables 7 and 10), CNNs trained and tested on MMMAVG
outperform all other models most of the time, with no-clustering, probability-based CNNs a close
second.GMMAvд has some very good and very bad results, and the relative dominance ofMMMAVG
recedes when the deep label distributions are used for evaluation.
Together, these results show that learning over the entire distribution of labels is feasible and

that using clustering to aggregate labels sometimes results in better performance.
What was not expected (though consistent with our clustering hypothesis tests, where LDA

outperformed MMM) is that MMMAvд outperforms MMMMax . Better MMMMax performance
would seem to be more consistent with the hypothesis that the clustering algorithm can discover
the true underlying label distributions. Instead,MMMAvд draws from each of the predicted ground
truth label distributions, yielding distributions that very similar in construction to those produced
by LDA.
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Broad split KL MMM LDAl abel GMM DS LDAt ex t FMM DPMM
jobQ1CF 0.35 0.23 0.53 0.38 0.53 0.40 0.39
jobQ1MT 0.19 0.18 0.68 0.38 0.68 0.36 0.22

jobQ1BOTH 0.20 0.40 0.46 0.27 0.46 0.22 0.20
jobQ2CF 0.26 0.19 0.54 0.32 0.54 0.33 0.31
jobQ2MT 0.36 0.15 0.74 0.37 0.74 0.36 0.13

jobQ2BOTH 0.28 0.17 0.51 0.26 0.50 0.28 0.17
jobQ3CF 0.51 0.52 1.00 0.59 0.97 0.63 0.63
jobQ3MT 0.50 0.33 1.15 0.69 1.11 0.41 0.44

jobQ3BOTH 0.45 0.35 0.82 0.47 0.86 0.45 0.40
RWsuicide 0.22 0.20 0.57 0.26 0.67

Deep split KL MMM LDAl abel GMM DS LDAt ex t FMM DPMM
jobQ1CF 0.30 0.24 0.57 0.44 0.63 0.41 0.40

jobQ1MT-new 0.20 0.07 0.39 0.09 0.38 0.20 0.10
jobQ1BOTH-new 0.21 0.06 0.38 0.09 0.37 0.20 0.07

jobQ2CF 0.24 0.20 0.65 0.39 0.65 0.28 0.28
jobQ2MT-new 0.26 0.09 0.50 0.10 0.49 0.11 0.11

jobQ2BOTH-new 0.25 0.09 0.48 0.10 0.45 0.13 0.08
jobQ3CF 0.29 0.27 0.97 0.48 0.86 0.49 0.41

jobQ3MT-new 0.20 0.17 0.51 0.27 0.58 0.14 0.23
jobQ3BOTH-new 0.18 0.18 0.64 0.25 0.57 0.15 0.17

Table 4. KL divergence obtained using the optimal label aggregation model on each dataset using two splits.
“KL”: Kullback–Leibler divergence. The lowest KL divergence for each dataset is highlighted in bold.

Broad split Scoremajority repeated probabilityMMMMax MMMAvд GMMMax GMMAvд LDAMax LDAAvд

jobQ1CF 1.89 1.59 1.72 1.34 1.33 1.75 1.71 1.40 1.36
jobQ1MT 1.76 1.22 1.11 1.27 1.27 1.57 1.51 0.84 0.98

jobQ1BOTH 1.40 1.18 1.22 1.31 1.31 1.31 1.28 1.02 1.14
jobQ2CF 1.68 1.57 1.40 1.19 1.17 1.55 1.58 1.07 1.18
jobQ2MT 2.05 1.18 1.11 1.30 1.22 1.34 1.46 0.91 0.98

jobQ2BOTH 1.55 1.08 1.06 1.23 1.23 1.20 1.22 0.97 1.03
jobQ3CF 4.86 2.19 2.15 2.06 2.05 2.25 2.21 2.03 2.01
jobQ3MT 3.17 1.71 1.66 1.98 1.92 2.23 2.21 1.76 1.76

jobQ3BOTH 3.42 1.77 1.79 1.98 2.00 2.03 2.01 1.70 1.79
RWsuicide 1.37 1.07 1.05 1.41 1.37 9.27 9.27 1.00 1.06

Table 5. Scores of CNN-based text classification experiments with different aggregation models, using the
Broad split. The lowest score for each dataset is highlighted in bold.

