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Abstract

Everyone is talking about intuitive and automated transportation. An important1

and very challenging part of this research field are autonomous unmanned aerial2

vehicles (UAV) such as automated air taxis with a vertical take-off and landing3

(VTOL) capability. On one hand autonomous VTOLs will redesign our personal4

understanding of urban mobility, on the other hand automated UAVs will drastically5

change any kind of delivery or transportation services and much more. However,6

when studying computer vision and machine learning problems for UAVs or VTOLs7

it becomes increasingly difficult to stay up-to-date. We provide a survey for the8

topic of automated flights focusing on challenging Deep Learning problems with9

a state-of-the-art overview. We give an outline of possible sensor set-ups and AI10

based pipelines with leading results on established data sets. Finally we point out11

currently missing investigations.12

1 Introduction13

Autonomous flying is a rapidly advancing application area with a lot of opportunities for Deep14

Learning or Machine Learning based approaches. In common, two different pipelines can be15

distinguished:16

1. The mediated perception approach which semantically reasons the scene [12, 11, 24] and17

determines the flight control decision based on it.18

2. The end-to-end approach that learns the flying controls based on human behavior in and19

end-to-end manner [16, 2, 28].20

Fig. 1 gives an overview of both pipelines where exemplary possible applications are shown. (a)21

SLAM is crucial for the local map and the vehicle pose within the environmental model. (b) Scene22

Understanding is essential to interpret the environment, e.g. to detect static and dynamic objects23

and their locations such as point wise classifications. (c) Sensor-Fusion is important to exploit the24

strengths of the different sensor types like classification for cameras, reconstruction for Lidar or25

dynamics for Radar. (d) End-2-End flying learns all decisions within a single network and can be26

treated as alternative approach. Compared to other kinds of automated vehicles, Autonomous Flying27

(AF) has specific challenges that characterize the use cases for Deep Learning:28

• Scale Ambiguity: The 6DoF viewpoint ability for aerial vehicles impedes basic geometrical29

tasks like visual depth estimation or visual reconstruction in comparison to 3DoF use cases30

for ground robots and cars.31

• Data Availability: Public data sets are rare compared to other computer vision tasks.32

• Constraint Hardware: Applications have to run on a limited hardware with low energy33

consumption.34
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Figure 1: The principles of automated flying. The diagram outlines the state-of-the-art workflow. It
all starts with the dedicated user mission. However, vehicle sensor data is essential to develop an
environmental model for decision making and path planning. Several sensors like cameras, Lidars
or Radars are crucial. In general two different paths are distinguished: 1. The mediated perception
approach; 2. End-2-End Flying; Due to the complexity of the different tasks, leading approaches are
mainly based on Machine Learning or Deep Learning, in particular Convolutions Neural Networks
(CNN). (a-d) Illustrate example functions based on Deep Learning and their specific role within the
pipeline [27, 4, 19, 7, 1].

Due to those challenging circumstances our short survey will cover an overview of public aerial data35

sets for specific tasks with currently leading applications. We give an overview of possible sensor36

setups, specific work-flows for sensor fusion and point out there strengths and weaknesses. The main37

part gives an overview of possible Deep Learning based applications for AF referencing exemplary38

state-of-the-art developments.39

Aerial Data Sets
↓ Name/Task → Semantics Objects Odometry Vision Lidar Radar Size
Stanford Drone [19] 7 3(2D) 7 3 7 7 ∼69GB1

DOTA [26] 7 3(2D) 7 3 7 7 2806F2

ISPRS [15] 3(2/3D) 7 7 3 3 7 ∼20GB3

VisDrone2018 [30] 7 3(2D) 7 3 7 7 3190F4

Inria Aerial [17] 3(2D) 7 7 3 7 7 360F5

Drone Mapper 7 7 7 3 3 7 -6

Zurich Micro [18] 7 7 3(6DoF) 3 7 7 ∼28GB7

EuRoC MAV [3] 7 7 3(6DoF) 3 7 7 ∼20GB8

Kitti [12] 3(2D) 3(2/3D) 3(3DoF) 3 3 7 8110F9

40

41

1StandfordD: Several video sequences with instance tracking containing 7 classes in 8 different scenes
2DOTA: 2806 images (scale invariant) with 15 different object classes.
3ISPRS: Three different scenes (Toronto, Potsdam and Vaihingen) containing Lidar and RGB images (∼ 40

image pairs per scene) with Semantic Pixel Classification (6 classes)
4VisDrone: 3190 frames in video and image footage with object boxes and tracking instances (12 classes).
5InriaA: Two pixel-wise classes (building, background) covering around 810 km2 in 5 different regions.
6DMapper: Commercial data from https://dronemapper.com with HD-Lidar with accompanied RGB.
7ZurichM: A total of 5’237’298 2D keypoint observations and 1’382’274 3D points in Zurich.
8EuRoC: Around 10 indoor scenes with a static laser observer for odometry estimations.
9Kitti: Automotive Dataset with 8110 images with 2D and 3D Multiclass (8 classes) Object-boxes using

