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ABSTRACT

We study the Cross-Entropy Method (CEM) for the non-convex optimization of
a continuous and parameterized objective function and introduce a differentiable
variant (DCEM) that enables us to differentiate the output of CEM with respect
to the objective function’s parameters. In the machine learning setting this brings
CEM inside of the end-to-end learning pipeline where this has otherwise been im-
possible. We show applications in a synthetic energy-based structured prediction
task and in non-convex continuous control. In the control setting we show on the
simulated cheetah and walker tasks that we can embed their optimal action se-
quences with DCEM and then use policy optimization to fine-tune components of
the controller as a step towards combining model-based and model-free RL.

1 INTRODUCTION

Recent work in the machine learning community has shown how optimization procedures can create
new building-blocks for the end-to-end machine learning pipeline (Gould et al., 2016; Johnson et al.,
2016; Amos et al., 2017; Amos & Kolter, 2017; Domke, 2012; Metz et al., 2016; Finn et al., 2017;
Belanger et al., 2017; Rusu et al., 2018; Srinivas et al., 2018; Amos et al., 2018). In this paper we
focus on the setting of optimizing an unconstrained, non-convex, and continuous objective function
fθ(x) : Rn × Θ → R as x̂ = arg minx fθ(x), where f is parameterized by θ ∈ Θ and has inputs
x ∈ Rn. If it exists, some (sub-)derivative ∇θx̂ is useful in the machine learning setting to make
the output of the optimization procedure end-to-end learnable. For example, θ could parameterize a
predictive model that is generating potential outcomes conditional on x happening that you want to
optimize over. End-to-end learning in these settings can be done by defining a loss function L on top
of x̂ and taking gradient steps ∇θL. If fθ were convex this gradient is easy to analyze and compute
when it exists and is unique (Gould et al., 2016; Johnson et al., 2016; Amos et al., 2017; Amos
& Kolter, 2017). Unfortunately analyzing and computing a “derivative” through the non-convex
arg min here is not as easy and is challenging in theory and practice. No such derivative may exist
in theory, it might not be unique, and even if it uniquely exists, the numerical solver being used to
compute the solution may not find a global or even local optimum of f . One promising direction to
sidestep these issues is to approximate the arg min operation with an explicit optimization procedure
that is interpreted as just another compute graph and unrolled through. This is most commonly done
with gradient descent as in Domke (2012); Metz et al. (2016); Finn et al. (2017); Belanger et al.
(2017); Rusu et al. (2018); Srinivas et al. (2018); Foerster et al. (2018). This approximation adds
significant definition and structure to an otherwise extremely ill-defined desiderata at the cost of
biasing the gradients and enabling the learning procedure to over-fit to the hyper-parameters of the
optimization algorithm, such as the number of gradient steps or the learning rate.

In this paper we show that the Cross-Entropy Method (CEM) (De Boer et al., 2005) is a reasonable
alternative to unrolling gradient descent for approximating the derivative through an unconstrained,
non-convex, and continuous arg min. CEM for optimization is a zeroth-order optimizer and works
by generating a sequence of samples from the objective function. We show a simple and compu-
tationally negligible way of making CEM differentiable that we call DCEM by using the smooth
top-k operation from Amos et al. (2019). This also brings CEM into the end-to-end learning process
in cases where there is otherwise a disconnection between the objective that is being learned and the
objective that is induced by deploying CEM on top of those models.

1



Under review as a conference paper at ICLR 2020

We first quickly study DCEM in a simple non-convex energy-based learning setting for regression.
We contrast using unrolled gradient descent and DCEM for optimizing over a SPEN (Belanger &
McCallum, 2016). We show that unrolling through gradient descent in this setting over-fits to the
number of gradient steps taken and that DCEM generates a more reasonable energy surface.

Our main application focus is on using DCEM in the context of non-convex continuous control. This
setting is especially interesting as vanilla CEM is the state-of-the-art method for solving the control
optimization problem with neural network transition dynamics as in Chua et al. (2018); Hafner et al.
(2018). We show that DCEM is useful for embedding action sequences into a lower-dimensional
space to make solving the control optimization process significantly less computationally and mem-
ory expensive. This gives us a controller that induces a differentiable policy class parameterized
by the model-based components. We then use PPO (Schulman et al., 2017) to fine-tune the model-
based components, demonstrating that it is possible to use standard policy learning for model-based
RL in addition to just doing maximum-likelihood fitting to observed trajectories.

2 BACKGROUND AND RELATED WORK

2.1 DIFFERENTIABLE OPTIMIZATION-BASED MODELING IN MACHINE LEARNING

Optimization-based modeling is a way of integrating specialized operations and domain knowledge
into end-to-end machine learning pipelines, typically in the form of a parameterized arg min oper-
ation. Convex, constrained, and continuous optimization problems, e.g. as in Gould et al. (2016);
Johnson et al. (2016); Amos et al. (2017); Amos & Kolter (2017), capture many standard layers as
special cases and can be differentiated through by applying the implicit function theorem to a set
of optimality conditions from convex optimization theory, such as the KKT conditions. Non-convex
and continuous optimization problems, e.g. as in Domke (2012); Belanger & McCallum (2016);
Metz et al. (2016); Finn et al. (2017); Belanger et al. (2017); Rusu et al. (2018); Srinivas et al.
(2018); Foerster et al. (2018); Amos et al. (2018); Pedregosa (2016); Jenni & Favaro (2018); Ra-
jeswaran et al. (2019), are more difficult to differentiate through. Differentiation is typically done
by unrolling gradient descent or applying the implicit function theorem to some set of optimality
conditions, sometimes forming a locally convex approximation to the larger non-convex problem.
Unrolling gradient descent is the most common way and approximates the arg min operation with
gradient descent for the forward pass and interprets the operations as just another compute graph
for the backward pass that can all be differentiated through. In contrast to these works, we show
how continuous and nonconvex arg min operations can also be approximated with the cross entropy
method (De Boer et al., 2005) as an alternative to unrolling gradient descent.