Among the clusteringmodels, as expected, KL2 outperforms KL1, and this supports our hypothesis
by showing that principled aggregation processes are effective for training and prediction.
Also of interest are the accuracy tests (Tables 6 and 9). Since this test requires the model to

produce a single “best” label, and since clustering is used here for preserving diversity in the label
distributions, we expected the clustering methods to underperform the no-clustering methods.
Among the no-clustering methods, majority can be seen as a the standard approach of learning a
single label for each data item, while probability attempts to learn the frequentist, empirical labels,
even though (for the purpose of the accuracy test) it only reveals one label. Repeated is implicitly a
Bayesian approach. Except for jobQ3BOTH-new, majority and probability give nearly the same
performance, which suggests that modeling the underlying distribution, even without clustering,
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Fig. 5. Histograms of the label distributions for the 50 job-related tweets having 50 extra labels each. The X
axis ranges from 1 to 12, representing the Q3 choice indices in Figure 3.

Broad split ACCmajority repeated probabilityMMMMax MMMAvд GMMMax GMMAvд LDAMax LDAAvд

jobQ1CF 0.73 0.53 0.72 0.78 0.81 0.95 0.98 0.58 0.73
jobQ1MT 0.80 0.72 0.79 0.56 0.57 0.67 0.65 0.76 0.82

jobQ1BOTH 0.82 0.64 0.81 0.57 0.56 0.76 0.78 0.76 0.81
jobQ2CF 0.73 0.63 0.79 0.71 0.72 0.62 0.64 0.94 0.96
jobQ2MT 0.73 0.68 0.73 0.48 0.55 0.55 0.58 0.71 0.75

jobQ2BOTH 0.76 0.65 0.76 0.63 0.60 0.58 0.59 0.71 0.78
jobQ3CF 0.36 0.31 0.41 0.47 0.46 0.32 0.32 0.45 0.50
jobQ3MT 0.53 0.45 0.51 0.26 0.30 0.28 0.29 0.49 0.49

jobQ3BOTH 0.48 0.42 0.53 0.31 0.29 0.62 0.55 0.46 0.52
RWsuicide 0.81 0.65 0.78 0.18 0.27 1.00 1.00 0.76 0.76

Table 6. Accuracy of CNN-based text classification experiments with different aggregation models, using the
Broad split. The highest accuracy for each dataset is highlighted in bold.

generally does not degrade the accuracy of single-label models. That repeated underperforms the
other perhaps reflects the reality that each empirical distribution represents a sample of population
beliefs, rather than degree of belief.
One important and obvious limitation of this work is that uncertainty in human labeling is

caused by many things other than subjectivity, including data encoding errors and communication
ambiguities [3, 8, 46], lack of sufficient information [6, 8, 14], and unreliable annotators and their
bias [14]. We do not attempt to quantity whether the uncertainty we observe is due to these other
causes or to subjectivity (i.e., varying user perspectives). We hope to explore this avenue in future
work.

In order to truly understand the social impact of representative learning, we need to know the
underlying demographics of the sampling frames in question, in this case AMT and CrowdFlower.
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Broad split KL1/2majority repeated probabilityMMMMax MMMAvд GMMMax GMMAvд LDAMax LDAMax

KL1 KL1 KL1 KL1 KL2 KL1 KL2 KL1 KL2 KL1 KL2 KL1 KL2 KL1 KL2
jobQ1CF 2.98 0.79 0.91 0.55 0.12 0.55 0.07 0.97 0.74 0.91 0.69 0.59 0.47 0.50 0.24
jobQ1MT 2.03 0.80 0.72 0.87 0.65 0.86 0.62 1.13 1.05 1.13 0.97 0.61 0.52 0.48 0.27

jobQ1BOTH 2.38 0.45 0.48 0.55 0.36 0.59 0.35 0.57 0.38 0.56 0.33 0.35 0.27 0.35 0.18
jobQ2CF 2.29 0.91 0.79 0.60 0.21 0.58 0.15 0.95 0.78 0.94 0.81 0.65 0.13 0.56 0.08
jobQ2MT 2.10 0.80 0.78 1.02 0.81 0.99 0.70 1.22 0.98 1.33 1.09 0.69 0.67 0.55 0.35

jobQ2BOTH 2.12 0.49 0.47 0.63 0.48 0.67 0.46 0.68 0.48 0.67 0.48 0.42 0.37 0.37 0.20
jobQ3CF 4.20 1.66 1.14 1.09 0.31 1.07 0.25 1.31 0.68 1.27 0.64 1.02 0.66 0.90 0.33
jobQ3MT 3.18 2.24 1.05 1.43 1.04 1.47 0.90 1.75 1.32 1.78 1.28 1.11 0.54 1.03 0.27

jobQ3BOTH 3.38 1.40 0.77 1.07 0.62 1.05 0.60 1.04 0.49 1.07 0.47 0.78 0.62 0.69 0.38
RWsuicide 2.16 1.40 0.45 0.83 0.69 0.82 0.61 0.88 13.62 0.88 13.62 0.42 0.33 0.38 0.18

Table 7. Kullback–Leibler divergence of CNN-based text classification experiments with different aggregation
models, using the Broad split. The lowest KL divergence for each dataset is highlighted in bold.