Stereo Vision and Lidar such as 3Dof odometry.
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Figure 2: Sensor Fusion for Aerial Machine Learning. The figure shows four Star Plots analyzing the
strengths and weaknesses of Camera, Lidar, Radar and Sensor Fusion. Individual strengths differ a
lot. To benefit from all strengths Sensor Fusion is necessary. e.g. Object Classification can be trained
easily using cameras [6] due to the good information density and the high value of visual features,
whereas localization or reconstruction tasks benefit from Lidar sensing. Hence, 3D object detection
mainly profits by fusion of cameras and Lidar, what can be proven by the Kitti leaderboard[12].
Radar has it advantages in the spectral analysis (2DFFT), i.e. it can directly measure the velocity of
surrounding objects and many more tempo-spatial features. On the other hand Radar is resistent to
weather or day/night conditions. Questionable is therefore rare usage of Radar data for ML in the
domain of automated Flights.

2 Learning with Aerial Data42

2.1 Public data sets43

Different kinds of aerial data sets were established as it became important solving aerial computer44

vision tasks. To the best of our knowledge we summarized the most influential data sets in Tab. 1. At45

the moment, the main focus of research is aerial perception (e.g. multi-class object detection and46

tracking) and localization (e.g. odometry prediction) predominantly using camera inputs. All eight47

mentioned aerial data sets use cameras, only two use Lidar and none of them provide Radar ground48

truth. For comparison we mention the most comprehensive automotive data set Kitti [12]. Even Kitti49

does not provide public Radar data. We must conclude missing ground truth 3D boxes for aerial data50

and any kind of semantic Lidar annotations. Additionally, no one uses cameras with a large Field of51

View (FoV) or a stitched construction to cover 360 degrees of the vehicle.52

2.2 3D Environmental Sensing53

Lidar, Camera and Radar have different strengths and weaknesses that are important for solving Aerial54

Deep Learning Tasks. For a robust solution using Machine Learning Sensor Fusion is inevitable.55

Fig. 2 points out the advantages of Sensor Fusion. To our surprise, Radar is rarely used in perceptional56

fusion concepts, although it has standalone properties, like spectral analysis or weather resistance.57

We recommend a full fusion concept. Since, high quality data is inevitable for any kind of machine58

learning approach, we summarize the following Deep Learning challenges for our survey:59

• Public Radar data (2D, 3D or Semantic ground truth) is missing.60

• Additional ground truth for Lidar is (2D, 3D or Semantic) missing.61

• Cameras are mainly used with a small FoV not covering 360 degrees.62

• Highly redundant (minimum 3 senors types) data sets are missing63

3 Deep Learning based Autonomous Flying64

Fig. 1 shows the basic principle of AF. We point out opportunities using DL in four different algorithm65

groups in the field of DL, whereas basic function (e.g. Semantic Segmentation) can be part of several66

groups (e.g. Semantic Maps):67
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3.1 Localization, Mapping and Reconstruction68

3.1.1 Visual Odometry69

Dense Tracking and Mapping (DTAM) [21] was the first published method estimating odometry70

with simultaneous mapping. Here, a key frame based minimization of the photo-metric error was71

introduced. The following cost function was used:72

Cr =
1

‖I(r)‖
∑

m∈I(r)

‖Ir(u)− Im(v)‖. (1)

Currently, still traditional cost minimization is state-of-the-art. Recently, Direct Sparse Odometry73

(DSO) was published by Engel et al. [9] with leading results on Kitti [12]. The global cost takes74

geometric attributes (lens distortion, exposure time) is designed as:75

Cr =
1

‖I(r)‖
∑

m∈I(r)

‖Ir(u)− br −
tre

ar

tmeam
Im(v)− bm‖. (2)

Recently, Delmerico et al. [5] published a comprehensive UAV benchmark for traditional visual76

odometry estimation using the EuRoC [3] (6Dof, see section 2.2). The ablation study focuses on77

real-time capacity and accuracy. Most accurate method ODROID is based on key frame based78

optimization like DTAM (1).79

3.1.2 Unsupervised Odometry and Depth Estimation80

To our surprise, Deep Learning is currently not dominating odometry challenges. However, promising81

results are recently published. GeoNet by Yin et al. [29] minimizes an additive cost function that is82

completely consisting of geometric unsupervised terms, i.e. a joint estimation of monocular depth,83

optical flow and egomotion. The overall cost is used to train a combination of CNNs. The full84

pipeline can be devided into a Rigid-Structure-Decoder such as a Non-Rigid-Motion Localizer. The85

loss is composed by:86

L =
∑∑

[Lrw + Lds + Lfw + Lfs + Lgc] (3)

Lrw (warping loss) and Lds (depth smoothness) define the rigid decoder. Lfw, Lfs and Lgc describe87

the non-rigid motion localizer. The method outperforms significantly ORB-Slam on single Kitti88

Traces for trajectory accuracy (RMSE) and demonstrates the power of unsupervised Deep Learning.89