2.2 EMBEDDING DOMAINS FOR OPTIMIZATION PROBLEMS

Oftentimes the solution space of high-dimensional optimization problems may have structural prop-
erties that an optimizer can exploit to find a better solution or to find the solution quicker than an
otherwise naïve optimizer. This is done in the context of meta-learning in Rusu et al. (2018) where
gradient-descent is unrolled over a latent space. In the context of Bayesian optimization this has
been explored with random feature embeddings, hand-coded embeddings, and auto-encoder-learned
embeddings (Antonova et al., 2019; Oh et al., 2018; Calandra et al., 2016; Wang et al., 2016; Garnett
et al., 2013; Ben Salem et al., 2019; Kirschner et al., 2019). We show that DCEM is another rea-
sonable way of learning an embedded domain for exploiting the structure in and efficiently solving
larger optimization problems, with the significant advantage of DCEM being that the latent space is
directly learned to be optimized over as part of the end-to-end learning pipeline.

2.3 RL AND CONTROL

High-dimensional non-convex optimization problems that have a lot of structure in the solution
space naturally arise in the control setting where the controller seeks to optimize the same objective
in the same controller dynamical system from different starting states. This has been investigated
in, e.g., planning (Ichter et al., 2018; Ichter & Pavone, 2019; Mukadam et al., 2018; Kurutach et al.,
2018; Srinivas et al., 2018; Yu et al., 2019; Lynch et al., 2019), and policy distillation (Wang &
Ba, 2019). Chandak et al. (2019) shows how to learn an action space for model-free learning and
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Co-Reyes et al. (2018); Antonova et al. (2019) embed action sequences with a VAE. There has also
been a lot of work on learning reasonable latent state space representations (Tasfi & Capretz, 2018;
Zhang et al., 2018; Gelada et al., 2019; Miladinović et al., 2019) that may have structure imposed
to make it more controllable (Watter et al., 2015; Banijamali et al., 2017; Ghosh et al., 2018; Anand
et al., 2019; Levine et al., 2019; Singh et al., 2019). In contrast to these works, we learn how to
encode action sequences directly with DCEM instead of auto-encoding the sequences. This has the
advantages of 1) never requiring the expensive expert’s solution to the control optimization problem,
2) potentially being able to surpass the performance of an expert controller that uses the full action
space, and 3) being end-to-end learnable through the controller for the purpose of finding a latent
space of sequences that DCEM is good at searching over.

Another direction the RL and control has been pursuing is on the combination of model-based and
model-free methods (Bansal et al., 2017; Okada et al., 2017; Jonschkowski et al., 2018; Pereira
et al., 2018; Amos et al., 2018; Okada & Taniguchi, 2019; Janner et al., 2019; Pong et al., 2018).
Amos et al. (2018) proposes differentiable MPC and only do imitation learning on the cartpole and
pendulum tasks with known or lightly-parameterized dynamics — in contrast, we are able to 1) scale
our differentiable controller up to the cheetah and walker tasks, 2) use neural network dynamics
inside of our controller, and 3) backpropagate a policy loss through the output of our controller and
into the internal components.

3 THE DIFFERENTIABLE CROSS-ENTROPY METHOD (DCEM)

We focus on uses of the Cross-Entropy Method (CEM) (De Boer et al., 2005) for optimization in
this paper. In this setting, suppose we have a non-convex, deterministic, and continuous objective
function fθ(x) parameterized by θ over a domain Rn and we want to solve the optimization problem

x̂ = arg min
x

fθ(x) (1)

The original form of CEM is an iterative and zeroth-order algorithm to approximate the solution of
eq. (1) with a sequence of samples from a sequence of parametric sampling distributions gφ defined
over the domain Rn, such as Gaussians.

We refer the reader to De Boer et al. (2005) for more details and motivations for using CEM and
briefly describe how it works here. Given a sampling distribution gφ, the hyper-parameters of CEM
are the number of candidate points sampled in each iteration N , the number of elite candidates k
to use to fit the new sampling distribution to, and the number of iterations T . The iterates of CEM
are the parameters φ of the sampling distribution. CEM starts with an initial sampling distribution
gφ1

(X) ∈ Rn, and in each iteration t generates N samples from the domain [Xt,i]
N
i=1 ∼ gφt

(·),
evaluates the function at those points vt,i = fθ(Xt,i), and re-fits the sampling distribution to the
top-k samples by solving the maximum-likelihood problem1

φt+1 = arg max
φ

∑
i

1{vt,i ≤ π(vt)k} log gφ(Xt,i), (2)

where the indicator 1{P} is 1 if P is true and 0 otherwise, gφ(X) is the likelihood of X under gθ
and π(x) sorts x ∈ Rn in ascending order so that π(x)1 ≤ π(x)2 ≤ . . . ≤ π(x)n. We can then map
from the final distribution gφT

back to the domain Rn by taking the mean of it, i.e. x̂ = E[gφT+1
(·)].

Proposition 1. For multivariate isotropic Gaussian sampling distributions we have that φ =
{µ, σ2} and eq. (2) has a closed-form solution given by the sample mean and variance of the top-k
samples as µt+1 = 1/k

∑
i∈It Xt,i and σ2

t+1 = 1/k
∑
i∈It (Xt,i − µt+1)

2, where the top-k indexing
set is It = {i : vt,i ≤ π(vt)k}.

This is well-known in statistics and is discussed in, e.g., Friedman et al. (2001).

1The Cross-Entropy Method’s name comes from eq. (2) more generally optimizing the cross-entropy mea-
sure between two distributions.