Deep split Scoremajority repeated probabilityMMMMax MMMAvд GMMMax GMMAvд LDAMax LDAAvд

jobQ1CF 2.85 1.58 1.72 1.36 1.33 1.74 1.69 1.41 1.41
jobQ1MT-new 2.47 1.57 1.63 1.25 1.29 1.59 2.12 1.02 1.30

jobQ1BOTH-new 2.54 1.42 1.32 1.32 1.35 1.49 1.39 1.31 1.31
jobQ2CF 3.65 1.23 1.32 1.17 1.16 1.35 1.40 1.34 1.24

jobQ2MT-new 1.48 1.38 1.45 1.25 1.24 1.11 1.27 1.14 1.17
jobQ2BOTH-new 2.54 1.14 1.15 1.26 1.24 1.09 1.07 1.12 1.13

jobQ3CF 4.07 1.86 1.84 2.05 2.02 2.29 2.30 1.73 1.91
jobQ3MT-new 4.90 1.94 1.94 1.98 2.02 2.24 2.06 1.67 1.66

jobQ3BOTH-new 3.62 1.65 1.82 2.06 1.95 2.26 2.25 1.49 1.65
Table 8. Scores of CNN-based text classification experiments with different aggregation models, using the
Deep split. The lowest score for each dataset is highlighted in bold.

Deep split ACC majority repeated probabilityMMMMax MMMAvд GMMMax GMMAvд LDAMax LDAAvд

jobQ1CF 0.62 0.47 0.58 0.78 0.86 0.80 0.80 0.54 0.56
jobQ1MT-new 0.72 0.53 0.70 0.58 0.58 0.66 0.56 0.72 0.74

jobQ1BOTH-new 0.72 0.51 0.70 0.62 0.58 0.90 0.90 0.60 0.70
jobQ2CF 0.60 0.53 0.52 0.76 0.74 0.82 0.82 0.48 0.62

jobQ2MT-new 0.72 0.57 0.70 0.58 0.48 0.64 0.56 0.66 0.74
jobQ2BOTH-new 0.72 0.54 0.76 0.54 0.60 0.56 0.62 0.68 0.68

jobQ3CF 0.46 0.40 0.48 0.16 0.46 0.30 0.30 0.50 0.46
jobQ3MT-new 0.54 0.43 0.54 0.14 0.24 0.24 0.26 0.48 0.48

jobQ3BOTH-new 0.62 0.46 0.48 0.20 0.22 0.40 0.38 0.56 0.56
Table 9. Accuracy of CNN-based text classification experiments with different aggregation models, using the
Deep split. The highest accuracy for each dataset is highlighted in bold.

Several studies have investigated these demographics [10, 11, 18, 38]. Among the findings: Mechan-
ical Turk pulls most of its workforce from the United States, whereas CrowdFlower’s workforce
has proportionally higher levels of participation from smaller countries, like Venezuela. The male
to female ratio is similar on both platforms with more female workers than male. A majority of
contributors have some college education, of which most have a bachelor’s degree. The worker
population on both platforms is dynamic and changes frequently, but the number of workers avail-
able is steady, so every year some new workers join and balance the workers who quit contributing.
The majority of workers fall in the legal working age in the US, most of which are young workers
of age group 20-35. These workers earn below the median salary range in the US. The American
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Deep split KL1/2majority repeated probabilityMMMMax MMMAvд GMMMax GMMAvд LDAMax LDAAvд

KL1 KL1 KL1 KL1 KL2 KL1 KL2 KL1 KL2 KL1 KL2 KL1 KL2 KL1 KL2
jobQ1CF 3.09 0.77 0.90 0.75 0.13 0.69 0.07 1.10 0.69 1.03 0.63 0.58 0.39 0.60 0.23

jobQ1MT-new 2.94 0.47 0.54 0.76 0.64 0.73 0.67 1.83 1.08 1.80 1.57 0.50 0.47 0.28 0.25
jobQ1BOTH-new 2.90 0.34 0.24 0.56 0.39 0.51 0.41 0.94 0.43 0.69 0.32 0.24 0.38 0.21 0.17

jobQ2CF 3.07 0.57 0.65 0.82 0.18 0.76 0.13 1.08 0.56 1.28 0.58 0.57 0.49 0.50 0.24
jobQ2MT-new 1.90 0.50 0.58 0.84 0.77 0.82 0.75 1.62 0.68 1.65 0.84 0.76 0.76 0.31 0.30