3.1.3 Competitive Learning of Odometry and Depth90

Recently, generative adversarial networks (GAN) outperformed lots of generative computer vision91

tasks. Milz et al. [20] used a cGAN doing Image-to-Image translation, i.e. Pix2Pix by Isola et al.92

[14], performing aerial depth estimation using Lidar ground truth. The overall loss minimizes the93

following term:94

L = Ex,y{log(D(x, y))}+ Ex,z{log(1−D(x,G(x, z))}+ λ · Ex,y,z{||y −G(x, z)||1} (4)

The method is composed by a generative G and a descriptive network D (see Fig. 3) In order to95

create more and more accurate data, the loss of G is reduced, whereas a training step of D results in96

an increase of the partial loss (1−D) ideally. Hence, a competitive loss is the result. The advantage97

of the approach is, that the overall loss design is learned by the network itself.98

Ranjan et al. goes a step further and combines a competetive such as a colaborative loss to an overall99

cost, which is composed by camera motion, monocular depth, optical flow such as motion estimation100

9See reference [21] for detailed explanation of (1) and [9] for a detailed explanation of (2)
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Figure 3: Competetive monocular Depth estimation using conditional GANs. The figure shows
Milz et a. [25] implementation of the cGAN playing the minimax game. A generator G is used to
create a fake image G(x) (Depth reconstruction) based on the conditional input camera image x. The
discriminator D tries to distinguish between a real Depth map D(y) and fake image D(G(y)). The
method shows promising results on the ISPRS data set[15].

Figure 4: Collaborative and competitive odometry estimation and reconstruction. The figure is taken
from [23] outlining the basic idea of the overall loss with promising results on Kitti.

3.1.4 Point-Cloud based SLAM using CNN based Semantic Points101

SegMap by Dube et al. [8] uses Lidar based Point-Clouds to perform overall SLAM. The clue is an102

feature based global optimization function that is performed on semantic point clouds. The semantic103

point cloud classifcation is performed by a CNN. The model reduces drastically the number of tracked104

features and improves accuracy. The approach yields competitive results on Kitti (see. Fig.)105

3.2 Perception and Scene Understanding106

3.2.1 Visual Object Detection107

The DOTA leader board [26] is good signpost for modeling visual object detectors. The currently108

leading approach is a mask R-CNN by He et al. [13]. The mask R-CNN performs instance object109

segmentation on DOTA with an overall mAP of 0.762.110

Figure 5: SegMap by Deube et al. performs localization and mapping based on Semantic Point
Clouds sensed by Lidars. Results in the left table are promising ([7, 12]). The right area outlines
qualitative odemetry and mapping predictions by Dube et al.
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Figure 6: IoU for the aerial GANeration approach by Milz et al. [20] in the domain of image to
semantic segmentation translation (ISPRS dataset[15]. The right part shows qualitative results.

Figure 7: Dronet by Loquercio et al. (Parts of the Figure are taken from [16]). The left part shows the
Resnet [10] architecture which is directly trained by the movement of observed agents in the urban
area (cars, bicycles). The righ part (a-e) shows qualitative movement results in different scenes.

3.2.2 Semantic Segmentation111

Aerial Semantic Segmentation was recently performed by Milz et al. using the ISPRS data set.112

Similar to section 3.1.3, the approach uses a cGAN to model the task as Image-to-Image translation113

problem. The results on the ISPRS are state-of-the-art. In Section 3.1.4 we have already referenced114

to semantic point cloud classification, which could be implicitly used for SLAM. As shown by Qi et115

al. [22] the overall idea is to approximate a symmetric f function on the point-set x1..n by applying116

local function h to get transformed elements of the data (5). This approximation is directly used in117

the overall loss to get a geometrical assessment and therefore a semantic segmentation of the points.118

f({x1, ...xn}) ≈ g(h(x1), ...h(xn)) (5)

3.3 Prediction, Planning and End-to-End flying119

Prediction and planning for Aerial Vehicles are currently rarely solved using Deep Learning. Loquer-120

cio et al.[16] proposed an End-to-End approach imitating the movement of cars and bicycles using121

UAVs in Urban areas. The concept uses the ground truth motion of real cars/bicycles to train a CNN122

directly. The models architecture and qualitative results are shown in Fig.7123

4 Conclusion124

We have shown a compressed survey for AI based Autonomous Flights using Deep Learning for125

solving modular Tasks. We note, that DL has arrived in many parts like SLAM, perception, prediction126

or End-2-End flying. However, currently the main challenge is a comprehensive sensor redundant data127

set with three-dimensional ground truth (e.g. point semantics). To benefit from the strength of several128

sensor types. To our surprise, the main research focuses on cameras. Consequently, complex and129

comprehensive visual models are developed to perform tasks like reconstruction or depth estimation,130

e.g. competitive learning (section 3), which could be taken directly from Lidar or Radar. Hence, we131

highly recommend the usage of Lidar, Cameras and Radar.132
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