3



Under review as a conference paper at ICLR 2020

Algorithm 1 DCEM(fθ, gφ, φ1; τ,N, k, T )
DCEM minimizes a parameterized objective function fθ and is differentiable w.r.t. θ. Each DCEM
iteration samples from the distribution gφ, starting with φ1.

for t = 1 to T do
[Xt,i]

N
i=1 ∼ gφt

(·) . Sample N points from the domain
vt,i = fθ(Xt,i) . Evaluate the objective function at those points
It = ΠLk

(vt/τ) . Compute the soft top-k projection of the values with eq. (4)
Update φt+1 by solving the maximum weighted likelihood problem in eq. (5)

end for
return E[gφT+1

(·)]

Differentiating through CEM’s output with respect to the objective function’s parameters with ∇θx̂
is useful, e.g., to bring CEM into the end-to-end learning process in cases where there is otherwise
a disconnection between the objective that is being learned and the objective that is induced by
deploying CEM on top of those models. Unfortunately in the vanilla form presented above the top-k
operation in eq. (2) makes x̂ non-differentiable with respect to θ. The function samples can usually
be differentiated through with some estimator (Mohamed et al., 2019) such as the reparameterization
trick (Kingma & Welling, 2013), which we use in all of our experiments.

The top-k operation can be made differentiable by replacing it with a soft version as done in Martins
& Kreutzer (2017); Malaviya et al. (2018); Amos et al. (2019), or by using a stochastic oracle as in
?. Here we use the Limited Multi-Label Projection (LML) layer (Amos et al., 2019), which projects
points from Rn onto the LML polytope defined by

Ln,k = {p ∈ Rn | 0 ≤ p ≤ 1 and 1>p = k}, (3)

which is the set of points in the unit n-hypercube with coordinates that sum to k. Notationally, if n
is implied by the context we will leave it out and write Lk. We propose a temperature-scaled LML
variant to project onto the interior of the LML polytope with

ΠLk
(x/τ) = arg min

0<y<1
−x>y − τHb(y) s. t. 1>y = k (4)

where τ > 0 is the temperature parameter and Hb(y) = −
∑
i yi log yi + (1 − yi) log(1 − yi)

is the binary entropy function. Equation (4) is a convex optimization layer and can be solved in
a negligible amount of time with a GPU-amenable bracketing method on the univariate dual and
quickly backpropagated through with implicit differentiation. We can use the LML layer to make a
soft and differentiable version of eq. (2) as

φt+1 = arg max
φ

∑
i

It,i log gφ(Xt,i) subject to It = ΠLk
(vt/τ). (5)

This is now a maximum weighted likelihood estimation problem (Markatou et al., 1997; 1998; Wang,
2001; Hu & Zidek, 2002), which still admits an analytic closed-form solution in many cases, e.g.
for the natural exponential family (De Boer et al., 2005). Thus using the soft top-k operation with
the reparameterization trick, e.g., on the samples from g results in a differentiable variant of CEM
that we call DCEM and summarize in alg. 1. We note that we usually also normalize the values in
each iteration to help separate the scaling of the values from the temperature parameter.
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Proposition 2. The temperature-scaled LML layer ΠLk
(x/τ) approaches the hard top-k operation

as τ → 0+ when all components of x are unique.

We prove this in app. A by using the KKT conditions of eq. (4).
Corollary 1. DCEM captures CEM as a special case as τ → 0+.
Proposition 3. With an isotropic Gaussian sampling distribution, the update in eq. (5) becomes
µt+1 = 1/k

∑
i It,iXt,i and σ2

t+1 = 1/k
∑
i It,i (Xt,i − µt+1)

2, where the soft top-k indexing set is
It = ΠLk

(vt/τ).

This can be proved by differentiating eq. (5), as discussed in, e.g., (De Boer et al., 2005). As a
corollary, this captures prop. 1 as τ → 0+.

4 APPLICATIONS

4.1 ENERGY-BASED LEARNING

Energy-based learning for regression and classification estimate the conditional probability
P(y|x) of an output y ∈ Y given an input x ∈ X with a parameterized energy function
Eθ(y|x) ∈ Y × X → R such that P(y|x) ∝ exp{−Eθ(y|x)}. Predictions are made by solving
the optimization problem

ŷ = arg min
y

Eθ(y|x). (6)

Historically linear energy functions have been well-studied, e.g. in Taskar et al. (2005); LeCun
et al. (2006), as it makes eq. (6) easier to solve and analyze. More recently non-convex energy
functions that are parameterized by neural networks are being explored — a popular one being
Structured Prediction Energy Networks (SPENs) (Belanger & McCallum, 2016) which propose to
model Eθ with neural networks. Belanger et al. (2017) suggests to do supervised learning of SPENs
by approximating eq. (6) with gradient descent that is then unrolled for T steps, i.e. by starting
with some y0, making gradient updates yt+1 = yt + γ∇yEθ(yt|x) resulting in an output ŷ = yT ,
defining a loss function L on top of ŷ, and doing learning with gradient updates∇θL that go through
the inner gradient steps.

In this context we can alternatively use DCEM to approximate eq. (6). One potential consideration
when training deep energy-based models with approximations to eq. (6) is the impact and bias that
the approximation is going to have on the energy surface. We note that for gradient descent, e.g.,
it may cause the energy surface to overfit to the number of gradient steps so that the output of the
approximate inference procedure isn’t even a local minimum of the energy surface. One potential
advantage of DCEM is that the output is more likely to be near a local minimum of the energy
surface so that, e.g., more test-time iterations can be used to refine the solution. We empirically
illustrate the impact of the optimizer choice on a synthetic example in sect. 5.1.

4.2 CONTROL AND REINFORCEMENT LEARNING

Our main application focus is in the continuous control setting where we show how to use DCEM
to learn a latent control space that is easier to solve than the original problem and induces a dif-
ferentiable policy class that allows parts of the controller to be fine-tuned with auxiliary policy or
imitation losses.