jobQ2BOTH-new 2.90 0.27 0.28 0.77 0.52 0.77 0.49 0.92 0.37 0.94 0.34 0.32 0.35 0.26 0.20
jobQ3CF 3.71 1.45 1.00 1.22 0.34 1.21 0.21 1.63 0.63 1.25 0.64 0.92 0.65 0.91 0.36

jobQ3MT-new 3.95 1.98 0.77 1.13 1.13 1.07 1.06 1.85 1.21 1.36 1.03 0.97 1.20 0.51 0.42
jobQ3BOTH-new 3.33 1.13 0.63 0.91 0.76 0.98 0.60 0.95 0.67 1.01 0.64 0.51 0.49 0.45 0.33
Table 10. Kullback–Leibler divergence of CNN-based text classification experiments with different aggregation
models, using the Deep split. The lowest KL divergence for each dataset is highlighted in bold.

racial composition is mostly white. According to Ellie et al. [31] workers speak a diverse set of
languages. According to Huff and Tingley [15] those working as office and administrative support
are major contributors to AMT.

5 RELATEDWORK
It is common in supervised learning settings to model data labels as probability distributions, as we
do here, though the similarities are somewhat superficial. In most machine learning problems these
probabilities are Bayesian, meaning that the distributions represent uncertainty or degree of belief.
In sharp contrast, our label probabilities are frequentist (though the some of the model probabilities
used for clustering are Bayesian), i.e., they literally represent an estimate of the frequency of events
(i.e., labels chosen) in a population sample.

As mentioned in the discussion, there are many sources for uncertainty when humans in the loop
are concerned [16, 25, 26, 39, 40]. However, most such studies into this matter assume that there
is an underlying, if unknown, true label for each data item and do not account for the subjective
nature of human comprehensions and beliefs, i.e., more than one answer is reasonably correct and
acceptable. Two broad research areas overlapping with our subjective domain research question
include recommender systems and multi-label learning problems [12].
Recommender systems [4] study the tastes and preferences of individuals, typically in online

commercial settings. The goal of such systems is to personalize the shopping, viewing, or playing
experience of the users of such system, and they rely on copius amounts of data on the users and in
grouping users into groups with similar tastes. Here we are interested in how populations beliefs,
not tastes, vary, and although modeling users and group of users is of interest to us (particularly to
distinguish between different sorts of expertise on the annotation domain), in many annotation
setting, such as in crowdsourcing, little information on the annotators may be available.

Multilabel classification [12, 13, 24, 27, 30, 34, 35, 35, 36, 41–43, 45] allows for each data item to
simultaneously belong to multiple classes [7, 24]. However, it is possible for there to be multiple
valid labels, even when there is no disagreement among labelers. It is often important to know when
multiplicity is due to disagreement, especially when such disagreements fall along key demographic
boundaries, and indicate important but opposing perspectives that should be equally preserved
in the predictive model. Multilabel models are not designed to detect such disagreement. Rather,
they are designed to detect a rich collection of labels, individualized to each data item, and with
no frequentist representation of the diversity of underlying population beliefs. By contrast, we
seek to throw disagreement into high relief by assuming that label sets fall into a small number of
stereotypical classes, which can be discovered through clustering in the space of label distributions.
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6 CONCLUSION
We study the problem of learning to predict the underlying diversity of beliefs present in supervised
learning domains. We compare the performance of predictive models that are trained on the
empirical distribution of labels produced by crowdworkers to those that collapse those labels to
a single ground truth value. Our results show that it is feasible to predict such distributions over
labels. Doing so is an important first step in producing intelligent agents that understand the
diversity of beliefs in society.

We also studied the use of clustering to pool and aggregate labels in order to reduce the costs of
labeling in this richer domain. Our results suggest that such methods are effective, and though the
reason may have to do with the underlying sources of subjectivity being limited, more research
is needed to understand why. This paper provides a substantial framework of models and tests
to further explore this question and others and advance though rigorous testing and evaluation
socially-aware intelligent systems.
Indeed, our results suggest a number of next steps. For one, we regret not using LDA-based

distributions in the supervised learning phase, since they seemed to perform so well in the aggre-
gation phase. We also need to explore more powerful variants of MMM, including the standard
fully Bayesian variant, Dirichlet-multinomial mixtures, and the standard nonparametric variant,
Dirichlet process multinomial models.

This project was motivated by the need for active learning methods that are socially aware, and
recognizing that the there was very little research in this area to build on. We hope to incorporate
the lessons learned here into new active learning query strategies that make learning socially
representative labels even more efficient.
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