We are interested in controlling discrete-time dynamical systems with continuous state-action
spaces. Let H be the horizon length of the controller and UH be the space of control sequences over
this horizon length, e.g. U could be a multi-dimensional real space or box therein and UH could be
the Cartesian product of those spaces representing the sequence of controls over H timesteps. We
are interested in repeatedly solving the control optimization problem2

û1:H = arg min
u1:H∈UH

H∑
t=1

Ct(xt, ut) subject to xt+1 = f trans(xt, ut), x1 = xinit, (7)

2For notational convenience we omit some explicit variables from the argmin operator when they are can
be inferred by the context and not used elsewhere.
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Algorithm 2 Learning an embedded control space with DCEM
Fixed Inputs: Dynamics f trans, per-step state-action costCt(xt, ut) (inducingCθ(z;xinit)) hori-
zon H , full control space UH , distribution over initial states D
Learned Inputs: Decoder fdecθ : Z → UH

while not converged do
Sample initial state xinit ∼ D
ẑ = arg minz∈Z Cθ(z;xinit) . Solve the embedded control problem eq. (8)
θ ← grad-update(∇θCθ(ẑ)) . Update the decoder to improve the controller’s cost

end while

where we are in an initial system state xinit governed by deterministic system transition dynamics
f trans, and wish to find the optimal sequence of actions û1:H such that we find a valid trajectory
{x1:H , u1:H} that optimizes the cost Ct(xt, ut). Typically these controllers are used for receding
horizon control (Mayne & Michalska, 1990) where only the first action u1 is deployed on the real
system, a new state is obtained from the system, and the eq. (7) is solved again from the new initial
state. In this case we can say the controller induces a policy π(xinit) ≡ û1

3 that solves eq. (7) and
depends on the cost and transition dynamics, and potential parameters therein. In all of the cases we
consider f trans is deterministic, but may be approximated by a stochastic model for learning. Some
model-based reinforcement learning settings consider cases where f trans and C are parameterized
and potentially used in conjunction with another policy class.

For sufficiently complex dynamical systems, eq. (7) is computationally expensive and numerically
instable to solve and rife with sub-optimal local minima. The Cross-Entropy Method is the state-of-
the-art method for solving eq. (7) with neural network transitions f trans (Chua et al., 2018; Hafner
et al., 2018). CEM in this context samples full action sequences and refines the samples towards
ones that solve the control problem. Hafner et al. (2018) uses CEM with 1000 samples in each
iteration for 10 iterations with a horizon length of 12. This requires 1000 × 10 × 12 = 120, 000
evaluations (!) of the transition dynamics to predict the control to be taken given a system state —
and the transition dynamics may use a deep recurrent architecture as in Hafner et al. (2018) or an
ensemble of models as in Chua et al. (2018). One comparison point here is a model-free neural
network policy takes a single evaluation for this prediction, albeit sometimes with a larger neural
network.

The first application we show of DCEM in the continuous control setting is to learn a latent action
space Z with a parameterized decoder fdecθ : Z → UH that maps back up to the space of optimal
action sequences, which we illustrate in fig. 3. For simplicity starting out, assume that the dynamics
and cost functions are known (and perhaps even the ground-truth) and that the only problem is to
estimate the decoder in isolation, although we will show later that these assumptions can be relaxed.
The motivation for having such a latent space and decoder is that the millions of times eq. (7) is
being solved for the same dynamic system with the same cost, the solution space of optimal action
sequences û1:H ∈ UH has an extremely large amount of spatial (over U) and temporal (over time
in UH ) structure that is being ignored by CEM on the full space. The space of optimal action
sequences only contains the knowledge of the trajectories that matter for solving the task at hand,
such as different parts of an optimal gait, and not irrelevant control sequences. We argue that CEM
over the full action space wastes a lot of computation considering irrelevant action sequences and
show that these can be ignored by learning a latent space of more reasonable candidate solutions
here that we search over instead. Given a decoder, the control optimization problem in eq. (7) can
then be transformed into an optimization problem over Z as

ẑ = arg min
z∈Z

Cθ(z;xinit) ≡
H∑
t=1

Ct(xt, ut)

subject to xt+1 = f trans(xt, ut), x1 = xinit, u1:H = fdecθ (z),

(8)

which is still a challenging non-convex optimization problem that searches over a decoder’s input
space to find the optimal control sequence. We illustrate what this looks like in fig. 3, and note the
impact of the decoder initialization in app. C.

3For notational convenience we also omit the dependency of u1 on xinit here.
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Figure 1: We trained an energy-based model with unrolled gradient descent and DCEM for a 1D
regression task with the target function shown in black. Each method unrolls through 10 optimizer
steps. The contour surfaces show the (normalized/log-scaled) energy surfaces, highlighting that
unrolled gradient descent models can overfit to the number of gradient steps. The lighter colors
show areas of lower energy.

We propose in alg. 2 to use DCEM to approximately solve eq. (8) and then learn the decoder directly
to optimize the performance of eq. (7). Every time we solve eq. (8) with DCEM and obtain an
optimal latent representation ẑ along with the induced trajectory {xt, ut}, we can take a gradient
step to push down the resulting cost of that trajectory with∇θC(ẑ), which goes through the DCEM
process that uses the decoder to generate samples to obtain ẑ. We note that the DCEM machinery
behind this is not necessary if a reasonable local minima is consistently found as this is an instance
of min-differentiation (Rockafellar & Wets, 2009, Theorem 10.13) but in practice this breaks down
in non-convex cases when the minimum cannot be consistently found. Antonova et al. (2019); Wang
& Ba (2019) solve related problems in this space and we discuss them in sect. 2.3. We also note
that to learn an action embedding we still need to differentiate through the transition dynamics and
cost functions to compute ∇θC(ẑ), even if the ground-truth ones are being used, since the latent
space needs to have the knowledge of how the control cost will change as the decoder’s parameters
change.

DCEM in this setting also induces a differentiable policy class π(xinit) ≡ u1 = fdec(ẑ)1. This
enables a policy or imitation loss J to be defined on the policy that can fine-tune the parts of the
controller (decoder, cost, and transition dynamics) gradient information from ∇θJ . In theory the
same approach could be used with CEM on the full optimization problem in eq. (7). For realistic
problems without modification this is intractable and memory-intensive as it would require storing
and backpropagating through every sampled trajectory, although as a future direction we note that it
may be possible to delete some of the low-influence trajectories to help overcome this.

5 EXPERIMENTS

We use PyTorch (Paszke et al., 2017) and will openly release our DCEM library, model-based control
code, and the source, plotting, and analysis code for all of our experiments.

5.1 UNROLLING OPTIMIZERS FOR REGRESSION AND STRUCTURED PREDICTION

In this section we briefly explore the impact of the inner optimizer on the energy surface of a SPEN
as discussed in sect. 4.1. For illustrative purposes we consider a simple unidimensional regression
task where the ground-truth data is generated from f(x) = x sin(x) for x ∈ [0, 2π]. We model
P(y|x) ∝ exp{−Eθ(y|x)} with a single neural network Eθ and make predictions ŷ by solving
the optimization problem eq. (6). Given the ground-truth output y?, we use the loss L(ŷ, y?) =
||ŷ − y?||22 and take gradient steps of this loss to shape the energy landscape.

We consider approximating eq. (6) with unrolled gradient descent and DCEM with Gaussian sam-
pling distributions. Both of these are trained to take 10 optimizer steps and we use an inner learning
rate of 0.1 for gradient descent and with DCEM we use 10 iterations with 100 samples per iteration
and 10 elite candidates, with a temperature of 1. For both algorithms we start the initial iterate at
y0 = 0. We show in app. B that both of these models attain the same loss on the training dataset
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Figure 2: Visualization of the samples that CEM and DCEM generate to solve the cartpole task
starting from the same initial system state. The plots starting at the top-left show that CEM initially
starts with no temporal knowledge over the control space whereas embedded DCEM’s latent space
generates a more feasible distribution over control sequences to consider in each iteration. Embed-
ded DCEM uses an order of magnitude less samples and is able to generate a better solution to the
control problem. The contours on the bottom show the controller’s cost surface C(z) from eq. (8)
for the initial state — the lighter colors show regions with lower costs.

but, since this is a unidimensional regression task, we can visualize the entire energy surfaces over
the joint input-output space in fig. 1. This shows that gradient descent has learned to adapt from the
initial y0 = 0 position to the final position by descending along the function’s surface as we would
expect, but there is no reason why the energy surface should be a local minimum around the last
iterate ŷ = y10. The energy surface learned by CEM captures local minima around the regression
target as the sequence of Gaussian iterates are able to capture a more global view of the function
landscape and need to focus in on a minimum of it for regression. We show ablations in app. B from
training for 10 inner iterations and then evaluating with a different number of iterations and show
that gradient descent quickly steps away from making reasonable predictions.

Discussion and limitations. We note that other tricks could be used to force the output to be at
a local minimum with gradient descent, such as using multiple starting points or randomizing the
number of gradient descent steps taken — our intention here is to highlight this behavior in the
vanilla case. We also note that DCEM is susceptible to overfitting to the hyper-parameters behind it
in similar, albeit less obvious ways.
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Figure 4: We evaluated our final models by running 100 episodes each on the cheetah and walker
tasks. CEM over the full action space uses 10,000 trajectories for control at each time step while
embedded DCEM samples only 1000 trajectories. DCEM almost recovers the performance of CEM
over the full action space and PPO fine-tuning of the model-based components helps bridge the gap.

5.2 CONTROL

5.2.1 STARTING SIMPLE: EMBEDDING THE CARTPOLE’S ACTION SPACE

We first show that it is possible to learn an embedded control space as discussed in sect. 4.2 in an
isolated setting. We use the standard cartpole dynamical system from Barto et al. (1983) with a con-
tinuous state-action space. We assume that the ground-truth dynamics and cost are known and use
the differentiable ground-truth dynamics and cost implemented in PyTorch from Amos et al. (2018).
This isolates the learning problem to only learning the embedding so that we can study what this
is doing without the additional complications that arise from exploration, estimating the dynamics,
learning a policy, and other non-stationarities. We show experiments with these assumptions relaxed
in sect. 5.2.2.

We use DCEM and alg. 2 to learn a 2-dimensional latent space Z = [0, 1]2 that maps back up to
the full control space UH = [0, 1]H where we focus on horizons of length H = 20. For DCEM
over the embedded space we use 10 iterations with 100 samples in each iteration and 10 elite can-
didates, again with a temperature of 1. We show the details in app. D that we are able to recover
the performance of an expert CEM controller that uses an order-of-magnitude more samples fig. 2
shows a visualization of what the CEM and embedded DCEM iterates look like to solve the control
optimization problem from the same initial system state. CEM spends a lot of evaluations on se-
quences in the control space that are unlikely to be optimal, such as the ones the bifurcate between
the boundaries of the control space at every timestep, while our embedded space is able to learn
more reasonable proposals.

5.2.2 SCALING UP TO THE CHEETAH AND WALKER

Next we show that we can relax the assumptions of having known transition dynamics and reward
and show that we can learn a latent control space on top of a learned model on the cheetah.run
and walker.walk tasks with frame skips of 4 and 2, respectively, from the DeepMind control
suite (Tassa et al., 2018) using the MuJoCo physics engine (Todorov et al., 2012). We then fine-tune
the policy induced by the embedded controller with PPO (Schulman et al., 2017), sending the policy
loss directly back into the reward and latent embedding modules underlying the controller.

We start with a state-of-the-art model-based RL approach by noting that the PlaNet (Hafner et al.,
2018) restricted state space model (RSSM) is a reasonable architecture for proprioceptive-based
control in addition to just pixel-based control. We show the graphical model we use in fig. 3, which
maintains deterministic hidden states ht and stochastic (proprioceptive) system observations xt and
rewards rt. We model transitions as ht+1 = f transθ (ht, xt), observations with xt ∼ fodecθ (ht),
rewards with rt = f rewθ (ht, xt), and map from the latent action space to action sequences with
u1:T = fdec(z). We follow the online training procedure of Hafner et al. (2018) to initialize all of
the models except for the action decoder fdec, using approximately 2M timesteps. We then use a
variant of alg. 2 to learn fdec to embed the action space for control with DCEM, which we also do
online while updating the models. We describe the full training process in app. E.
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Figure 3: Our RSSM with action se-
quence embeddings

Our DCEM controller induces a differentiable policy class
πθ(xinit) where θ are the parameters of the models that im-
pact the actions that the controller is selecting. We then use
PPO to define a loss on top of this policy class and fine-tune
the components (the decoder and reward module) so that
they improve the episode reward rather than the maximum-
likelihood solution of observed trajectories. We chose PPO
because we thought it would be able to fine-tune the policy
with just a few updates because the policy is starting at a rea-
sonable point, but this did not turn out to be the case and in
the future other policy optimizers can be explored. We im-
plement this by making our DCEM controller the policy in
the PyTorch PPO implementation by Kostrikov (2018). We
provide more details behind our training procedure in app. E.

We evaluate our controllers on 100 test episodes and the re-
wards in fig. 4 show that DCEM is almost (but not exactly)
able to recover the performance of doing CEM over the full
action space while using an order-of-magnitude less trajec-
tory samples (1,000 vs 10,0000). PPO fine-tuning helps
bridge the gap between the performances.

Videos of our trained models are available at:

https://sites.google.com/view/diff-cross-entropy-method

Discussion and limitations. DCEM in the control setting has many potential future directions
to explore and help bring efficiency and policy-based fine-tuning to model-based reinforcement
learning. Much more analysis and experimentation is necessary to achieve this as we faced many
issues getting the model-based cheetah and walker tasks to work that did not arise in the ground-truth
cartpole task. We discuss this more in app. E. We also did not focus on the sample complexity of our
algorithms getting these proof-of-concept experiments working. We also note that other reasonable
baselines on this task could involve distilling the controller into a model-free policy and then doing
search on top of that policy, as done in POPLIN (Wang & Ba, 2019).

6 CONCLUSIONS AND FUTURE DIRECTIONS

We have laid the foundations for differentiating through the cross-entropy method and have brought
CEM into the end-to-end learning pipeline. Beyond further explorations in the energy-based learn-
ing and control contexts we showed here, DCEM can be used anywhere gradient descent is unrolled.
We find this especially promising for meta-learning, potentially building on LEO (Rusu et al., 2018).
Inspired by DCEM, other more powerful sampling-based optimizers could be made differentiable
in the same way, potentially optimizers that leverage gradient-based information in the inner op-
timization steps (Sekhon & Mebane, 1998; Theodorou et al., 2010; Stulp & Sigaud, 2012; Mah-
eswaranathan et al., 2018) or by also learning the hyper-parameters of structured optimizers (Li &
Malik, 2016; Volpp et al., 2019; Chen et al., 2017).
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A PROOF OF PROP. 2

Proof. We first note that a solution exists to the projection operation, and it is unique, which comes
from the strict convexity of the objective (Rao, 1984). The Lagrangian of the temperature-scaled
LML projection in eq. (4) is

L(y, ν) = −x>y − τHb(y) + ν(k − 1>y). (9)

Differentiating eq. (9) gives

∇yL(y, ν) = −x+ τ log
y

1− y
− ν (10)

and the first-order optimality condition ∇yL(y?, ν?) = 0 gives y?i = σ(τ−1(xi + ν∗)), where σ is
the sigmoid function. Using lem. 1 as τ → 0+ gives

y?i =


1 if xi > −ν∗
0 if xi < −ν∗
1/2 otherwise.

(11)

Substituting this back into the constraint 1>y? = k gives that π(x)k < −ν∗ < π(x)k+1, where
π(x) sorts x ∈ Rn in ascending order so that π(x)1 ≤ π(x)2 ≤ . . . ≤ π(x)n. Thus we have that
y?i = 1{xi ≥ π(x)k}, which is 1 when xi is in the top-k components of x and 0 otherwise, and
therefore the temperature-scaled LML layer approaches the hard top-k function as τ → 0+.

Lemma 1.

lim
τ→0+

σ(x/τ) =


1 if x > 0

0 if x < 0
1/2 otherwise,

(12)

where σ(x/τ) = (1 + exp{−x/τ})−1 is the temperature-scaled sigmoid.
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Figure 5: Left: Convergence of DCEM and unrolled GD on the regression task. Right:
Ablation showing what happens when DCEM and unrolled GD are trained for 10 inner steps and
then a different number of steps is used at test-time. We trained three seeds for each model and the
shaded regions show the 95% confidence interval.
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Figure 6: Visualization of the predictions made by ablating the number of inner loop iterations for
unrolled GD and DCEM. The ground-truth regression target is shown in black.

B MORE DETAILS: SIMPLE REGRESSION TASK

Figure 5 (left) shows the convergence of unrolled GD and DCEM on the training data, showing
that they are able to obtain the same training loss despite inducing very different energy surfaces.
Figure 5 (right) and fig. 6 shows the impact of training gradient descent and DCEM to take 10 inner
optimization steps and then ablating the number of inner steps at test-time.
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Figure 7: Impact of the activation function on the initial decoder values

C MORE DETAILS: DECODER INITIALIZATIONS AND ACTIVATION
FUNCTIONS

We have found the decoder to be influenced by the activation function that’s used with it and have
found the ELU (Clevert et al., 2015) to perform the best. fig. 7 conveys some intuition behind this
choice. We randomly initialize a neural network u = fθ(z) with no biases, where θ = {Wi}i for
every layer weight Wi, and then scale the weights with αθ. We then sample z ∼ N (0, I), pass
them through fαθ, and plot the outputs. The ReLU (Nair & Hinton, 2010) induces an extremely
biased distribution which is seen more prevalently as α grows that is not as present when using the
ELU or hyperbolic tangent since they are almost linear around zero. Despite the reasonable looking
initializations for the hyperbolic tangent, we found that it does not perform as well in practice in
our experiments. We found that the initial scale α of the decoder’s parameters is also important for
learning because of the network is not initially producing samples that cover the full output space as
shown with α = 1, it seems hard for it to learn how to expand to cover the full output space.
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D MORE DETAILS: CARTPOLE EXPERIMENT

In this section we discuss some of the ablations we considered when learning the latent action space
for the cartpole task. In all settings we use DCEM to unroll 10 inner iterations that samples 100
candidate points in each iteration and has an elite set of 10 candidates.

For training, we randomly sample initial starting points of the cartpole and for validation we use a
fixed set of initial points. Figure 8 shows the convergence of models as we vary the latent space
dimension and temperature parameter, and fig. 9 shows that DCEM is able to fully recover the
expert performance on the cartpole. Because we are operating in the ground-truth dynamics setting
we measure the performance by comparing the controller costs. We use τ = 0 to indicate the
case where we optimize over the latent space with vanilla CEM and then update the decoder with
∇zC(fdecθ (ẑ)), where the gradient doesn’t go back into the optimization process that produced ẑ.
This is non-convex min differentiation and is reasonable when ẑ is near-optimal, but otherwise is
susceptible to making the decoder difficult to search over.

These results show a few interesting points that come up in this setting, which of course may be dif-
ferent in other settings. Firstly that with a two-dimensional latent space, all of the temperature values
are able to find a reasonable latent space at some point during training. However after more updates,
the lower-temperature experiments start updating the decoder in ways that make it more difficult to
search over and start achieving worse performance than the τ = 1 case. For higher-dimensional
latent spaces, the DCEM machinery is necessary to keep the decoder searchable. Furthermore we
notice that just a 16-dimensional latent space for this task can be difficult for learning, one reason
this could be is from DCEM having too many degrees of freedom in ways it can update the decoder
to improve the performance of the optimizer.
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Figure 8: Training and validation loss convergence for the cartpole task. The dashed horizontal
line shows the loss induced by an expert controller. Larger latent spaces seem harder to learn and
as DCEM becomes less differentiable, the embedding is more difficult to learn. The shaded regions
show the 95% confidence interval around three trials.
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Figure 9: Improvement factor on the ground-truth cartpole task from embedding the action space
with DCEM compared to running CEM on the full action space, showing that DCEM is able to
recover the full performance. We use the DCEM model that achieves the best validation loss. The
error lines show the 95% confidence interval around three trials.
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Figure 10: Learned DCEM reward surfaces for the cartpole task. Each row shows a different initial
state of the system. We can see that as the temperature decreases, the latent representation can still
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τ = 1.
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Algorithm 3 PlaNet (Hafner et al., 2018) variant that we use for proprioceptive control with optional
DCEM embedding
. Models: a deterministic state model, a stochastic state model, a reward model, and (if using
DCEM) an action sequence decoder.
. Initialize dataset D with S random seed episodes.
. Initialize the transition model’s deterministic hidden state h0 and initialize the environment,
obtaining the initial state estimate x0.
. CEM-Solve can use DCEM or full CEM
for t = 1, . . . , T do

ut ← CEM-solve(ht−1, xt−1)
Add exploration noise ε ∼ p(ε) to the action ut.
{rt, xt+1, dt} ← env.step(ut) . Properly restarting if necessary
Add [rt, xt, ut, dt] to D
ht = update-hidden(ht−1, xt, ut, dt)
if t ≡ 0 (mod update-interval) then

Sample trajectories τ = [rτ , xτ , uτ , dτ ]Hτ=1 ∼ D from the dataset.
Obtain the hidden states of the {hτ , x̂τ} from the model.
Compute the multi-step likelihood bound L(τ, hτ , x̂τ ) . (Hafner et al., 2018, eq 6.)
θ ← grad-update(∇θLθ(τ, hτ , x̂τ )) . Optimize the likelihood bound
if using DCEM then

ẑτ = arg minz∈Z Cθ(z;hτ , x̂τ ) . Solve the embedded control problem in eq. (8)
θ ← grad-update(∇θ

∑
τ Cθ(ẑτ )) . Update the decoder

end if
end if

end for

E MORE DETAILS: CHEETAH AND WALKER EXPERIMENTS

For the cheetah.run and walker.walk DeepMind control suite experiments we start with a
modified PlaNet (Hafner et al., 2018) architecture that does not have a pixel decoder. We started
with this over PETS (Chua et al., 2018) to show that this RSSM is reasonable for proprioceptive-
based control and not just pixel-based control. This model is graphically shown in fig. 3 and has 1) a
deterministic state model ht = f(ht−1, xt−1, ut−1), 2) a stochastic state model xt ∼ p(xt, ht), and
3) a reward model: rt ∼ p(rt|ht, xt). In the proprioceptive setting, we posit that the deterministic
state model is useful for multi-step training even in fully observable environments as it allows the
model to “push forward” information about what is potentially going to happen in the future.

For the modeling components, we follow the recommendations in Hafner et al. (2018) and use a
GRU (Cho et al., 2014) with 200 units as the deterministic path in the dynamics model and imple-
ment all other functions as two fully-connected layers, also with 200 units with ReLU activations.
Distributions over the state space are isotropic Gaussians with predicted mean and standard devia-
tion. We train the model to optimize the variational bound on the multi-step likelihood as presented
in (Hafner et al., 2018) on batches of size 50 with trajectory sequences of length 50. We start with
5 seed episodes with random actions and in contrast to Hafner et al. (2018), we have found that
interleaving the model updates with the environment steps instead of separating the updates slightly
improves the performance, even in the pixel-based case, which we do not report results on here.

For the optimizers we either use CEM over the full control space or DCEM over the latent control
space and use a horizon length of 12 and 10 iterations here. For full CEM, we sample 1000 candi-
dates in each iteration with 100 elite candidates. For DCEM we use 100 candidates in each iteration
with 10 elite candidates.

Our training procedure has the following three phases, which we set up to isolate the DCEM addi-
tions. We evaluate the models output from these training runs on 100 random episodes in fig. 4 in the
main paper. Now that these ideas have been validated, promising directions of future work include
trying to combine them all into a single training run and trying to reduce the sample complexity and
number of timesteps needed to obtain the final model.
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Phase 1: Model initialization. We start in both environments by launching a single training run of
fig. 11 to get initial system dynamics. fig. 11 shows that these starting points converge to near-state-
of-the-art performance on these tasks. These models take slightly longer to converge than in (Hafner
et al., 2018), likely due to how often we update our models. We note that at this point, it would be
ideal to use the policy loss to help fine-tune the components so that policy induced by CEM on top
of the models can be guided, but this is not feasible to do by backpropagating through all of the
CEM samples due to memory, so we instead next move on to initializing a differentiable controller
that is feasible to backprop through.

Phase 2: Embedded DCEM initialization. Our goal in this phase is to obtain a differentiable
controller that is feasible to backprop through.

Our first failed attempt to achieve this was to use offline training on the replay buffer, which would
have been ideal as it would require no additional transitions to be collected from the environment.
We tried using alg. 2, the same procedure we used in the ground-truth cartpole setting, to generate
an embedded DCEM controller that achieves the same control cost on the replay buffer as the full
CEM controller. However we found that when deploying this controller on the system, it quickly
stepped off of the data manifold and failed to control it — this seemed to be from the controller
finding holes in the model that causes the reward to be over-predicted.

We then used an online data collection process identical to the one we used for phase 1 to jointly
learn the embedded control space while updating the models so that the embedded controller doesn’t
find bad regions in them. We show where the DCEM updates fit into alg. 3. One alternative that
we tried to updating the decoder to optimize the control cost on the samples from the replay buffer
is that the decoder can also be immediately updated after planning at every step. This seemed nice
since it didn’t require any additional DCEM solves, but we found that the decoder became too biased
during the episode as samples at consecutive timesteps have nearly identical information.

For the hyper-parameters, we kept most of the DCEM hyper-parameters fixed throughout this phase
to 100 samples, 10 elites, and a temperature τ = 1. We ablated across 1) the number of DCEM iter-
ations taken to be {3, 5, 10}, 2) deleting the replay buffer from phase 1 or not, and 3) re-initializing
the model or not from phase 1. We report the best runs that we use as the starting point for the next
phase in fig. 12, which achieve reasonable performance but don’t match the performance of doing
CEM over the full action space. These runs all use 10 DCEM iterations and both keep the replay
buffer from phase 1. The Cheetah run keeps the models from phase 1 and the Walker re-initializes
the models. The cheetah curve around timestep 600k shows, the stability here can be improved as
sometimes the decoder finds especially bad regions in the model that induce extremely high losses.

Phase 3: Policy optimization into the controller. Finally now that we have a differentiable policy
class induced by this differentiable controller we can do policy learning to fine-tune parts of it. We
initially chose Proximal Policy Optimization (PPO) (Schulman et al., 2017) for this phase because
we thought that it would be able to fine-tune the policy in a few iterations without requiring a good
estimate of the value function, but this phase also ended up consuming many timesteps from the
environment. Crucially in this phase, we do not do likelihood fitting at all, as our goal is to show
that PPO can be used as another useful signal to update the parts of a controller — we did this
to isolate the improvement from PPO but in practice we envision more unified algorithms that use
both signals at the same time. Using the standard PPO hyper-parameters, we collect 10 episodes for
each PPO training step and ablate across 1) the number of passes to make through these episodes
{1, 2, 4}, 2) every combination of the reward, transition, and decoder being fine-tuned or frozen, 3)
using a fixed variance of 0.1 around the output of the controller or learning this, 4) the learning rate
of the fine-tuned model-based portions {10−4, 10−5}. Figure 13 shows the results of the best runs
from this search.

We conclude by showing the PPO-fine-tuned DCEM iterates for solving a single control optimiza-
tion problem from a random system state for the cheetah fig. 14. and walker fig. 15 tasks.
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Figure 11: Phase 1: The two base proprioceptive PlaNet training runs that use CEM over the full
action space. The evaluation loss uses 10 episodes and we show a rolling average of the training
loss.
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Figure 12: Phase 2: The training runs of learning an embedded DCEM controller with online
updates. The evaluation loss uses 10 episodes and we show a rolling average of the training loss.
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Figure 13: Phase 3: The training run of PPO-fine-tuning into the model-based components — we
only use the PPO updates to tune these components and do optimize for the likelihood in this phase.
The evaluation loss uses 10 episodes.
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Figure 14: Visualization of the DCEM iterates on the cheetah to solve a single control problem
starting from a random initial system state The rows show iterates 1, 5, 7, 10 from the top to bottom.
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Figure 15: Visualization of the DCEM iterates on the walker to solve a single control problem
starting from a random initial system state. The rows show iterates 1, 5, 7, 10 from the top to
bottom.
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